

PARALLELIZING A NON-DETERMINISTIC OPTIMIZATION ALGORITHM

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Sammy Raymond D’Souza

June 2007

PARALLELIZING A NON-DETERMINISTIC OPTIMIZATION ALGORITHM

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Sammy Raymond D’Souza

June 2007

Approved by:

Ernesto Gomez, Advisor, Date
Computer Science

Keith Evan Schubert

Tong Lai Yu

c© 2007 Sammy Raymond D’Souza

ABSTRACT

This thesis is an intersection of three fields - viz., distributed computing,

combinatorial optimization and evolutionary computation.

The traditional view of algorithmic efficiency is that the total work done

in a parallel execution (across all nodes) cannot be lesser than in its serial

counterpart. However, in a parallel run, execution results are available

at different times and in a different sequence. It is therefore possible for

any one node to shortcut the others and thereby achieve higher parallel

efficiencies.

This research explores the idea that for certain optimization problems there

is a way to parallelize the algorithm such that the parallel efficiency can ex-

ceed one hundred percent. Specifically, a parallel compiler PC is used to

apply shortcutting techniques to a meta-heurisitic, Ant Colony Opti-

mization. The algorithm chosen within ACO for implementation is the

well-known Traveling Salesman Problem TSP. The results of both serial

and parallel execution are compared, with test datasets from TSPLIB. Di-

rections for future work are cited.

iii

ACKNOWLEDGEMENTS

• God

• My parents, Jacintha and Raymond D’Souza. Everything I am, everything I

have achieved, I owe it to them.

• My wife, my pillar of support, my friend and philosopher, the love of my life –

Priya D’Souza.

• My advisor, Dr. Ernesto Gomez, who gave me the freedom to explore, the

latitude to go after huge goals, and the wisdom to pick well. I do not think I

would have embarked on a thesis if it were not for him.

• My faculty at the California State University, San Bernardino.

• My committee member, Dr. Keith Evan Schubert for his words of wisdom and

encouragement, for seeing me through difficult times, and also for undertaking

to complete the LATEX template for producing this thesis document. All coming

generations of CSUSB Math and Computer Science students will be indebted to

you for this.

• My committee member, Dr. Tong Lai Yu, for his patience, his guidance and his

insight, and some very thought provoking conversations.

• My manager at E.S.R.I. www.esri.com , Clark Swinehart for always encourag-

ing me to pursue my dreams and providing the trust and freedom to take those

risks.

iv

• Geraint Bundy, Ph.D., my friend, my colleague, my philosopher. His perspective

and maturity have always kept me in good stead.

• My dear friends Fiona and Peter D’Souza, for everything you’ve done for us. It

is our fortune to have you as our friends.

• Max Manfrin, whom I have never met, for responding via email to a query sent

at 4 a.m. on a sleepless night after the birth of my son, Ryan. I have learnt

greatly from his writings.

• Marco Dorigo and Thomas Stutzle (I have met neither), for their work in the

field of Ant Colony Optimization, and also for making the source for their ACO

book freely available. This gesture alone enabled me to focus on my aspect of

the thesis without getting lost in other intricacies and cut down tons of time

that I would have needlessly spent.

• The wonderful organization I work for – E.S.R.I. (Environmental Systems Re-

search Institute). Thanks to Jack and Laura Dangermond for nurturing this

company, for fostering a culture of intellect, curiosity and caring and for the

opportunity to work with some of the best minds in the world.

v

DEDICATION

To my parents – Raymond and Jacintha D’Souza

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . iv

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1 Background . 1

1.2 Significance . 2

1.3 Goals of the Thesis . 3

1.4 Original Contributions . 4

1.5 Organization and Structure of the Thesis 5

2. Ant Colony Optimization . 6

2.1 Stigmergy . 7

2.2 The Ant Colony Optimization metaphor 9

2.3 ACO for the TSP . 10

2.4 ACO Algorithms . 11

2.5 ACO Implementations . 14

2.6 Closing Notes . 15

3. Distributed Computing - Parallel C and Shortcutting 16

3.1 Parallel C . 16

3.1.1 Distributed computing and determinism 18

3.1.2 Processor identification . 18

3.1.3 Collective Communications 19

3.1.4 Range operations . 20

3.2 SOS . 20

3.2.1 Streams . 21

3.2.2 Overlapping . 21

3.2.3 Shortcutting . 23

3.3 Alternatives . 25

3.4 Summary . 26

4. Analysis . 28

4.1 Analysis of choices . 29

4.1.1 Choice of distributed platform 29

4.1.2 Choice of algorithm . 29

4.1.3 Choice of problem . 30

4.2 Strategy for Parallelization . 31

4.3 Results and Analysis . 32

4.4 Basis for comparision and analysis . 37

5. Conclusion . 47

Appendix . 49

A. The Ant Colony Metaheuristic . 50

A.1 Modeling the Metaheuristic . 50

A.1.1 Combinatorial Optimization 50

viii

A.2 The ACO graph . 51

A.3 The TSP graph . 52

A.4 Phases of the Metaheuristic . 52

A.4.1 Construct solutions . 52

A.4.2 Apply Local Search . 53

A.4.3 Update Pheromones . 53

A.4.4 Daemon Actions . 53

A.5 MMAS Pheromone Update Rule . 54

B. Porting from C to PC . 55

C. Source Code . 57

C.1 ants.h . 57

C.2 ants.h . 61

C.3 acotsp.pc . 65

C.4 InOut.h . 79

C.5 InOut.c . 82

C.6 ls.h . 99

C.7 ls.c . 101

C.8 parse.h . 130

C.9 parse.c . 133

C.10 sos.h . 157

C.11 sosdefs.h . 163

C.12 sos-new.h . 168

C.13 TSP.h . 174

C.14 TSP.c . 177

C.15 unix timer.h . 183

C.16 unix timer.c . 184

ix

C.17 utilities.h . 186

C.18 utilities.c . 189

D. Glossary of Terms . 197

References . 204

x

LIST OF TABLES

2.1 The Ant Colony Optimization metaheuristic 10

2.2 Applications of ACO algorithms . 14

3.1 PC distilled . 17

4.1 ACO-TSP Execution options . 33

4.2 TSPLIB Instances used in the thesis 35

4.3 Reference for reading the graphs . 37

LIST OF FIGURES

2.1 The Double Bridge experiment . 8

3.1 Implicit Process Streams illustrated 22

3.2 Serial and Parallel Shortcutting . 24

4.1 Overview of shortcutting results . 36

4.2 Shortcutting results for 2 ants with nn size 1 38

4.3 Shortcutting results for 2 ants with nn size 5 39

4.4 Shortcutting results for 2 ants with nn size 10 40

4.5 Shortcutting results for 4 ants with nn size 1 41

4.6 Shortcutting results for 4 ants with nn size 5 42

4.7 Shortcutting results for 4 ants with nn size 10 43

4.8 Shortcutting results for 16 ants with nn size 1 44

4.9 Shortcutting results for 16 ants with nn size 5 45

4.10 Shortcutting results for 16 ants with nn size 10 46

1. INTRODUCTION

1.1 Background

In recent years, several major trends can be seen in the field of computation.

• Computing power has been growing exponentially in the last two decades. This

has meant a significant increase in the ability of humans to solve large-scale

problems using computers, yet there are ultimate physical limitations in this

trend. Hardware designers must increasingly look for alternatives to increase

performance other than clock cycle and circuitry design improvements.

• In the thrust of computer science to design, analyse, implement and evaluate

algorithms and techniques to solve critical problems, Combinatorial Optimiza-

tion problems have emerged as a prominent class. They are conceptually easy

to model, (sometimes deceptively so), extremely challenging to solve in realistic

terms, and yet hugely important in the scientific as well as the industrial world.

the number of active researchers in this field is growing day by day.

• Parallel and distributed computing continues to merge into the mainstream,

especially with the availability of multi-core machines on one end and distrbuted

computed networks built from commodity units on the other.

• Nature inspired paradigms, such as Genetic Algorithms (GA), Simulated An-

nealing (SA), Ant Colony Optimization (ACO) are being increasingly used to

provide efficient solutions to problems in a wide variety of problems, ranging,

from economic forecasting, stock market analysis and operations to bioinformat-

ics.

1.2 Significance

Significant efforts have been made to the finding of exact solutions to some com-

binatorial optimization problems, using techniques such as dynamic programming,

cutting planes, and branch and cut methods. Nevertheless, many hard combinatorial

problems are yet to be solved exactly or in a reasonable amount of time. This is

where good heuristic methods come in.

Heuristic techniques provide produce good-quality solutions quickly without neces-

sarily guaranteeing of their optimality.1 Metaheuristics, on the other hand, are higher

level procedures that coordinate simple heuristics, such as local search, to find better

quality solutions in a reasonably short computational time and limited resources.

Parallel (and distributed processing) can be considered as a further attempt to

toward faster completion of an application, using a combination of algorithm design,

programming language structure, and computer architecture. Any work that extends

any of these areas becomes interesting and significant at the same time.

1 This is acceptable because in practice, we often solve models that are approximations of reality itself

2

1.3 Goals of the Thesis

The traditional view of parallel efficiency is that the total amount of work done in a

parallel execution WILL ALWAYS exceed (or in the best case, equal) that done in

the sequential counterpart. However, the results in a parallel execution are available

at different times and in different sequences. Hence, in certain irregular problems, it

is possible for one processor to attain an optimal value faster and thereby interrupt

or shortcut the execution of the other processors. This thesis aims to validate this

hypothesis.

Secondly, modern metaheuristics are probably one of the most promising research

topics in optimization for the last two decades. These include simulated annealing,

genetic algorithms, tabu search, GRASP (greedy randomized adaptive search proce-

dure), ant colony optimization and their hybrids. This thesis aims to see:-

1. They can be parallelized,

2. If Shortcutting techniques can be applied successfully to these, and

3. What, if any, patterns emerge from this.

Finally, the Planguage paradigm of deterministic computing and matched send-

receives, has been applied in conjunction with shortcutting techniques to a textbook

problem. This thesis aims to see if Parallel C (PC) is ready for mainstream compu-

tation, and if regular code used to solve real-world algorithms and heuristics can be

used ported to PC.

3

1.4 Original Contributions

The original contributions from this work are:

1. In previous work ([13]) shortcutting as an algorithmic improvement was applied

to a specific problem that, by its nature, intrinsically favored Shortcutting tech-

niques. In this thesis, we show that Shortcutting can not just be applied to

another problem, but to an entire class of algorithms.2

2. The thesis continues the tradition of using the Traveling Salesman Problem

(TSP) 3 to show that PC as an approach is ready for mainstream.

3. The thesis applies shortcutting to an incredibly large variation of the ACO meta-

heuristic; this makes it possible to see the influence of shortcutting on the un-

derlying algorithm itself, as well as the parametric behavior of ACO-TSP

4. The thesis provides proof of how PC makes it extremely easy and straightforward

to write parallel code. The code used for the experiments are a straight port to

PC from the C code used to write the book [7]. The programmer can focus on

the actual semantics of execution without worrying about the details of message

passing.

5. Most importantly, the thesis shows comprehensively that using Short-

cutting techniques, total work done in a parallel execution can be sig-

nificantly lesser than the sequential equivalent; especially so when a

good-enough solution is required.4

2 It is proposed to present this work as a Journal submission or a Paper presentation at one or more of the peer
reviewed conferences or publications.

3 the Hello World! equivalent of combinatorial problems
4 Improvements of several orders of magnitude have been observed in the latter case.

4

1.5 Organization and Structure of the Thesis

This thesis is an intersection of three fields - viz., distributed computing, combina-

torial optimization and evolutionary computation. The remainder of this thesis is

organized as follows.

Chapter 2 describes the Ant Colony Optimization meta-heuristic while Chapter 3

describes the Planguage-model of computation for distributed and parallel processing.

Chapter 3 is divided into two sections; PC is described at length in section 3.1,

while Shortcutting is discussed in section 3.2. In both these chapters alternative

methodologies and approaches are also briefly explained for the sake of completeness.

Chapter 4 starts with a detailed analysis of the methodology and choices made in

the thesis. Techniques for parallelization in Section 4.2. Next, some computational

experiments and results are presented. The chapter concludes with an interpretation

of the results.

Chapter 5 concludes the thesis with a brief summary followed by suggestions for

improvement and and directions for future research.

A set of useful Appendices is also provided for the interested reader. Appendix A

has a formal notation of the ACO metaheuristic; section A.3 describes the Traveling

Salesman Problem interpreted as an ACO instance, while Section A.5 describes a

specific variant of the ACO, viz., the MAX-MIN Ant Colony System. Appendix B

provides details on porting C code to PC. Appendix C has the source code for the

thesis, made available under the GPL. Finally Appendix D has a glossary of some

important terms.

5

2. ANT COLONY OPTIMIZATION

Introduction

Ant Colony Optimization was introduced in the 1990s as a novel nature-inspired

method for the solving hard combinatorial optimization problems.[6] It takes inspira-

tion from the foraging behavior of some ant species. These ants deposit pheromone

on the ground in order to mark some favorable path that should be followed by other

members of the colony. ACO exploits a similar mechanism for solving optimization

problems. It has attracted the attention of an increasing numbers of researchers as

well as practitioners and many successful applications are now available[7]. In this

thesis, ACO has been used in conjunction with Parallel C and applied to the Traveling

Salesman Problem.

The goal of this chapter is to introduce Ant Colony Optimization and to survey

its most notable applications.For a thorough treatment of the topic, the interested

reader is referred to [7], or to [19, 2, 3, 4, 9]. Section 2.1 provides a insight into the

process of stigmergy. Section 2.2 discusses how this behavior is applied and mapped

to combinatorial problems. The actual Ant Colony metaheuristic is discussed in

section 2.2. 1 Variants of ACO are described in section 2.4. The chapter concludes

with a discussion of other techniques in the field of Evolutionary Computation in

1 Please also see Appendix A for a formal model of the ACO meta-heuristic

section 2.6.

2.1 Stigmergy

The French entomologist Pierre-Paul Grassé first used the term Stigmergy to describe

a peculiar form of communication in insect colonies. He observed that some species

of termites react to what he called ‘significant stimuli’2. These reactions in turn act

as new stimuli for both the insect that produced them and for the other insects in

the colony. i.e., “workers are stimulated by the performance they have achieved”.

Stigmergy differs from other forms of communication in two significant ways –

it is indirect and it is local. The insects do not ‘talk’ to each other, rather they

exchange information by modifying their environment. Also, the information is avail-

able only locally. Another insect must ‘visit the region’ in which it was released (or

its immediate neighborhood) to access it.

Pheromone

Many ant species use a substance called pheromone for Stigmergy. When searching

for food, ants initially explore the area surrounding their nest in a random manner.

As soon as an ant finds a food source, it evaluates it and carries some food back to

the nest. During the return trip, the ant deposits a pheromone trail on the ground.

The amount of pheromone deposited depends on the quantity and quality of the

food. Other ants perceive the presence of pheromone and tend to follow paths where

pheromone concentration is higher. Also over time, pheromone also evaporates, so

sub-optimal paths get ignored.

2 such as a significant source of food

7

Fig. 2.1: The Double Bridge experiment

The double bridge experiments

Indirect communication among ants via pheromone trails enables them to find short-

est paths between their nest and food sources. This fact was verified in an experiment

known as the “double bridge experiment”. A nest of a colony of Argentine ants was

connected to a food source first by two bridges of equal lengths, and then by two of un-

equal lengths. In the first setting, an roughly equal number of ants ended up following

both the paths. However, in the second case, the ants that chose the shorter bridge

would reach the nest first. The short bridge would, therefore, receive pheromone ear-

lier than the long one. This would increases the probability that further ants would

select the shorter route over the longer one. Eventually the whole colony converges

toward the use of the shorter bridge. See Figure 2.1 3

3 Adapted from [5]

8

2.2 The Ant Colony Optimization metaphor

The capability of real ant colonies has inspired the definition of artificial ant colonies

that can find approximate solutions to hard combinatorial optimization problems.

This sections outlines a framework for doing so. The key idea is that ACO can be

applied to any algorithm that iteratively generates and evaluates paths on a weighted

graph.4

The combinatorial problem is encoded on the graph such that each solution of the

combinatorial problem corresponds to at least one path on the graph. In the encoding,

weights are associated with the edges of the graph. These weights are assigned are

such that the cost of a path, i.e. the sum of the weights of its composing edges, equals

the cost function of the combinatorial problem for the associated solution. The goal

of ACO then becomes finding a path of minimum cost. To find such a path, a number

of paths are generated in a Monte Carlo fashion. Stigmergy then plays in – the cost

of such paths is used to bias the generation of further paths. This process is iterated

and more and more information is gathered on the graph to eventually produce a

path of minimum cost.

The basic ACO metaheuristic is shown in Table 2.1. It consists of four algorith-

mic components in a ‘ScheduleActivities’ construct. The construct does not specify

how these activities are scheduled and synchronized; this decision is left to the algo-

rithm designer. The interested reader is referred to [2] or to Appendix A for a formal

framework and a rigorous, theoretical foundation. Metaphorically, the ACO meta-

heuristic can be visualized as follows: The generation of a path corresponds to the

4 In this sense ACO really is a meta-algorithm

9

while Termination Conditions not met do

ScheduleActivities

ConstructAntBasedSolutions

ApplyLocalSearch optional

PheromoneUpdate

DaemonActions optional

end ScheduleActivities

end-while

Tab. 2.1: The Ant Colony Optimization metaheuristic

walk of an ant. At at each node, the ant stochastically selects the following one based

on the problem specific constraint and also on the basis of local information called

pheromone trail. In turn, the pheromone trail is modified by the ants themselves

in order to bias the generation of future paths toward better solutions. The central

central component of the ACO algorithms is the pheromone model.

2.3 ACO for the TSP

This describes in simple terms how the generic ACO framework is applied to the well

known traveling salesman problem(TSP). In the TSP, a set of cities is given along

with distances between each of them. The goal is to find the shortest tour that allows

each city to be visited exactly once. Formally, the objective is to find a Hamiltonian

tour of minimal length on a fully connected graph.

In ACO, a number of artificial ants simulate their natural counterparts by moving

on a graph. The graph is constructed to encode the problem itself: each vertex repre-

10

sents a city and each edge represents a connection between two cities. A ‘pheromone’

variable is associated with each edge and can be read and modified by ants. The

algorithm proceeds iteratively. Within each iteration, a number of artificial ants in-

dependently build a solution by walking from vertex to vertex on the graph. The

TSP problem constraint is that any vertex already visited must not be visited again;

the ant achieves this by keeping a memory of vertices already visited in the walk.5

Now, at each step of the solution construction, an ant selects the following ver-

tex to be visited according to a non-deterministic mechanism that is biased by the

pheromone. If an ant is at vertex i and vertex j has not been previously visited, then

the ant will select j as the next vertex with a probability that is proportional to the

pheromone associated with edge (i, j). At the end of an iteration, the pheromone

values are modified on the basis of the quality of the solutions constructed by the

ants. These values are used to bias ants in future iterations to construct solutions

similar to the best ones previously constructed.

2.4 ACO Algorithms

This section describes the various variants of ACO algorithm that have evolved over

the years. A chronological history of ACO Algorithms is maintained at the website

at http://iridia.ulb.ac.be/˜ mdorigo/ACO/index.html.

Ant System(AS) The first ACO algorithm. It was applied to TSP and found en-

couraging results, but was not as good as other state-of-the-art algorithms for

TSP. The significance of AS was in the number of algorithms and extensions it

5 In this sense it differs from a real ant.

11

inspired and spawned. Almost all successors of ACO are direct extensions of AS.

Elitist Ant System(EAS) M. Dorigo’s Ph.D. thesis; the EAS added a daemon action

to the metaheuristic. Arcs belonging to the best tour since the start of the

algorithm, T bs, were provided additional reinforcement of pheromone deposit.

Ant-Q This was an ant algorithm intended to create a link between reinforcement

learning and Ant Colony Optimization. Computational experiments showed

that some aspects of Ant-Q, in particular the pheromone update rule, could

be strongly simplified without affecting performance. It is for this reason that

Ant-Q was abandoned in favor of its successor the simpler and equally good

ACS.

Ant Colony System (ACS) ACS differs from AS in three areas.

• The accumulated search experience of the ants is exploited more strongly

via a more aggressive action choice rule.

• Pheromone deposit and evaporation is restricted to arc of the best-so-far

tour.

• When an ant moves from city i to j it ‘removes’ some pheromone from the

arc to increase exploration of alternative paths.

Max-Min Ant System One of the best performing variants, MMAS is also used in

this Thesis. It differs from AS in four respects.

• Only the iteration-best-ant or the best-so-far ant is allowed to deposit pheromone.

See A.5 for the update rule, thus strongly exploiting best tours found.

12

• Pheromone trail values are bounded to an interval [τmin, τmax] to avoid stag-

nation.

• Pheromone trails are initialized to τmax at the start and a small evaporation

is applied, increasing the exploration of tours at the start of the search.

• Pheromone trails are reinitialized each time the system approaches stagna-

tion or when no improved tour has been generated for a certain number of

iterations.

Rank-based Ant System ASrank Another improvement over AS. Each ant deposits

an amount of pheromone that decreases with its rank. Additionally, as in EAS,

the best-so-far ant always deposits the largest amount of pheromone in each

iteration.

Approximate Nondeterministic Tree Search (ANTS) An ACO variant that exploits

ideas from mathematical programming.6 ANTS computes lower bounds on the

completion of a partial solution as the heuristic information used by each ant

during solution construction. It also an exact algorithm that can be extended

from ACO to branch & bound.

Hyper-Cube Framework for ACO Also has roots in mathematical programming. Just

as solutions of combinatorial optimization problems are represented as binary

vectors, the hyper-cube ACO automatically rescales pheromone values to always

lie in the interval [0, 1]. A solution to a problem then corresponds to one corner

of an n-dimensional hyper-cube where n is the number of decision variables.

6 Incidentally, it was serendipity that led to the choice of Ant Colony Optimization for this thesis as the metaheuristic
to be parallelized. A keyword search on Nondeterministic led to ANTS which led to ACO.

13

2.5 ACO Implementations

Many implementations of the ACO metaheuristic are available and have been applied

to many different types of combinatorial optimization problems. Table 2.2, adapted

from [5] is a listing of the problems that the ACO metaheuristic has been applied.

Problem Type Problem Name

Routing Traveling salesman
Vehicle Routing
Sequential ordering

Assignment Quadratic assignment
Graph coloring
Generalized assignment
Frequency assignment
University course timetabling

Scheduling Job shop
Open shop
Flow shop
Total taardiness
Total weighted tardiness
Project scheduling
Group shop

Subset Multiple knasack
Max independent set
Redundancy allocation
Set covering
Weight constrained graph tree partition
Arc-weighted l-cardinality tree
Maximum clique

Other Shortest common subsequence
Constraint satisfaction
2D-HP protein folding
Bin packing

Machine learning Classification rules
Bayesian networks
Fuzzy systems

Network routing Connection-oriented network routing
Connectionless network routing
Optical network routing

Tab. 2.2: Applications of ACO algorithms

14

2.6 Closing Notes

For the sake of completeness, it must be noted that many other metaheuristics be-

sides ACO are also available. Some of the more successful ones in the literature are

Tabu Search(TS), Guided Local Search(GLS), Iterated Local Search(ILS), Greedy

Randomized Adaptive Search Procedures(GRASP), Evolutionary Computation(EC)

and Scatter Search. The intersted reader is referred to Chapter 2 in [7].

On the other hand, for being a young metaheuristic, ACO has raised a lot of

interest in the scientific community. There are now available numerous successful im-

plementations of the ACO metaheuristic applied to a wide range of different combi-

natorial optimization problems. There is also a successful biannual workshop (ANTS

From Ant Colonies to Artificial Ants: A Series of International Workshops on Ant

Algorithms; http://iridia.ulb.ac.be) where researchers meet to discuss the properties

of ACO and other ant algorithms both theoretically and experimentally. From the

theory side, researchers are trying either to extend the scope of existing theoretical

results, or to find principled ways to set parameters values. From the experimental

side, most of the current research is in the direction of increasing the number of prob-

lems that are successfully solved by ACO algorithms, including real-word, industrial

applications. These applications comprise two main fields - NP -Hard problems, and

dynamic graph problems.

Finally, this thesis attempts to parallelize ACO-MMAS using ParallelC and short-

cutting techniques.

15

3. DISTRIBUTED COMPUTING - PARALLEL C AND SHORTCUTTING

Introduction

Much of parallel computing in scientific computation has been limited to static par-

allelism [17], the most common form often being the Single Program Multiple Data

SPMD model. The Planguages, however, are an explicitly parallel notation that

allow for a very elegant expression of parallel algorithms. This chapter presents a

quick overview of the Planguage model.

3.1 Parallel C

The Planguages, Pfortran and PC, extend their regular declarative counterparts,

Fortran and C. Thus all knowledge and experience with Fortran or C just carries over

to the corresponding Planguage. Table 3.1 is a distillation of the essential differences

between PC and C; each row points to a major concept or to a noteworthy idea.

PC extends C with a small set of operations. The duality of the send and re-

ceive operations in the message passing paradigm is encapsulated in an infix operator

and in reducing functions. The PC compiler generates calls to a system-dependent

library from user-supplied expressions containing communication operators, particu-

larly those listed in Table 3.1

A key addition to the PC language is the @ operator. @ indicates a variable

Snippet Feature / Comment

x = y@q; @ Operator

x@p = y@q; Fusion statement

myProc and nProc Reserved Variables for Processor
Identification

sum = +{y}; Reduction Operation - summation

x = max{y}; Reduction Operation - user defined
given a function such as
int max(int x, int y)
{
return (x ≥ y ? x : y);
}

x@(a : b) = y@c; Range Operations
A(0 : 4)@a = B(5 : 9)@b;

Tab. 3.1: PC distilled

‘at’ a processor. For instance, x = y@0 assigns the value of variable y at processor

0, to x at every processor, effectively a broadcast. Mixed expressions such at x =

y@p + z; are also legal. Multiple uses of @ are also permissible, however only in

assignment statements, or reduction operations. @ also has the highest precedence

among the binary operators. So, x = y@b+1 is not the same as x = y@(b+1). Also,

x@a+1 = y@b is meaningless, but x@(a+1) = y@b is legal. @ is also non-associative;

x = a@b@c is illegal, but x = a@(b@c) and x = (a@b)@c are not.

One of the snippets above introduced the concept of a fusion. In the serial world,

the statement x = y is a memory move of the value at y to that at x. Extending this

idea, in PC, the fusion statement, x@p = y@q is combination send-receive statement

that assigns the value of y at node q to the variable x at node p. For more details,

17

refer to [17], or to the respective manuals [10, 15] 1. The fusion statement hides the

complexity of the send and receive calls, making it easier, elegant and more intuitive

to write parallel code. More importantly, the fusion assures the semantics of implicit,

albeit one-sided, synchronization; p must wait for q but not vice-versa. This concept

is explored in more detail in section 3.2.

3.1.1 Distributed computing and determinism

The two classic models of distributed computing, viz., shared memory and message

passing, each have their strenghts and merits.

Yet, they are also no n-deterministic by design. In contrast, the PLanguage model,

is intrinsically deterministic. This determinism is largely achieved by matching sends

and receives. PC, in its current implementation, is based on MPI. Hence, if necessary,

it is still possible to reach beneath the hood and make raw calls to MPI - thereby

offering the best of both worlds.

3.1.2 Processor identification

The Planguages use reserved variables myProc and nProc to allow for processor

specific numbering and identification. The variable nProc denotes the total number

of nodes. Nodes are numbered from 0 to nProc - 1. An individual node identifies

itself using the variable myProc. Thus any fusion statement or any code expression

that includes the myProc variable will cause different processes to be in different

states. A common usage is to create a master-slave configuration based on the value

of myProc; 0 denotes the master, all other values represent slave processors.

1 [10, 15] describe the inner workings and also have numerous examples

18

3.1.3 Collective Communications

In the Message-Passing paradigm, collective operations are those that work with

groups of data distributed over all nodes [14]. They could be a broadcast from a

single node to all other nodes, or a combination (also sometimes called a reduction)

of certain data from all nodes. Frequently, the results of combines are also broadcast.

While it is straightforward to write collective operations using sends and receives,

the system frequently provides contructs for the same. These constructs can be op-

timized by the system or by individual implementations. For instance, MPI provides

functions such as MPI Scatter, MPI Gather, MPI Bcast and MPI Reduce. In partic-

ular, MPI Reduce can accept from a list of pre-defined operations such as MPI MAX,

MPI MIN, MPI PROD, MPI LXOR and so on.

The Planguages take this a step further by providing a scheme for intrinsic as well

as user defined reductions operations. For instance,

sum = +{y};

is a succint notation of a summation. Similarly,

u = max{v};

would assign the maximum value of v to the variable u in every processor, provided

the user defined function max were defined as follows.

i n t max(i n t x , i n t y)

{

19

return (x > y ? x : y) ;

}

A key thing to note is the subtle change in the memory model between MPI and PC. In

MPI, the name of the variable bears no intrinsic meaning in a communication context -

the messages sent and received are just data. However, in the Planguage model, the

notation a@b really IS the variable a guarded by processor b. In fact, PC assumes

that every processor knows the names of the variables in all other processors [10].

This means the same code must execute on all processors; ergo., an SPMD execution.

3.1.4 Range operations

The Planguages borrow the “:” notation from Fortran to denote Ranges of processors

as well as sections of arrays. For instance x@(a : b) = y@c would assign the value of

y at processor c to that of x in processors a through b. The RHS of the expression

could also have ranges, in which case there would be a 1:1 mapping. These operations

hold on arrays too. Thus it is legal to write A(0 : 4)@a = B(5 : 9)@b. For more

detailed examples, see [17].

3.2 SOS

SOS refers to ipStreams, Overlapping and Shortcutting.2 It is a function library,

accessible from C or Fortran, that supports “process groups in parallel computa-

tion, an overlap communications optimization protocol, irregular problems, a form of

nondeterministic computation” [11]

2 This section on SOS is heavily abstracted from [13] and [12].

20

3.2.1 Streams

In an SPMD execution, a program can be considered to be a set of processes P that

start together, executing the same code. See Figure 3.1(a). Now, if the code has some

logic that will not execute identically on branches, (say, because of an if statement

dependent on the value of myProc) then control flow for some subset P1 of P will

follow one branch of code, whereas still other subsets P2 · · ·PN of processes may follow

one or more different branches. This is shown in Figures 3.1(b) and 3.1(c). Note that

at the end of the program all subsets merge back to P . These subsets are called

ipStreams (Implicit Process Streams) or Streams for short 3. The salient features of

streams are:

• Within a stream are executing the same code.

• At some points in the control flow graph, streams may merge.

• If interprocess communication is limited to processes in the sam stream, then

analysis to ensure determinism and freedom from deadlock is relatively straight-

forward.

3.2.2 Overlapping

Overlapping uses two constructs: a protocol and a runtime system, to schedule data

transfers between processes in the overlap between definition / redefintion at a pro-

ducer process and use / reuse at a consumer process. This process is described in

brief here, for a detailed description the user is referred to [12, 13].

3 Figure 3.1 has been adapted from [11]

21

(a) Streams split at logic statements on node dependent predicates

(b) Streams merge at points in the control flow graph
where all and only processes from a previous split must
pass

(c) Streams do not merge at points in the control flow
graph which may be bypassed by processes from a previous
split

Fig. 3.1: Implicit Process Streams illustrated

22

Any execution model with different control paths executing simultaneously will

have large synchronization lags. This is particularly true where streams that from

different execution paths merge. Moreover, data distribution or algorithmic require-

ments may also force processes to wait for others at synchronization points.

With standard program analysis methods, it is possible within a stream, to de-

termine where data is generated and where it is used. SOS uses this information in

the overlapping protocol. Communication initiation is done as close as possible to

data definition and communication termination (and blocking if needed) as close as

possible to data usage. Overlapping additionally tries to schedule communications

dynamically mimizing the need for synchorinizing waits.

3.2.3 Shortcutting

Shortcutting allows parallel algorithms to be inherently better than their serial coun-

terparts in that they do less work to reach the same solution. It also dynamically

laod balances parallel execution, since all processes will take the same clock time

when shortcutted. [13], from which Figure 3.2 was adapted, conjectured that in

some “irregular” problems, a parallel execution may give dramatic improvement over

its serial counterpart. That statement is the basis of this thesis.

For instance, suppose the computation involves testing various cases and termi-

nates as soon as any one case passes a test (say, by finding a good enough answer). In

a parallel execution, as soon as one process finds a “passing” case, it can “shortcut”

the other processes by telling them to quit. The parallel version of the algorithm

may do less work if it finds the answer on one node before finishing the computation

23

Fig. 3.2: Serial and Parallel Shortcutting

24

on other nodes. In [13], this technique was applied to a minimization problem, that

seemed catered towards shortcutting.

3.3 Alternatives

The use of PC as a parallel compiler and Shortcutting as a speedup technique and

was a natural choice.4. This section lists some other Parallel Compilers and some

Shortcutting-like approaches.

1. Parafrase: From the UIUC (http://www.csrd.uiuc.edu/parafrase2), Parafrase-

2 is a “vectorizing/parallelizing compiler implemented as a source to source code

restructurer. It consists of Fortran/C front-ends and passes for analysis, trans-

formation and code generation.”’

2. Bulldog compiler: The Bulldog compiler is “sophisticated compiler for a very

specific problem: exploiting the parallelism in a VLIW machine for scientific

programs in Fortran”. It is based on the premise that a VLIW machine can

be generated along with the compiler, which itself is based on three techniques:

trace scheduling, memory-reference disambiguation, and memory bank disam-

biguation. See [8] for more details.

3. Cilk2c compiler: Cilk2C is a source-to-source compiler (including a type-

checking preprocessor) that translates Cilk code into C code. Cilk itself, de-

veloped at the MIT, is a multithreaded parallel programming language based on

Ansi C. It extends C using three basic keywords, cilk, spawn and sync. The latest

version of Cilk is available at http://supertech.csail.mit.edu/cilk/index.html
4 There is a PC Research Group at California State University, San Bernardino. See

http://csci.csusb.edu/egomez/PC/PC.html

25

4. F90 / High Performance Fortran (HPF) : High performance Fortran ex-

tends F90 to support data parallel programming. Compiler directives allow

programmer specification of data distribution and alignment. New compiler

constructs and intrinsics allow the programmer to do computations and manip-

ulations on data with different distributions.

5. Nagging: [18] introduced a parallel search-pruning technique called nagging as

a means of coordinating the activity of a number of different search procedures.

In Nagging, search-based problem solvers compete in parallel to solve parts of a

particular problem instance; each contributing to advancing the search wherever

it is the most effective. A prototype implementation was developed for first-order

theorem proving.

3.4 Summary

This chapter touched briefly on some of the features of PC. PC makes two very

important contributions to the world of parallel computation. It makes it extremely

easy and straightforward to write parallel code. The programmer can focus on the

actual semantics of execution without worrying about the details of message passing.

At the same time, it ensures that data movement is done in a correct and deterministic

manner. One of the contributions of this thesis is to show how easy it is to take a

non-trivial chunk of sequential code and port it for parallel execution.

Overlapping and shortcutting are two techniques that, separately and in conjunc-

tion, can be used to speedup paralllel computation in irregular (non-deterministic)

programs. Overlapping takes advantage of the regions of code between data defini-

26

tion and data use in different processes and ”lightens” the synchronization load by

spreading the work of synchronization over a period of time. Where applicable, the

shortcutting method allows the implementation of parallel algorithms that are inher-

ently better than their serial counterparts in that they do less work to reach the same

solution.

27

4. ANALYSIS

Introduction

This thesis has been an interesting study, as it meandered through widely disparate

fields. The preceeding chapters laid the foundation and background for Ant Colony

Optimization, Parallel C and Shortcutting. This chapter brings it all together.

Through the course of this thesis, several decisions points were reached, and accord-

ingly paths chosen. Section 4.1 provides a detailed look at these decisions and the

rationales behind them. The consequences of these choices are described. Section 4.2

looks at strategies for parallelization of ACO. Section 4.3 describes the experimental

results of the thesis. First the methodology used for testing is explained, next the

input TSP instances and their optimal values, next: the various possible inputs to

the program itself. This is followed up by a host of figures and graphs, analysing each

one of the possible inputs at every stage. The chapter ends with a look at the future,

and directions for such endeavors.

4.1 Analysis of choices

4.1.1 Choice of distributed platform

PC was a natural choice for basing all implementations on. This was largely due to

the fact that signficant work on PC was being done here [12]1. At the same time,

PC presented significant advantages in terms of its elegance and simplicity. Being an

extension of the C language meant that effort could be focused on distributed com-

puting, without worrying about the intricacies of message passing or shared memory

or other constraints normally associated with distributed computing. Chapter 3.1.1

also describes the determinism and synchronization afforded by PC.

Results

The prime benefit from this choice was that it allowed the freedom for a much broader

problem to be tackled. In hindsight, this thesis was able to study the behavior of a

class of algorithms, ACO (see Chapter 2) rather than just one or two more algorithms

and yet remain within reasonable scope solely because of this choice. Along the way,

some issues were found with the PC compiler itself. Some of these were resolved, and

some had to be worked around. As a side-effect, the documentation accompanying

the PC distribution was enhanced and will keep future development in good stead.

4.1.2 Choice of algorithm

PC in general, and shortcutting in particular, had been applied to a specific prob-

lem [12], viz., downhill simplex minimization 2. The challenge was to find another

1 should we describe PCRP?
2 TBD : need exact details here

29

algorithm or two that would show the applicability of the approach described in [12].

However, an analysis of the mechanics of shortcutting revealed that it could also be

applied to problems where a good enough solution was also acceptable. A litera-

ture survey with an enhanced scope revealed the rapidly growing field of Ant Colony

Optimization. More details about ACO are in Chapter 2. Practitioners were also im-

plementing ACO algorithms [7] to solve combinatorial optimization problems. The

application of PC to a such a field became more of a challenge.

Results

As with any work of research, this choice made a huge impact in terms of scope. The

effort in learning and understanding ACO was significant; this was, however, offset to

a certain extent by the elegance of PC, and the fact that the ACO authors had basic

C implementations of certain algorithms under the GPL license. Another outcome

of this choice is that there are now interesting directions for future research. Indeed,

it is possible that better efficiencies may be obtained by applying shortcutting to

algorithms in ACO other than the TSP, for instance AntNet - an ACO algorithm

designed for the network routing problem.

4.1.3 Choice of problem

The Traveling Salesman Problem (TSP) has been extensively studied in the literature.

Moreover, it is an important NP-hard optimization problem; it can be desribed easily,

yet it has several diverse applications. 3 While any optimization problem would have

been sufficient, a successful implementation of shortcutting with TSP, i.e., one with

3 For instance, drilling holes on printed circuit boards, or positioning of X-ray devices.

30

good performance, would serve as proof of its usefulness. It also was the first problem

addressed in almost all of the ACO variants and continues to be a topic of research 4

- making it a natural candidate for this work.

Results

A huge benefit of this choice was the availability of TSPLIB. TSPLIB is a bench-

mark library for the TSP and related problems and is accessible via and maintained

at http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95 The best part

about the choice of TSP was that the basic algorithm is straightforward and not

“obscured by too many technicalities”, thus allowing the thesis to focus on the short-

cutting aspect.

4.2 Strategy for Parallelization

Ants in a colony are indepent and can operate asynchronously, thus making ACO

particularly well suited for parallel implementations. Indeed, there have been many

attempts to propose parallel ACO algorithms in the literature[21]. They are usu-

ally classified by their parallel grain5 as either coarse-grained or fine-grained models.

While the former are characterized by many ants using the same CPU and rare com-

munication between the CPUs, in the latter only few ants use each CPU and there is

a lot of communication going on. A review of the trends and strategies in designing

parallel algorithms may be found in [10]. In this thesis, the strategy of Parallel Inde-

pendent Runs was followed for program execution itself, but a fine-grained approach

4 See [1] for a application of ACO to PTSP (Probabilistic TSP) and Uncertainty
5 The relationship between computation and communication

31

for the shortcutting part. Thus each execution on a node would proceed indepen-

dently, however, the decision to compute the next iteration was made only after

‘checking’ with the system for any shortcutting. An advantage of this approach was

that the ‘shortcutted’ code was relatively clean and easier to follow. Also, all com-

munication between nodes was restricted to either the ‘raising of’ or ‘responding to’

a shortcut. What this meant was that any communication delays or synchronization

lags due to the shortcutting subsystem itself would show up rather directly.

Finally, in terms of a biological equivalent, ACO with Shortcutting techniques

would be analogous to ants (or really, colonies of ants) communicating via Stigmergy

as they go about foraging for food as usual. However, when any ant finds a really

good source of food, it shouts out its location to all other ants, who then abandon

their current search and rapidly converge to this ‘good’ source.

4.3 Results and Analysis

We now focus on the experimental results of the thesis, starting with the Methodology.

Table 4.2 describes the TSPLIB instances that were used in the thesis. Table 4.1 shows

the options available for executing the program. All runs were on the Raven cluster

at Cal State San Bernardino. Raven is a cluster of 13 Compaq Proliant DL-360 G2

machines. (raven0 to raven12). Each node has two Pentium III 6 processors running

at 1.4 GHz, and 256MB of SDRAM. The basic program was ran as follows.

1. Only those TSP instances in TSPLIB that had known values of optimal tour

lengths were considered.

6 Although the cluster is 5 years old and does not represent the latest technology, Raven is capable [11] of sustained
performance of more than 6GFlops, or about 60% of the performance new Cray XD-1.

32

Option Long Form Explanation

-a –alpha alpha (influence of pheromone trails)

-b –beta beta (influence of heuristic information)

-c –elitistants number of elitist ants

-d –dlb 1: use don’t look bits in local search

-e –rho rho: pheromone trail evaporation

-f –rasranks number of ranks in rank-based Ant System

-g –nnants nearest neighbours in tour construction

-h –help display this help text and exit

-i –tsplibfile f inputfile (TSPLIB format necessary)

-k –nnls number of nearest neighbors for local

search

-l –localsearch 0: no local search 1: 2-opt 2: 2.5-opt 3:

3-opt

-m –ants number of ants

-o –optimum stop if tour better or equal optimum is

found

-q –q0 q0: prob. of best choice in tour construc-

tion

-r –tries number of independent trials

-s –tours number of steps in each trial

-t –time maximum time for each trial

-u –as apply basic Ant System

-v –eas apply elitist Ant System

-w –ras apply rank-based version of Ant System

-x –mmas apply MAX-MIN ant system

-y –bwas apply best-worst ant system

-z –acs apply ant colony system

Tab. 4.1: ACO-TSP Execution options

2. 15 TSPLIB instances were selected in all; these ranged in problem size from 22

(ulysses22.tsp) to 532 (att532.tsp).

3. Shortcutting comparisons were made by running on 1 node, on 4 nodes and on

33

8 nodes.

4. The number of ants (input m to the algorithm) was varied from 2 ants, 4 ants

and 16 ants.

5. The size of Nearest Neighbor (input k) was varied from 1 to 5 to 10.

6. From the ACO variants possible in Section 2.4, MMAS (input x)was picked.

7. The other options were left at their default values.

8. For each instance, the ACO algorithm was executed three times, once with the

known optimal value and then once each with a relaxatin of 5% and 10%. (i.e.,

with 1.05 times and 1.10 times the optimal value, for input o).

9. Each such combination was ran for 10 iterations.

10. Work done in an execution was counted as the total number of tours constructed

in that execution.

Bird’s eyeview

The following figures, 4.1 describe a very high level overview of the results of the

thesis. Figure 4.1(a), represents a direct comparison between single node and multiple

node executions. The tick mark represents those iterations where an improvement in

total work done was noted, in either the 4-node or the 8-node case. As can be seen,

there is no direct pattern by which we can deduce that shortcutting impacts the total

work done. As a matter of fact, in some runs the work done in parallel seemed to be

significantly larger. Since we are comparing the total work done (as an integer count),

34

Instance Size Instance Name Optimal Tour Length

22 ulysses22.tsp 7013

48 att48.tsp 10628

76 eil76.tsp 538

100 kroB100.tsp 22141

124 pr124.tsp 59030

229 gr229.tsp 134602

264 pr264.tsp 49135

280 a280.tsp 2579

318 lin318.tsp 42029

400 rd400.tsp 15281

431 gr431.tsp 171414

442 pcb442.tsp 50778

493 d493.tsp 35002

532 att532.tsp 27686

Tab. 4.2: TSPLIB Instances used in the thesis

and not the time required to finish an operation, this seems to show the influence of

communication lag.

However, 4.1(b) and 4.1(c) seem to show a different picture altogether. The grid

is now almost completely filled with tick marks (and in almost all cases, these tick

marks referred to BOTH the 4 node and the 8 node variant). Again, the improvement

in many cases was several orders of magnitudes. This now seems to suggest that for

a good-enough solution, say, one that relaxes the tour-length constraint by 5 or 10

percent, ACO with shortcutting might be more than a viable alternative; it may

actually be an excellent one.

35

(a) Targetting optimal value

(b) Target 5% relaxed (c) Target 10% relaxed

Fig. 4.1: Overview of shortcutting results

36

Detailed look

No. Ants NN Size Reference

1 2 1 Figure 4.2

2 2 5 Figure 4.3

3 2 10 Figure 4.4

4 4 1 Figure 4.5

5 4 5 Figure 4.6

6 4 10 Figure 4.7

7 16 1 Figure 4.8

8 16 5 Figure 4.9

9 16 10 Figure 4.10

Tab. 4.3: Reference for reading the graphs

We now go into a detailed look at the results. As always, pictures speak better

than words, so we do our analysis on a series of graphs, rather than using the actual

numbers themselves. 7 The large number of input option variations resulted in several

graphs. Table 4.3 presents a useful reference for reading the graphs.

Some very interesting observations can be ascertained from these figures. First off,

we note that the

4.4 Basis for comparision and analysis

7 However, in the appendix??, we do present the actual work done numbers for the ratio of work done in sequential
to that using shortcutting.

37

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.2: Shortcutting results for 2 ants with nn size 1

38

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.3: Shortcutting results for 2 ants with nn size 5

39

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.4: Shortcutting results for 2 ants with nn size 10

40

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.5: Shortcutting results for 4 ants with nn size 1

41

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.6: Shortcutting results for 4 ants with nn size 5

42

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.7: Shortcutting results for 4 ants with nn size 10

43

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.8: Shortcutting results for 16 ants with nn size 1

44

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.9: Shortcutting results for 16 ants with nn size 5

45

(a) Targetting optimal value

(b) Target 5% relaxed

(c) Target 10% relaxed

Fig. 4.10: Shortcutting results for 16 ants with nn size 10

46

5. CONCLUSION

This thesis demonstrates shortcutting techniques in a meta-heuristic, ACO, using a

parallel compiler, PC. By virtue of the fact that results are available at different times

in parallel executions, it is possible to obtain parallel speedups greater than 100%.

The implementation was based on an existing and well-proven sequential code

base. The fact that one could easily parallelize the code with just a few lines of PC

calls goes to show the elegance behind the design of PC and also demonstrates its

ease of use. Shortcutting was also obtained with the judicious placement of a few

lines of SOS code.

PC has been used earlier in problems that were pretty much geared towards it.

By applying PC to not just another algorithm, but a meta-heuristic, this work has

paved the way for the application of PC to industrial strength problems. These could

very well be other algorithms, or even other NP - hard applications of ACO or other

swarm algorithms. Another direction for future work would be to upgrade PC to the

latest versions of the C compiler. It is also expected that SOS functionality will be

embedded into the PC language. It would be desirable to port Planguages to C++.

Finally, given that implementations of MPI are available on Windows, PC may be

brought to mainstream by making it available on the Windows platform. On the

hardware end of the spectrum, an interesting research would be to see the behavior

of PC on multi-core CPU machines.

48

APPENDIX

49

A. THE ANT COLONY METAHEURISTIC

Introduction

This appendix has been abstracted from [19] and presents a formalization of ACO

as a metaheuristic. The chapter is divided into three parts. Section A.1 describes

a formal model of the ACO, starting with a notation of a combinatorial problem in

A.1.1, and its application to the ACO and the TSP in A.2 and A.3 respectively. Next,

Section A.4 expands on the Algorithm presented in Table 2.1. Finally, Section A.5

describes the pheromone update rule for the MMAS (MAX-MIN Ant System) variant

of the ACO used in this thesis.

A.1 Modeling the Metaheuristic

A.1.1 Combinatorial Optimization

We start with a model of a combinatorial optimization problem. A model P =

(S, O, f) of a combinatorial optimization problem consists of:

• a search space S defined over a finite set of discrete decision variables Xi, i =

1, . . . n

• a set O of constraints among the variables. An empty set ∅ denotes an uncon-

strained problem; and

• an objective function f : S 7→ ℜ+
0 to be minimized.1

The generic variable Xi takes values in Di = {v1
i , . . . , v

|Di|
i }. A feasible solution s ∈ S

is one complete assignment of values to variables that satisfies all constraints in O. A

solution sopt ∈ S is called a global optimum if and only if f(sopt) ≤ f(s)∀s ∈ S. The

set of all globally optimal solutions is denoted by Sopt∗ ∈ S. Solving a COP requires

finding at least one sopt ∈ Sopt∗

This model is used to define the pheromone model of ACO. A pheromone value is

associated with each possible solution component ; that is, with each possible assign-

ment of a value to a variable. Formally, the pheromone value τij is associated with

the solution component cij , which consists of the assignment Xi = vj
i . The set of all

possible solution components is denoted by C.

A.2 The ACO graph

In ACO, an artificial ant builds a solution by traversing the fully connected construc-

tion graph GC(V, E), of V vertices and E edges. This graph can be obtained from C

by representing solution components as either vertices or edges. Artificial ants move

from vertex to vertex along the edges, incrementally building a partial solution, and

additionally deposit a certain amount of pheromone on the components they traverse.

The amount δt of pheromone deposited may depend on the quality of the solution

found and is used by subsequent ants as a guide toward promising regions of the

search space.

1 or equivalently maximized

51

A.3 The TSP graph

In an n-city TSP, a solution can be represented through a set of n variables, each

associated with a city. The variable Xi indicates the city to be visited after city i.

A solution component is a pair of cities to be visited in order one after the other,

i.e., the solution component cij = (i, j) indicates that for the given solution, city j

should be visited immediately after city i. The construction graph is now a graph in

which the vertices are the cities of the original TSP, and the edges are the solution

components. Ants deposit pheromone on the edges of the graph.

A.4 Phases of the Metaheuristic

This section is a more detailed description of the three phases in ACO metaheuristic

presented in Table 2.1. After initialization, the metaheuristic iterates over three

phases: at each iteration, a number of solutions are constructed by the ants; these

solutions are then improved through a local search (this step is optional), and finally

the pheromone is updated.

A.4.1 Construct solutions

A set of m artificial ants constructs solutions from elements of a finite set of available

solution components C = {cij}, i = 1, . . . , n, j = 1, . . . , |Di|. A solution construction

starts from an empty partial solution sp = ⊘. At each construction step, sp is

extended by adding a feasible solution component from the set N(sp) ⊆ C, which is

defined as the set of components that can be added to the current partial solution sp

without violating any of the constraints in O. The process of constructing solutions

52

can be regarded as a walk on the construction graph GC = (V, E). The rule for the

choice of solution components from N(sp) vary across different ACO algorithms but

are all inspired by the model of the behavior of real ants.

A.4.2 Apply Local Search

Although an optional step, it is common to improve the solutions obtained by the ants

through a local search once the solutions have been constructed, and before updating

the pheromone. This phase, which is highly problem-specific, and is usually included

in state-of-the-art ACO algorithms. The 3-opt local seach was used in this thesis.

For more details refer to [7].

A.4.3 Update Pheromones

This phase increases the pheromone values associated with good or promising solu-

tions, and decreases those that are associated with bad ones. Usually, this is achieved

(i) by decreasing all the pheromone values through pheromone evaporation, and (ii)

by increasing the pheromone levels associated with a chosen set of good solutions.

A.4.4 Daemon Actions

This is an optional phase. Daemon actions can be used to implement centralized

actions which cannot be performed by single ants. An examples would be collection

of global information that can be used to decide whether it is useful or not to deposit

additional pheromone to bias the search process from a non-local perspective.

53

A.5 MMAS Pheromone Update Rule

The MMAS algorithm [20] is an improvement over the original Ant System (AS). In

AS at each iteration, the pheromone values are updated by all the m ants that have

built a solution in the iteration itself. However, in MMAS only the best ant updates

the pheromone trails. Also, the value of the pheromone is bound. The pheromone

update is implemented as follows:

τij ←
[

(1− ρ).τij + ∆τ best
ij

]τmax

τmin

where the operator [x]ab is defined as follows.

[x]ab =

a if x > a

b if x < b

x otherwise;

and ∆τ best
ij is:

∆τ best
ij =

1/Lbest if (i, j) belongs to the tour

0 otherwise;

where Lbest is the length of the tour of the best ant. This may be either the best

tour found in the current iteration, or found since the start of the algorithm, or a

combination of both. [20] provides guidelines for defining the lower and upper bounds

on the pheromone values, τmin and τmax. These can also be obtained empirically and

tuned to the specific problem considered.

54

B. PORTING FROM C TO PC

The elegance of the design behind PC is reflected in the minimal changes required to

port a non-trivial chunk of C code to PC. This chapter lists those that were made to

the ACO software available at the Ant Colony Website.1 Most of the changes listed

below were very minor in scope and could easily be addressed in subsequent versions

of PC

TRACE macros

PC seemed to have trouble expanding the TRACE macro. A simple workaround was

to comment it, and use printf statements to debug wherever necessary. For instance,

TRACE (p r i n t f (” apply l o c a l search \n ”) ;) ;

becomes

/∗ TRACE (p r i n t f (” apply l o c a l search \n ”) ;) ; ∗/

or

p r i n t f (” apply l o c a l search \n ”) ;

1 http://iridia.ulb.ac.be/ mdorigo/ACO/aco-code/public-software.html

Single PC module

The ACOTSP code was spread across several c files. However, PC could have only

pc file, in which the variables myProc, nProc, etc., were defined. If any section of

code not in the single pc file needed access to those variables, they had to be passed

in explicity. For instance,

vo id in i t p rog ram (in t argc , char ∗argv [])

became

void in i t p rog ram (in t myProc , i n t argc , char ∗argv [])

56

C. SOURCE CODE

C.1 ants.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: ants.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: ants.h
Author: Thomas Stuetzle
Purpose: implementation of procedures for ants’ behaviour
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik
Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#define HEURISTIC(m,n) (1.0 / ((double) instance.distance[m][n] + 0.1))
/∗ add a small constant to avoid division by zero if a distance is
zero ∗/

#define EPSILON 0.00000000000000000000000000000001

#define MAX ANTS 1024 /∗ max no. of ants ∗/
#define MAX NEIGHBOURS 512 /∗ max. no. of nearest neighbours in candidate
set ∗/

/∗ Note that ∗tour needs to be allocated for length n+1 since the first city of
a tour (at position 0) is repeated at position n. This is done to make the
computation of the tour length easier
∗/
typedef struct {

long int ∗tour;
char ∗visited;
long int tour length;

} ant struct;

extern ant struct ∗ant; /∗ this (array of) struct will hold the colony ∗/
extern ant struct ∗best so far ant; /∗ struct that contains the best-so-far
ant ∗/
extern ant struct ∗restart best ant; /∗ struct that contains the restart-best
ant ∗/

extern double ∗∗pheromone; /∗ pheromone matrix, one entry for each arc ∗/
extern double ∗∗total; /∗ combination of pheromone times heuristic
information ∗/

extern double ∗prob of selection;

extern long int n ants; /∗ number of ants ∗/
extern long int nn ants; /∗ length of nearest neighbor lists for the ants’

58

solution construction ∗/

extern double rho; /∗ parameter for evaporation ∗/
extern double alpha; /∗ importance of trail ∗/
extern double beta; /∗ importance of heuristic evaluate ∗/
extern double q 0; /∗ probability of best choice in tour construction
∗/

extern long int as flag; /∗ = 1, run ant system ∗/
extern long int eas flag; /∗ = 1, run elitist ant system ∗/
extern long int ras flag; /∗ = 1, run rank-based version of ant system ∗/
extern long int mmas flag; /∗ = 1, run MAX-MIN ant system ∗/
extern long int bwas flag; /∗ = 1, run best-worst ant system ∗/
extern long int acs flag; /∗ = 1, run ant colony system ∗/

extern long int elitist ants; /∗ additional parameter for elitist ant system,
it defines the number of elitist ants ∗/

extern long int ras ranks; /∗ additional parameter for rank-based version
of ant

system ∗/

extern double trail max; /∗ maximum pheromone trail in MMAS ∗/
extern double trail min; /∗ minimum pheromone trail in MMAS ∗/
extern long int u gb; /∗ every u gb iterations update with
best-so-far ant;

parameter used by MMAS for scheduling best-so-far update
∗/

extern double trail 0; /∗ initial pheromone trail level in ACS and
BWAS ∗/

/∗ Pheromone manipulation etc. ∗/

void init pheromone trails (double initial trail);

void evaporation (void);

void evaporation nn list (void);

void global update pheromone (ant struct ∗a);

void global update pheromone weighted (ant struct ∗a, long int weight);

void compute total information(void);

void compute nn list total information(void);

/∗ Ants’ solution construction ∗/

void ant empty memory(ant struct ∗a);

void place ant(ant struct ∗a , long int phase);

59

void choose best next(ant struct ∗a, long int phase);

void neighbour choose best next(ant struct ∗a, long int phase);

void choose closest next(ant struct ∗a, long int phase);

void neighbour choose and move to next(ant struct ∗a , long int phase);

/∗ Auxiliary procedures related to ants ∗/

long int find best (void);

long int find worst(void);

void copy from to(ant struct ∗a1, ant struct ∗a2);

void allocate ants (void);

long int nn tour(void);

long int distance between ants(ant struct ∗a1, ant struct ∗a2);

/∗ Procedures specific to MAX-MIN Ant System ∗/

void mmas evaporation nn list(void);

void check nn list pheromone trail limits(void);

void check pheromone trail limits(void);

/∗ Procedures specific to Ant Colony System ∗/

void global acs pheromone update(ant struct ∗a);

void local acs pheromone update(ant struct ∗a, long int phase);

/∗ Procedures specific to Best Worst Ant System ∗/

void bwas worst ant update(ant struct ∗a1, ant struct ∗a2);

void bwas pheromone mutation(void);

60

C.2 ants.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: ants.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: ants.h
Author: Thomas Stuetzle
Purpose: implementation of procedures for ants’ behaviour
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

61

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#define HEURISTIC(m,n) (1.0 / ((double) instance.distance[m][n] + 0.1))
/∗ add a small constant to avoid division by zero if a distance is
zero ∗/

#define EPSILON 0.00000000000000000000000000000001

#define MAX ANTS 1024 /∗ max no. of ants ∗/
#define MAX NEIGHBOURS 512 /∗ max. no. of nearest neighbours in candidate
set ∗/

/∗ Note that ∗tour needs to be allocated for length n+1 since the first city of
a tour (at position 0) is repeated at position n. This is done to make the
computation of the tour length easier
∗/
typedef struct {

long int ∗tour;
char ∗visited;
long int tour length;

} ant struct;

extern ant struct ∗ant; /∗ this (array of) struct will hold the colony ∗/
extern ant struct ∗best so far ant; /∗ struct that contains the best-so-far
ant ∗/
extern ant struct ∗restart best ant; /∗ struct that contains the restart-best
ant ∗/

extern double ∗∗pheromone; /∗ pheromone matrix, one entry for each arc ∗/
extern double ∗∗total; /∗ combination of pheromone times heuristic
information ∗/

extern double ∗prob of selection;

extern long int n ants; /∗ number of ants ∗/
extern long int nn ants; /∗ length of nearest neighbor lists for the ants’

solution construction ∗/

extern double rho; /∗ parameter for evaporation ∗/
extern double alpha; /∗ importance of trail ∗/
extern double beta; /∗ importance of heuristic evaluate ∗/
extern double q 0; /∗ probability of best choice in tour construction
∗/

extern long int as flag; /∗ = 1, run ant system ∗/
extern long int eas flag; /∗ = 1, run elitist ant system ∗/
extern long int ras flag; /∗ = 1, run rank-based version of ant system ∗/

62

extern long int mmas flag; /∗ = 1, run MAX-MIN ant system ∗/
extern long int bwas flag; /∗ = 1, run best-worst ant system ∗/
extern long int acs flag; /∗ = 1, run ant colony system ∗/

extern long int elitist ants; /∗ additional parameter for elitist ant system,
it defines the number of elitist ants ∗/

extern long int ras ranks; /∗ additional parameter for rank-based version
of ant

system ∗/

extern double trail max; /∗ maximum pheromone trail in MMAS ∗/
extern double trail min; /∗ minimum pheromone trail in MMAS ∗/
extern long int u gb; /∗ every u gb iterations update with
best-so-far ant;

parameter used by MMAS for scheduling best-so-far update
∗/

extern double trail 0; /∗ initial pheromone trail level in ACS and
BWAS ∗/

/∗ Pheromone manipulation etc. ∗/

void init pheromone trails (double initial trail);

void evaporation (void);

void evaporation nn list (void);

void global update pheromone (ant struct ∗a);

void global update pheromone weighted (ant struct ∗a, long int weight);

void compute total information(void);

void compute nn list total information(void);

/∗ Ants’ solution construction ∗/

void ant empty memory(ant struct ∗a);

void place ant(ant struct ∗a , long int phase);

void choose best next(ant struct ∗a, long int phase);

void neighbour choose best next(ant struct ∗a, long int phase);

void choose closest next(ant struct ∗a, long int phase);

void neighbour choose and move to next(ant struct ∗a , long int phase);

/∗ Auxiliary procedures related to ants ∗/

long int find best (void);

63

long int find worst(void);

void copy from to(ant struct ∗a1, ant struct ∗a2);

void allocate ants (void);

long int nn tour(void);

long int distance between ants(ant struct ∗a1, ant struct ∗a2);

/∗ Procedures specific to MAX-MIN Ant System ∗/

void mmas evaporation nn list(void);

void check nn list pheromone trail limits(void);

void check pheromone trail limits(void);

/∗ Procedures specific to Ant Colony System ∗/

void global acs pheromone update(ant struct ∗a);

void local acs pheromone update(ant struct ∗a, long int phase);

/∗ Procedures specific to Best Worst Ant System ∗/

void bwas worst ant update(ant struct ∗a1, ant struct ∗a2);

void bwas pheromone mutation(void);

64

C.3 acotsp.pc

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: actosp.pc
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: main.c
Author: Thomas Stuetzle
Purpose: main routines and control for the ACO algorithms
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

65

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

/∗#define SIMPLE SPRNG ∗/

#include "ants.h"
#include "utilities.h"
#include "InOut.h"
#include "TSP.h"
#include "timer.h"
#include "ls.h"

long int termination condition(void)
/∗

FUNCTION: checks whether termination condition is met
INPUT: none
OUTPUT: 0 if condition is not met, number neq 0 otherwise
SIDE EFFECTS: none

∗/
{

return (((n tours >= max tours) && (elapsed time(VIRTUAL) >= max time)) ||
((∗best so far ant).tour length <= optimal));

}

void construct solutions(void)
/∗

FUNCTION: manage the solution construction phase
INPUT: none
OUTPUT: none
SIDE EFFECTS: when finished, all ants of the colony have constructed a

solution
∗/
{

long int k; /∗ counter variable ∗/
long int step; /∗ counter of the number of construction steps ∗/

/∗ TRACE (printf("construct solutions for all ants\n");); ∗/

/∗ Mark all cities as unvisited ∗/
for (k = 0 ; k < n ants ; k++) {

ant empty memory(&ant[k]);
}

66

step = 0;
/∗ Place the ants on same initial city ∗/
for (k = 0 ; k < n ants ; k++)

place ant(&ant[k], step);

while (step < n-1) {
step++;
for (k = 0 ; k < n ants ; k++) {

neighbour choose and move to next(&ant[k], step);
if (acs flag)

local acs pheromone update(&ant[k], step);
}

}

step = n;
for (k = 0 ; k < n ants ; k++) {

ant[k].tour[n] = ant[k].tour[0];
ant[k].tour length = compute tour length(ant[k].tour);
if (acs flag)

local acs pheromone update(&ant[k], step);
}
n tours += n ants;

}

void init try(long int ntry)
/∗

FUNCTION: initilialize variables appropriately when starting a trial
INPUT: trial number
OUTPUT: none
COMMENTS: none

∗/
{

/∗ TRACE (printf("INITIALIZE TRIAL\n");); ∗/

start timers();
time used = elapsed time(VIRTUAL);
time passed = time used;

fprintf(comp report,"seed %ld \n",seed);
fflush(comp report);
/∗ Initialize variables concerning statistics etc. ∗/

n tours = 0;
iteration = 0;
restart iteration = 1;
lambda = 0.05;
(∗best so far ant).tour length = INFTY;
found best = 0;

/∗ Initialize the Pheromone trails, only if ACS is used, pheromones
have to be initialized differently ∗/

67

if (!(acs flag || mmas flag || bwas flag)) {
trail 0 = 1. / ((rho) ∗ nn tour());
/∗ in the original papers on Ant System, Elitist Ant System, and

Rank-based Ant System it is not exactly defined what the
initial value of the pheromones is. Here we set it to some
small constant, analogously as done in MAX-MIN Ant System.

∗/
init pheromone trails(trail 0);

}
if (bwas flag) {

trail 0 = 1. / ((double) n ∗ (double) nn tour()) ;
init pheromone trails(trail 0);

}
if (mmas flag) {

trail max = 1. / ((rho) ∗ nn tour());
trail min = trail max / (2. ∗ n);
init pheromone trails(trail max);

}
if (acs flag) {

trail 0 = 1. / ((double) n ∗ (double) nn tour()) ;
init pheromone trails(trail 0);

}

/∗ Calculate combined information pheromone times heuristic information ∗/
compute total information();

fprintf(comp report,"begin try %li \n",ntry);
fprintf(stat report,"begin try %li \n",ntry);

}

void local search(void)
/∗

FUNCTION: manage the local search phase; apply local search to ALL
ants; in

dependence of ls flag one of 2-opt, 2.5-opt, and 3-opt
local search

is chosen.
INPUT: none
OUTPUT: none
SIDE EFFECTS: all ants of the colony have locally optimal tours
COMMENTS: typically, best performance is obtained by applying local

search
to all ants. It is known that some improvements (e.g.

convergence
speed towards high quality solutions) may be obtained for some
ACO algorithms by applying local search to only some of the ants.
Overall best performance is typcially obtained by using 3-opt.

∗/
{

long int k;

/∗ TRACE (printf("apply local search to all ants\n");); ∗/

68

for (k = 0 ; k < n ants ; k++) {
if (ls flag == 1)

two opt first(ant[k].tour); /∗ 2-opt local search ∗/
else if (ls flag == 2)

two h opt first(ant[k].tour); /∗ 2.5-opt local search ∗/
else if (ls flag == 3)

three opt first(ant[k].tour); /∗ 3-opt local search ∗/
else {

fprintf(stderr,"type of local search procedure not correctly
specified \n");

exit(1);
}
ant[k].tour length = compute tour length(ant[k].tour);

}
}

void update statistics(void)
/∗

FUNCTION: manage some statistical information about the trial,
especially

if a new best solution (best-so-far or restart-best) is
found and

adjust some parameters if a new best solution is found
INPUT: none
OUTPUT: none
SIDE EFFECTS: restart-best and best-so-far ant may be updated; trail min

and trail max used by MMAS may be updated
∗/
{

long int iteration best ant;
double p x; /∗ only used by MMAS ∗/

iteration best ant = find best(); /∗ iteration best ant is a global variable
∗/

if (ant[iteration best ant].tour length < (∗best so far ant).tour length)
{

time used = elapsed time(VIRTUAL); /∗ best sol found after time used ∗/
copy from to(&ant[iteration best ant], best so far ant);
copy from to(&ant[iteration best ant], restart best ant);

found best = iteration;
restart found best = iteration;
found branching = node branching(lambda);
branching factor = found branching;
if (mmas flag) {

if (!ls flag) {
p x = exp(log(0.05)/n);
trail min = 1. ∗ (1. - p x) / (p x ∗ (double)((nn ants + 1) / 2));
trail max = 1. / ((rho) ∗ (∗best so far ant).tour length);
trail 0 = trail max;

69

trail min = trail max ∗ trail min;
} else {

trail max = 1. / ((rho) ∗ (∗best so far ant).tour length);
trail min = trail max / (2. ∗ n);
trail 0 = trail max;

}
}

}
write report();
if (ant[iteration best ant].tour length < (∗restart best ant).tour length)

{
copy from to(&ant[iteration best ant], restart best ant);
restart found best = iteration;
printf("restart best: %ld, restart found best %ld, time

%.2f \n",(∗restart best ant).tour length, restart found best, elapsed time (
VIRTUAL));

}
}

void search control and statistics(void)
/∗

FUNCTION: occasionally compute some statistics and check whether
algorithm

is converged
INPUT: none
OUTPUT: none
SIDE EFFECTS: restart-best and best-so-far ant may be updated; trail min

and trail max used by MMAS may be updated
∗/
{

/∗ TRACE (printf("SEARCH CONTROL AND STATISTICS\n");); ∗/

if (!(iteration % 100)) {
population statistics();
branching factor = node branching(lambda);
/∗ printf("\nbest so far %ld, iteration: %ld, time %.2f, b fac

%.5f\n",(∗best so far ant).tour length,iteration,elapsed time(
VIRTUAL),branching factor); ∗/

if (mmas flag && (branching factor < branch fac) && (iteration -
restart found best > 250)) {

/∗ MAX-MIN Ant System was the first ACO algorithm to use
pheromone trail re-initialisation as implemented
here. Other ACO algorithms may also profit from this mechanism.

∗/
/∗ printf("INIT TRAILS!!!\n"); ∗/

(∗restart best ant).tour length = INFTY;
init pheromone trails(trail max);
compute total information();
restart iteration = iteration;
restart time = elapsed time(VIRTUAL);

}
/∗ printf("try %li, iteration %li, b-fac %f \n\n",

70

n try,iteration,branching factor); ∗/
}

}

void as update(void)
/∗

FUNCTION: manage global pheromone deposit for Ant System
INPUT: none
OUTPUT: none
SIDE EFFECTS: all ants deposit pheromones on matrix "pheromone"

∗/
{

long int k;

/∗ TRACE (printf("Ant System pheromone deposit\n");); ∗/

for (k = 0 ; k < n ants ; k++)
global update pheromone(&ant[k]);

}

void eas update(void)
/∗

FUNCTION: manage global pheromone deposit for Elitist Ant System
INPUT: none
OUTPUT: none
SIDE EFFECTS: all ants plus elitist ant deposit pheromones on matrix

"pheromone"
∗/
{

long int k;

/∗ TRACE (printf("Elitist Ant System pheromone deposit\n");); ∗/

for (k = 0 ; k < n ants ; k++)
global update pheromone(&ant[k]);

global update pheromone weighted(best so far ant, elitist ants);
}

void ras update(void)
/∗

FUNCTION: manage global pheromone deposit for Rank-based Ant System
INPUT: none
OUTPUT: none
SIDE EFFECTS: the ras ranks-1 best ants plus the best-so-far ant deposit

pheromone
on matrix "pheromone"

COMMENTS: this procedure could be implemented slightly faster, but
it is

anyway not critical w.r.t. CPU time given that ras ranks

71

is
typically very small.

∗/
{

long int i, k, b, target;
long int ∗help b;

/∗ TRACE (printf("Rank-based Ant System pheromone deposit\n");); ∗/

help b = malloc(n ants ∗ sizeof(long int));
for (k = 0 ; k < n ants ; k++)

help b[k] = ant[k].tour length;

for (i = 0 ; i < ras ranks-1 ; i++) {
b = help b[0]; target = 0;
for (k = 0 ; k < n ants ; k++) {

if (help b[k] < b) {
b = help b[k]; target = k;

}
}
help b[target] = LONG MAX;
global update pheromone weighted(&ant[target], ras ranks-i-1);

}
global update pheromone weighted(best so far ant, ras ranks);
free (help b);

}

void mmas update(void)
/∗

FUNCTION: manage global pheromone deposit for MAX-MIN Ant System
INPUT: none
OUTPUT: none
SIDE EFFECTS: either the iteration-best or the best-so-far ant deposit

pheromone
on matrix "pheromone"

∗/
{

/∗ we use default upper pheromone trail limit for MMAS and hence we
do not have to worry regarding keeping the upper limit ∗/

long int iteration best ant;

/∗ TRACE (printf("MAX-MIN Ant System pheromone deposit\n");); ∗/

if (iteration % u gb) {
iteration best ant = find best();
global update pheromone(&ant[iteration best ant]);

}
else {

if (u gb == 1 && (restart found best - iteration > 50))
global update pheromone(best so far ant);

else
global update pheromone(restart best ant);

72

}

if (ls flag) {
/∗ implement the schedule for u gb as defined in the

Future Generation Computer Systems article or in Stuetzle’s PhD thesis.
This schedule is only applied if local search is used.

∗/
if ((iteration - restart iteration) < 25)

u gb = 25;
else if ((iteration - restart iteration) < 75)

u gb = 5;
else if ((iteration - restart iteration) < 125)

u gb = 3;
else if ((iteration - restart iteration) < 250)

u gb = 2;
else

u gb = 1;
} else

u gb = 25;

}

void bwas update(void)
/∗

FUNCTION: manage global pheromone deposit for Best-Worst Ant System
INPUT: none
OUTPUT: none
SIDE EFFECTS: either the iteration-best or the best-so-far ant deposit

pheromone
on matrix "pheromone"

∗/
{

long int iteration worst ant, distance best worst;

/∗ TRACE (printf("Best-worst Ant System pheromone deposit\n");); ∗/

global update pheromone(best so far ant);
iteration worst ant = find worst();
bwas worst ant update(best so far ant, &ant[iteration worst ant]);
distance best worst = distance between ants(best so far ant,

&ant[iteration worst ant]);
/∗ printf("distance best worst %ld, tour length worst
%ld\n",distance best worst,ant[iteration worst ant].tour length); ∗/

if (distance best worst < (long int) (0.05 ∗ (double) n)) {
(∗restart best ant).tour length = INFTY;
init pheromone trails(trail 0);
restart iteration = iteration;
restart time = elapsed time(VIRTUAL);
printf("init pheromone trails with %.15f, iteration %ld \n",trail 0,iteration);

}
else

bwas pheromone mutation();
}

73

void acs global update(void)
/∗

FUNCTION: manage global pheromone deposit for Ant Colony System
INPUT: none
OUTPUT: none
SIDE EFFECTS: the best-so-far ant deposits pheromone on matrix

"pheromone"
COMMENTS: global pheromone deposit in ACS is done per default using

the best-so-far ant; Gambardella & Dorigo examined also
iteration-best

update (see their IEEE Trans. on Evolutionary Computation article),
but did not use it for the published computational results.

∗/
{

/∗ TRACE (printf("Ant colony System global pheromone deposit\n");); ∗/

global acs pheromone update(best so far ant);
}

void pheromone trail update(void)
/∗

FUNCTION: manage global pheromone trail update for the ACO
algorithms

INPUT: none
OUTPUT: none
SIDE EFFECTS: pheromone trails are evaporated and pheromones are

deposited
according to the rules defined by the various ACO

algorithms.
∗/
{

/∗ Simulate the pheromone evaporation of all pheromones; this is not
necessary

for ACS (see also ACO Book) ∗/
if (as flag || eas flag || ras flag || bwas flag || mmas flag) {

if (ls flag) {
if (mmas flag)

mmas evaporation nn list();
else

evaporation nn list();
/∗ evaporate only pheromones on arcs of candidate list to make the

pheromone evaporation faster for being able to tackle large TSP
instances. For MMAS additionally check lower pheromone trail limits.

∗/
} else {

/∗ if no local search is used, evaporate all pheromone trails ∗/
evaporation();

}
}

74

/∗ Next, apply the pheromone deposit for the various ACO algorithms ∗/
if (as flag)

as update();
else if (eas flag)

eas update();
else if (ras flag)

ras update();
else if (mmas flag)

mmas update();
else if (bwas flag)

bwas update();
else if (acs flag)

acs global update();

/∗ check pheromone trail limits for MMAS; not necessary if local
search is used, because in the local search case lower pheromone trail
limits are checked in procedure mmas evaporation nn list ∗/

if (mmas flag && !ls flag)
check pheromone trail limits();

/∗ Compute combined information pheromone times heuristic info after
the pheromone update for all ACO algorithms except ACS; in the ACS case
this is already done in the pheromone update procedures of ACS ∗/

if (as flag || eas flag || ras flag || mmas flag || bwas flag) {
if (ls flag) {

compute nn list total information();
} else {

compute total information();
}

}
}

/∗ --- main program -- ∗/

int main(int argc, char ∗argv[]) {
/∗

FUNCTION: main control for running the ACO algorithms, under PC with
shortcutting

INPUT: none
OUTPUT: none
SIDE EFFECTS: none
COMMENTS: this function controls the run of "max tries" independent

trials
∗/

long int i;
int PC ACO var, SOS PC ACO var; /∗ the shortcutting variable ∗/
int myStream; /∗ the SOS stream id ∗/
int shortcutted, bMustKeepGoing; /∗ for termination checking ∗/
int PC total tours, PC dummyvar;
int SOS PC total tours, SOS PC dummyvar; /∗ compute total tours across

tries ∗/
int nRunningCount;

75

start timers();

nRunningCount = 0;

/∗ PC specific initialization ∗/
PC init program(myProc, argc, argv);
sosgetstream (&myStream);
bMustKeepGoing = 1;
PC dummyvar = 0;
PC total tours = 0;

seed = (long int) time(NULL);
seed = (long int) (seed ˆ (myProc + 1));
seed = rand()ˆ(myProc + rand());

/∗
if(0 == myProc) seed = 4314263534L;
if(1 == myProc) seed = 85692002123;
if(2 == myProc) seed = 3659745454L;
if(3 == myProc) seed = 98799804L;
∗/

instance.nn list = compute nn lists();
pheromone = generate double matrix(n, n);
total = generate double matrix(n, n);

/∗ SOS specific initialization ∗/
shortcutted = 0;
SOS size = sizeof(PC ACO var);
sosaddvar ((int∗)&PC ACO var, &SOS size, &SOS type, &SOS PC ACO var, &ZER);
/∗ sosaddvar ((int∗)&PC total tours, &SOS size, &SOS type,

&SOS PC total tours, &ZER);
sosaddvar ((int∗)&PC dummyvar, &SOS size, &SOS type, &SOS PC dummyvar, &ZER);

∗/

time used = elapsed time(VIRTUAL);
/∗ printf("Initialization took %.10f seconds\n",time used); ∗/

for (n try = 1 ; n try <= max tries ; n try++) {

init try(n try);

/∗ while (!termination condition()) { ∗/
while (bMustKeepGoing) {
/∗ the PC based SOS shortcut termination condition ∗/
/∗ Note the use of the implicit variable myProc ∗/
if((iteration > 1)) /∗ && (iteration % 10 == 0)) ∗/{

if(sosshortcuttest () > 0) {
shortcutted = 1;
bMustKeepGoing = 0;
printf("QQ ∗∗ Node : %d shortcutted at iteration %d with %d tours \n",

myProc, iteration, nRunningCount);
break;

}

76

}
if(termination condition() != 0) {

sosshortcut (&SOS PC ACO var, &myStream);
printf("QQ ∗∗ Node : %d shortcutting at iteration %d with %d tours \n",

myProc, iteration, nRunningCount);
break;

}

construct solutions();

if (ls flag > 0)
local search();

update statistics();

pheromone trail update();

search control and statistics();

iteration++;

PC total tours = PC total tours + n tours;
nRunningCount += n tours;

}

exit try(n try);
}

/∗ printf("QQ∗ Node:%d:runningcount:%d\n", myProc, nRunningCount); ∗/

MPI Barrier(MPI COMMWORLD);

PC dummyvar = + {PC total tours };
PC total tours = PC dummyvar;

MPI Barrier(MPI COMMWORLD);
/∗ if(myProc == 0) ∗/

printf("QQ ∗∗ Sammy Total tours:%ld \n", PC total tours);

exit program();

free(instance.distance);
free(instance.nn list);
free(pheromone);
free(total);
free(best in try);
free(best found at);
free(time best found);
free(time total run);
for (i = 0 ; i < n ants ; i++) {

free(ant[i].tour);
free(ant[i].visited);

}

77

free(ant);
free((∗best so far ant).tour);
free((∗best so far ant).visited);
free(prob of selection);

/∗ PC specific cleanup ∗/
/∗ MPI Barrier(MPI COMM WORLD); ∗/
PCC stop();
return (0);

}

78

C.4 InOut.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: InOut.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: InOut.h
Author: Thomas Stuetzle
Purpose: mainly input / output / statistic routines
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

79

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#define PROG ID STR "\nACO algorithms for the TSP, v2.0 (uses PC) \n"
#define CALL SYNTAX STR "call syntax: acotsp <param-list> \n"

#define LINE BUF LEN 100

struct point ∗ read etsp(const char ∗tsp file name);

struct point ∗ read etsp(const char ∗tsp file name);

extern long int ∗best in try;
extern long int ∗best found at;
extern double ∗time best found;
extern double ∗time total run;

extern long int n try; /∗ number of try ∗/
extern long int n tours; /∗ number of constructed tours ∗/
extern long int iteration; /∗ iteration counter ∗/
extern long int restart iteration; /∗ iteration counter ∗/
extern double restart time; /∗ remember when restart was done if any ∗/

extern long int max tries; /∗ maximum number of independent tries ∗/
extern long int max tours; /∗ maximum number of tour constructions in one try
∗/

extern double lambda; /∗ Parameter to determine branching factor ∗/
extern double branch fac; /∗ If branching factor < branch fac => update
trails ∗/

extern double max time; /∗ maximal allowed run time of a try ∗/
extern double time used; /∗ time used until some given event ∗/
extern double time passed; /∗ time passed until some moment∗/
extern long int optimal; /∗ optimal solution value or bound to find ∗/

extern double mean ants; /∗ average tour length ∗/
extern double stddev ants; /∗ stddev of tour lengths ∗/
extern double branching factor; /∗ average node branching factor when searching
∗/
extern double found branching; /∗ branching factor when best solution is found
∗/

extern long int found best; /∗ iteration in which best solution is found
∗/
extern long int restart found best; /∗ iteration in which restart-best solution
is found ∗/

extern FILE ∗report, ∗comp report, ∗stat report;

80

extern char name buf[LINE BUF LEN];
extern int opt;

/∗ Sammy - Modifications for PC ∗/
extern int nProc;
extern int myProc;

void write report(void);

void print default parameters();

void set default parameters();

void init try(long int ntry);

void output solution(void);

void exit try(long int ntry);

void exit program(void);

void PC init program(int myProc, long int argc, char ∗argv[]);

void printDist(void);

void printHeur(void);

void printTrail(void);

void printTotal(void);

void printProbabilities(void);

void printTour(long int ∗t);

void printTourFile(long int ∗t);

void checkTour(long int ∗t);

void population statistics (void);

double node branching(double l);

void write params (void);

81

C.5 InOut.c

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: InOut.c
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: InOut.c
Author: Thomas Stuetzle
Purpose: mainly input / output / statistic routines
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

82

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <limits.h>
#include <time.h>

#include "InOut.h"
#include "TSP.h"
#include "timer.h"
#include "utilities.h"
#include "ants.h"
#include "ls.h"
#include "parse.h"

int PC myProc;

long int ∗best in try;
long int ∗best found at;
double ∗time best found;
double ∗time total run;

long int n try; /∗ try counter ∗/
long int n tours; /∗ counter of number constructed tours ∗/
long int iteration; /∗ iteration counter ∗/
long int restart iteration; /∗ remember iteration when restart was done if any
∗/
double restart time; /∗ remember time when restart was done if any ∗/
long int max tries; /∗ maximum number of independent tries ∗/
long int max tours; /∗ maximum number of tour constructions in one try
∗/

double lambda; /∗ Parameter to determine branching factor ∗/
double branch fac; /∗ If branching factor < branch fac => update trails
∗/

double max time; /∗ maximal allowed run time of a try ∗/
double time used; /∗ time used until some given event ∗/
double time passed; /∗ time passed until some moment∗/
long int optimal; /∗ optimal solution or bound to find ∗/

double mean ants; /∗ average tour length ∗/
double stddev ants; /∗ stddev of tour lengths ∗/
double branching factor; /∗ average node branching factor when searching ∗/
double found branching; /∗ branching factor when best solution is found ∗/

long int found best; /∗ iteration in which best solution is found ∗/

83

long int restart found best; /∗ iteration in which restart-best solution is found
∗/

/∗ -- ∗/

FILE ∗report, ∗comp report, ∗stat report;

char name buf[LINE BUF LEN];
int opt;

struct point ∗ read etsp(const char ∗tsp file name)
/∗

FUNCTION: parse and read instance file
INPUT: instance name
OUTPUT: list of coordinates for all nodes
COMMENTS: Instance files have to be in TSPLIB format, otherwise procedure

fails
∗/
{

FILE ∗tsp file;
char buf[LINE BUF LEN];
long int i, j;
struct point ∗nodeptr;

tsp file = fopen(tsp file name, "r");
if (tsp file == NULL) {

fprintf(stderr,"No instance file specified, abort \n");
exit(1);

}
assert(tsp file != NULL);
/∗ if(0 == PC myProc) printf("\nreading tsp-file %s ... \n", tsp file name);

∗/

fscanf(tsp file,"%s", buf);
while (strcmp("NODE COORDSECTION", buf) != 0) {

if (strcmp("NAME", buf) == 0) {
fscanf(tsp file, "%s", buf);

/∗ TRACE (printf("%s ", buf);) ∗/
fscanf(tsp file, "%s", buf);
strcpy(instance.name, buf);

/∗ TRACE (printf("%s \n", instance.name);) ∗/
buf[0]=0;

}
else if (strcmp("NAME:", buf) == 0) {

fscanf(tsp file, "%s", buf);
strcpy(instance.name, buf);

/∗ TRACE (printf("%s \n", instance.name);) ∗/
buf[0]=0;

}
else if (strcmp("COMMENT", buf) == 0) {

fgets(buf, LINE BUF LEN, tsp file);
/∗ TRACE (printf("%s", buf);) ∗/

buf[0]=0;

84

}
else if (strcmp("COMMENT:", buf) == 0) {

fgets(buf, LINE BUF LEN, tsp file);
/∗ TRACE (printf("%s", buf);) ∗/

buf[0]=0;
}
else if (strcmp("TYPE", buf) == 0) {

fscanf(tsp file, "%s", buf);
/∗ TRACE (printf("%s ", buf);) ∗/

fscanf(tsp file, "%s", buf);
/∗ TRACE (printf("%s\n", buf);) ∗/

if(strcmp("TSP", buf) != 0) {
fprintf(stderr," \n Not a TSP instance in TSPLIB format !! \n");
exit(1);

}
buf[0]=0;

}
else if (strcmp("TYPE:", buf) == 0) {

fscanf(tsp file, "%s", buf);
/∗ TRACE (printf("%s\n", buf);) ∗/

if(strcmp("TSP", buf) != 0) {
fprintf(stderr," \n Not a TSP instance in TSPLIB format !! \n");
exit(1);

}
buf[0]=0;

}
else if(strcmp("DIMENSION", buf) == 0) {

fscanf(tsp file, "%s", buf);
/∗ TRACE (printf("%s ", buf);); ∗/

fscanf(tsp file, "%ld", &n);
instance.n = n;

/∗ TRACE (printf("%ld\n", n);); ∗/
assert (n > 2 && n < 6000);
buf[0]=0;

}
else if (strcmp("DIMENSION:", buf) == 0) {

fscanf(tsp file, "%ld", &n);
instance.n = n;

/∗ TRACE (printf("%ld\n", n);); ∗/
assert (n > 2 && n < 6000);
buf[0]=0;

}
else if(strcmp("DISPLAY DATA TYPE", buf) == 0) {

fgets(buf, LINE BUF LEN, tsp file);
/∗ TRACE (printf("%s", buf);); ∗/

buf[0]=0;
}
else if (strcmp("DISPLAY DATA TYPE:", buf) == 0) {

fgets(buf, LINE BUF LEN, tsp file);
/∗ TRACE (printf("%s", buf);); ∗/

buf[0]=0;
}
else if(strcmp("EDGE WEIGHT TYPE", buf) == 0) {

buf[0]=0;
fscanf(tsp file, "%s", buf);

85

/∗ TRACE (printf("%s ", buf);); ∗/
buf[0]=0;
fscanf(tsp file, "%s", buf);

/∗ TRACE (printf("%s\n", buf);); ∗/
if (strcmp("EUC 2D", buf) == 0) {

distance = round distance;
}
else if (strcmp("CEIL 2D", buf) == 0) {

distance = ceil distance;
}
else if (strcmp("GEO", buf) == 0) {

distance = geo distance;
}
else if (strcmp("ATT", buf) == 0) {

distance = att distance;
}
else

fprintf(stderr,"EDGE WEIGHT TYPE %s not implemented \n",buf);
strcpy(instance.edge weight type, buf);
buf[0]=0;

}
else if(strcmp("EDGE WEIGHT TYPE:", buf) == 0) {

/∗ set pointer to appropriate distance function; has to be one of
EUC 2D, CEIL 2D, GEO, or ATT. Everything else fails ∗/

buf[0]=0;
fscanf(tsp file, "%s", buf);

/∗ TRACE (printf("%s\n", buf);) ∗/
if (strcmp("EUC 2D", buf) == 0) {

distance = round distance;
}
else if (strcmp("CEIL 2D", buf) == 0) {

distance = ceil distance;
}
else if (strcmp("GEO", buf) == 0) {

distance = geo distance;
}
else if (strcmp("ATT", buf) == 0) {

distance = att distance;
}
else {

fprintf(stderr,"EDGE WEIGHT TYPE %s not implemented \n",buf);
exit(1);

}
strcpy(instance.edge weight type, buf);
buf[0]=0;

}
buf[0]=0;
fscanf(tsp file,"%s", buf);

}

if(strcmp("NODE COORDSECTION", buf) == 0) {
/∗ TRACE (printf("found section contaning the node coordinates\n");) ∗/

}
else{

86

fprintf(stderr," \n\nSome error ocurred finding start of coordinates from tsp
file !! \n");

exit(1);
}

if((nodeptr = malloc(sizeof(struct point) ∗ n)) == NULL)
exit(EXIT FAILURE);
else {

for (i = 0 ; i < n ; i++) {
fscanf(tsp file,"%ld %lf %lf", &j, &nodeptr[i].x, &nodeptr[i].y);

}
}

/∗ TRACE (printf("number of cities is %ld\n",n);) ∗/
/∗ TRACE (printf("\n... done\n");) ∗/

return (nodeptr);
}

void write report(void)
/∗

FUNCTION: output some info about trial (best-so-far solution quality,
time)

INPUT: none
OUTPUT: none
COMMENTS: none

∗/
{

/∗ printf("Node:%d:best:%ld:iteration:%ld:tours:%ld:time:%.2f\n",PC myProc,
(∗best so far ant).tour length,iteration,n tours,elapsed time(VIRTUAL)); ∗/

fprintf(comp report,"best %ld \t iteration %ld \t tours %ld \t time
%.3f \n",(∗best so far ant).tour length,iteration,n tours,time used);
}

void print default parameters()
/∗

FUNCTION: output default parameter settings
INPUT: none
OUTPUT: none
COMMENTS: none

∗/
{

fprintf(stderr," \nDefault parameter settings are: \n\n");
fprintf(stderr,"max tries \t \t %ld \n", max tries);
fprintf(stderr,"max tours \t \t %ld \n", max tours);
fprintf(stderr,"max time \t \t %.2f \n", max time);
fprintf(stderr,"optimum \t \t \t %ld \n", optimal);
fprintf(stderr,"n ants \t \t \t %ld \n", n ants);
fprintf(stderr,"nn ants \t \t \t %ld \n", nn ants);
fprintf(stderr,"alpha \t \t \t %.2f \n", alpha);
fprintf(stderr,"beta \t \t \t %.2f \n", beta);
fprintf(stderr,"rho \t \t \t %.2f \n", rho);
fprintf(stderr,"q 0\t \t \t %.2f \n", q 0);

87

fprintf(stderr,"elitist ants \t \t 0 \n");
fprintf(stderr,"ras ranks \t \t 6 \n");
fprintf(stderr,"ls flag \t \t \t %ld \n", ls flag);
fprintf(stderr,"nn ls \t \t \t %ld \n", nn ls);
fprintf(stderr,"dlb flag \t \t %ld \n", dlb flag);
fprintf(stderr,"as flag \t \t \t %ld \n", as flag);
fprintf(stderr,"eas flag \t \t %ld \n", eas flag);
fprintf(stderr,"ras flag \t \t %ld \n", ras flag);
fprintf(stderr,"mmas flag \t \t %ld \n", mmas flag);
fprintf(stderr,"bwas flag \t \t %ld \n", bwas flag);
fprintf(stderr,"acs flag \t \t %ld \n", acs flag);

}

void set default parameters()
/∗

FUNCTION: set default parameter settings
INPUT: none
OUTPUT: none
COMMENTS: none

∗/
{

ls flag = 3; /∗ per default run 3-opt∗/
dlb flag = TRUE; /∗ apply don’t look bits in local search ∗/
nn ls = 20; /∗ use fixed radius search in the 20 nearest

neighbours ∗/
n ants = 25; /∗ number of ants ∗/
nn ants = 20; /∗ number of nearest neighbours in tour construction

∗/
alpha = 1.0;
beta = 2.0;
rho = 0.5;
q 0 = 0.0;
max tries = 10;
max tours = 100;
max time = 10.0;
optimal = 1;
branch fac = 1.00001;
as flag = FALSE;
eas flag = FALSE;
ras flag = FALSE;
mmas flag = TRUE;
u gb = INFTY;
bwas flag = FALSE;
acs flag = FALSE;
ras ranks = 6;
elitist ants = 100;

}

void population statistics (void)
/∗

FUNCTION: compute some population statistics like average tour

88

length,
standard deviations, average distance, branching-factor

and
output to a file gathering statistics

INPUT: none
OUTPUT: none
(SIDE)EFFECTS: none

∗/
{

long int j, k;
long int ∗l;
double pop mean, pop stddev, avg distance = 0.0;

l = calloc(n ants, sizeof(long int));
for(k = 0 ; k < n ants ; k++) {

l[k] = ant[k].tour length;
}

pop mean = mean(l, n ants);
pop stddev = std deviation(l, n ants, pop mean);
branching factor = node branching(lambda);

for (k = 0 ; k < n ants-1 ; k++)
for (j = k+1 ; j < n ants ; j++) {

avg distance += (double)distance between ants(&ant[k], &ant[j]);
}

avg distance /= ((double)n ants ∗ (double)(n ants-1) / 2.);

fprintf(stat report,"%ld \t%.1f \t%.5f \t%.7f \t%.5f \t%.1f \t%.1f \t%.5f \n",iteration,
pop mean, pop stddev, pop stddev / pop mean,
branching factor, (branching factor - 1.) ∗ (double)n, avg distance,
avg distance / (double)n);
}

double node branching(double l)
/∗

FUNCTION: compute the average node lambda-branching factor
INPUT: lambda value
OUTPUT: average node branching factor
(SIDE)EFFECTS: none
COMMENTS: see the ACO book for a definition of the average node

lambda-branching factor
∗/
{

long int i, m;
double min, max, cutoff;
double avg;
double ∗num branches;

num branches = calloc(n, sizeof(double));

89

for (m = 0 ; m < n ; m++) {
/∗ determine max, min to calculate the cutoff value ∗/
min = pheromone[m][instance.nn list[m][1]];
max = pheromone[m][instance.nn list[m][1]];
for (i = 1 ; i < nn ants ; i++) {

if (pheromone[m][instance.nn list[m][i]] > max)
max = pheromone[m][instance.nn list[m][i]];

if (pheromone[m][instance.nn list[m][i]] < min)
min = pheromone[m][instance.nn list[m][i]];

}
cutoff = min + l ∗ (max - min);

for (i = 0 ; i < nn ants ; i++) {
if (pheromone[m][instance.nn list[m][i]] > cutoff)

num branches[m] += 1.;
}

}
avg = 0.;
for (m = 0 ; m < n ; m++) {

avg += num branches[m];
}
free (num branches);
/∗ Norm branching factor to minimal value 1 ∗/
return (avg / (double) (n ∗ 2));

}

void output solution(void)
/∗

FUNCTION: output a solution together with node coordinates
INPUT: none
OUTPUT: none
COMMENTS: not used in the default implementation but may be useful

anyway
∗/
{

long int i;

for (i = 0 ; i < n ; i++) {
fprintf(stat report," %ld %f

%f\n",(∗best so far ant).tour[i],instance.nodeptr[(∗best so far ant).tour[i]].x,
instance.nodeptr[(∗best so far ant).tour[i]].y);

}
printf(" \n");

}

void exit try(long int ntry)
/∗

FUNCTION: save some statistical information on a trial once it
finishes

INPUT: trial number

90

OUTPUT: none
COMMENTS:

∗/
{

checkTour((∗best so far ant).tour);
/∗ printTourFile((∗best so far ant).tour); ∗/

/∗ printf("\n Best Solution in try %ld is %ld\n",ntry,
(∗best so far ant).tour length); ∗/

fprintf(report,"Best: %ld \t Iterations: %6ld \t B-Fac %.5f \t Time %.2f \t
Tot.time %.2f \n", (∗best so far ant).tour length, found best,
found branching, time used, elapsed time(VIRTUAL));

/∗ printf(" Best Solution was found after %ld iterations\n", found best); ∗/

best in try[ntry] = (∗best so far ant).tour length;
best found at[ntry] = found best;
time best found[ntry] = time used;
time total run[ntry] = elapsed time(VIRTUAL);
/∗ printf("\ntry %ld, Best %ld, found at iteration %ld, found at time

%f\n",ntry, best in try[ntry], best found at[ntry],
time best found[ntry]); ∗/

fprintf(comp report,"end try %ld\n\n",ntry);
fprintf(stat report,"end try %ld\n\n",ntry);

/∗ TRACE (output solution();) ∗/
fflush(report);
fflush(comp report);
fflush(stat report);

}

void exit program(void)
/∗

FUNCTION: save some final statistical information on a trial once it
finishes

INPUT: none
OUTPUT: none
COMMENTS:

∗/
{

long int best tour length, worst tour length;
double t avgbest, t stdbest, t avgtotal, t stdtotal;
double avg sol quality = 0., avg cyc to bst = 0., stddev best,

stddev iterations;

best tour length = best of vector(best in try ,max tries);
worst tour length = worst of vector(best in try , max tries);

avg cyc to bst = mean(best found at , max tries);
stddev iterations = std deviation(best found at, max tries, avg cyc to bst);

avg sol quality = mean(best in try , max tries);
stddev best = std deviation(best in try, max tries, avg sol quality);

91

t avgbest = meanr(time best found, max tries);
printf(" t avgbest = %f \n", t avgbest);
t stdbest = std deviationr(time best found, max tries, t avgbest);

t avgtotal = meanr(time total run, max tries);
printf(" t avgtotal = %f \n", t avgtotal);
t stdtotal = std deviationr(time total run, max tries, t avgtotal);

fprintf(report," \nAverage-Best: %.2f \t Average-Iterations: %.2f",
avg sol quality, avg cyc to bst);

fprintf(report," \nStddev-Best: %.2f \t Stddev Iterations: %.2f", stddev best,
stddev iterations);

fprintf(report," \nBest try: %ld \t \t Worst try: %ld \n", best tour length,
worst tour length);

fprintf(report," \nAvg.time-best: %.2f stddev.time-best: %.2f \n", t avgbest,
t stdbest);

fprintf(report," \nAvg.time-total: %.2f stddev.time-total: %.2f \n", t avgtotal,
t stdtotal);

if (optimal > 0) {
fprintf(report," excess best = %f, excess average = %f, exce ss worst =

%f\n",(double)(best tour length - optimal) /
(double)optimal,(double)(avg sol quality - optimal) /
(double)optimal,(double)(worst tour length - optimal) / (double)optimal);

}

fprintf(comp report,"end problem %s \n",instance.name);
}

void PC init program(int myProc, long int argc, char ∗argv[])
/∗

FUNCTION: initialize the program,
INPUT: program arguments, needed for parsing commandline
OUTPUT: none
COMMENTS:

∗/
{

PC myProc = myProc;

char temp buffer[LINE BUF LEN];

if(0 == PC myProc) printf(PROG ID STR);
set default parameters();
setbuf(stdout,NULL);
PC parse commandline(myProc, argc, argv);

assert (n ants < MAX ANTS-1);
assert (nn ants < MAX NEIGHBOURS);
assert (nn ants > 0);
assert (nn ls > 0);
assert (max tries <= MAXIMUM NO TRIES);

92

best in try = calloc(max tries, sizeof(long int));
best found at = calloc(max tries, sizeof(long int));
time best found = calloc(max tries, sizeof(double));
time total run = calloc(max tries, sizeof(double));

seed = (long int) time(NULL);

/∗ TRACE (printf("read problem data ..\n\n");) ∗/
instance.nodeptr = read etsp(name buf);

/∗ TRACE (printf("\n .. done\n\n");) ∗/

nn ls = MIN(n-1,nn ls);

sprintf(temp buffer,"best.%s",instance.name);
/∗ TRACE (printf("%s\n",temp buffer);) ∗/

report = fopen(temp buffer, "w");
sprintf(temp buffer,"cmp.%s",instance.name);

/∗ TRACE (printf("%s\n",temp buffer);) ∗/
comp report = fopen(temp buffer, "w");
sprintf(temp buffer,"stat.%s",instance.name);

/∗ TRACE (printf("%s\n",temp buffer);) ∗/
stat report = fopen(temp buffer, "w");

/∗ if(0 == PC myProc) printf("calculating distance matrix .."); ∗/
instance.distance = compute distances();
/∗ if(0 == PC myProc) printf(" .. done\n"); ∗/
if(0 == PC myProc) write params();
fprintf(comp report,"begin problem %s \n",name buf);

/∗ if(0 == PC myProc) printf("allocate ants’ memory .."); ∗/
allocate ants();
/∗ PC allocate ants(); ∗/
/∗ if(0 == PC myProc) printf(" .. done\n"); ∗/
DEBUG (assert (nn ls < n && 0 < nn ls);)

/∗ if(0 == PC myProc) printf("\nFinally set ACO algorithm specific parameters,
typically done as proposed in literature\n"); ∗/

/∗ default setting for elitist ants is 0; if EAS is applied and
option elitist ants is not used, we set the default to
elitist ants = n ∗/

if (eas flag && elitist ants == 0)
elitist ants = n;

}

void printDist(void)
/∗

FUNCTION: print distance matrix
INPUT: none
OUTPUT: none

∗/
{

long int i,j;

93

printf("Distance Matrix: \n");
for (i = 0 ; i < n ; i++) {

printf("From %ld: ",i);
for (j = 0 ; j < n - 1 ; j++) {

printf(" %ld", instance.distance[i][j]);
}
printf(" %ld \n", instance.distance[i][n-1]);
printf(" \n");

}
printf(" \n");

}

void printHeur(void)
/∗

FUNCTION: print heuristic information
INPUT: none
OUTPUT: none

∗/
{

long int i, j;

printf("Heuristic information: \n");
for (i = 0 ; i < n ; i++) {

printf("From %ld: ",i);
for (j = 0 ; j < n - 1 ; j++) {

printf(" %.3f ", HEURISTIC(i,j));
}
printf(" %.3f \n", HEURISTIC(i,j));
printf(" \n");

}
printf(" \n");

}

void printTrail(void)
/∗

FUNCTION: print pheromone trail values
INPUT: none
OUTPUT: none

∗/
{

long int i,j;

printf("pheromone Trail matrix, iteration: %ld \n\n",iteration);
for (i = 0 ; i < n ; i++) {

printf("From %ld: ",i);
for (j = 0 ; j < n ; j++) {

printf(" %.10f ", pheromone[i][j]);
if (pheromone[i][j] > 1.0)

printf("XXXXX \n");
}
printf(" \n");

94

}
printf(" \n");

}

void printTotal(void)
/∗

FUNCTION: print values of pheromone times heuristic information
INPUT: none
OUTPUT: none

∗/
{

long int i, j;

printf("combined pheromone and heuristic info \n\n");
for (i=0; i < n; i++) {
for (j = 0; j < n - 1 ; j++) {

printf(" %.15f &", total[i][j]);
if (total[i][j] > 1.0)

printf("XXXXX \n");
}
printf(" %.15f \n", total[i][n-1]);
if (total[i][n-1] > 1.0)

printf("XXXXX \n");
}
printf(" \n");

}

void printProbabilities(void)
/∗

FUNCTION: prints the selection probabilities as encountered by an
ant

INPUT: none
OUTPUT: none
COMMENTS: this computation assumes that no choice has been made yet.

∗/
{

long int i, j;
double ∗p;
double sum prob;

printf("Selection Probabilities, iteration: %ld \n",iteration);
p = calloc(n, sizeof(double));

for (i=0; i < n; i++) {
printf("From %ld: ",i);
sum prob = 0.;
for (j = 0 ; j < n ; j++) {

if (i == j)
p[j] = 0.;

else
p[j] = total[i][j];

95

sum prob += p[j];
}
for (j = 0 ; j < n ; j++) {

p[j] = p[j] / sum prob;
}
for (j = 0 ; j < n-1 ; j++) {

printf(" %.5f ", p[j]);
}
printf(" %.5f \n", p[n-1]);
if (!(j % 26)) {

printf(" \n");
}
printf(" \n");

}
printf(" \n");
free (p);

}

void printTour(long int ∗t)
/∗

FUNCTION: print the tour ∗t
INPUT: pointer to a tour
OUTPUT: none

∗/
{

long int i;

printf(" \n");
for(i = 0 ; i <= n ; i++) {

if (!i%25)
printf(" \n");

printf("%ld ", t[i]);
}
printf(" \n");
printf("Tour length = %ld \n\n",compute tour length(t));

}

void printTourFile(long int ∗t)
/∗

FUNCTION: print the tour ∗t to cmp.tsplibfile
INPUT: pointer to a tour
OUTPUT: none

∗/
{

long int i;

fprintf(comp report,"begin solution \n");
for(i = 0 ; i < n ; i++) {

fprintf(comp report,"%ld ", t[i]);
}
fprintf(comp report," \n");

96

fprintf(comp report,"Tour length %ld \n",compute tour length(t));
fprintf(comp report,"end solution \n");

}

void checkTour(long int ∗t)
/∗

FUNCTION: make a simple check whether tour ∗t can be feasible
INPUT: pointer to a tour
OUTPUT: none

∗/
{

long int i, sum=0;

for(i = 0 ; i < n ; i++) {
sum += t[i];

}
if (sum != (n-1) ∗ n / 2) {

fprintf(stderr,"Next tour must be flawed !! \n");
printTour(t);
exit(1);

}
}

void write params(void)
/∗

FUNCTION: writes chosen parameter settings in standard output and in
report files

INPUT: none
OUTPUT: none

∗/
{

/∗
printf("\nParameter-settings: \n\n");
printf("max-tries %ld\n", max tries);
printf("max-tours %ld\n", max tours);
printf("optimum %ld\n", optimal);
printf("time %f\n", max time);
printf("num-ants %ld\n", n ants);
printf("num-neigh %ld\n", nn ants);
printf("alpha %f\n", alpha);
printf("beta %f\n", beta);
printf("rho %f\n", rho);
printf("q 0 %f\n", q 0);
printf("branch-up %f\n", branch fac);
printf("ls flag %ld\n", ls flag);
printf("nn ls %ld\n", nn ls);
printf("dlb flag %ld\n", dlb flag);
printf("as flag %ld\n", as flag);
printf("eas flag %ld\n", eas flag);
printf("ras flag %ld\n", ras flag);
printf("mmas flag %ld\n", mmas flag);

97

printf("bwas flag %ld\n", bwas flag);
printf("acs flag %ld\n", acs flag);
printf("\n");
∗/
fprintf(report," \nParameter-settings: \n\n");
fprintf(report,"max-tries %ld \n", max tries);
fprintf(report,"max-tours %ld \n", max tours);
fprintf(report,"optimum %ld \n", optimal);
fprintf(report,"time %f \n", max time);
fprintf(report,"num-ants %ld \n", n ants);
fprintf(report,"num-neigh %ld \n", nn ants);
fprintf(report,"alpha %f \n", alpha);
fprintf(report,"beta %f \n", beta);
fprintf(report,"rho %f \n", rho);
fprintf(report,"q 0 %f\n", q 0);
fprintf(report,"branch-up %f \n", branch fac);
fprintf(report,"ls flag %ld \n", ls flag);
fprintf(report,"nn ls %ld \n", nn ls);
fprintf(report,"dlb flag %ld \n", dlb flag);
fprintf(report,"as flag %ld \n", as flag);
fprintf(report,"eas flag %ld \n", eas flag);
fprintf(report,"ras flag %ld \n", ras flag);
fprintf(report,"mmas flag %ld \n", mmas flag);
fprintf(report,"bwas flag %ld \n", bwas flag);
fprintf(report,"acs flag %ld \n", acs flag);
fprintf(report," \n");
fprintf(comp report,"%s",PROG ID STR);
fprintf(comp report," \nParameter-settings: \n\n");
fprintf(comp report,"max-tries %ld \n", max tries);
fprintf(comp report,"max-tours %ld \n", max tours);
fprintf(comp report,"optimum %ld \n", optimal);
fprintf(comp report,"time %f \n", max time);
fprintf(comp report,"num-ants %ld \n", n ants);
fprintf(comp report,"num-neigh %ld \n", nn ants);
fprintf(comp report,"alpha %f \n", alpha);
fprintf(comp report,"beta %f \n", beta);
fprintf(comp report,"rho %f \n", rho);
fprintf(comp report,"q 0 %f\n", q 0);
fprintf(comp report,"branch-up %f \n", branch fac);
fprintf(comp report,"ls flag %ld \n", ls flag);
fprintf(comp report,"nn ls %ld \n", nn ls);
fprintf(comp report,"dlb flag %ld \n", dlb flag);
fprintf(comp report,"as flag %ld \n", as flag);
fprintf(comp report,"eas flag %ld \n", eas flag);
fprintf(comp report,"ras flag %ld \n", ras flag);
fprintf(comp report,"mmas flag %ld \n", mmas flag);
fprintf(comp report,"bwas flag %ld \n", bwas flag);
fprintf(comp report,"acs flag %ld \n", acs flag);
fprintf(comp report," \n");

}

98

C.6 ls.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: ls.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: ls.h
Author: Thomas Stuetzle
Purpose: header file for local search routines
Check: README and gpl.txt
Copyright (C) 1999 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

99

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

extern long int ls flag;

extern long int nn ls;

extern long int dlb flag;

void two opt first(long int ∗tour);

void two h opt first(long int ∗tour);

long int three opt first(long int ∗tour);

100

C.7 ls.c

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: ls.c
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: ls.c
Author: Thomas Stuetzle
Purpose: implementation of local search routines
Check: README and gpl.txt
Copyright (C) 1999 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

101

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <limits.h>

#include "InOut.h"
#include "TSP.h"
#include "ants.h"
#include "utilities.h"

long int ls flag; /∗ indicates whether and which local search is used
∗/
long int nn ls; /∗ maximal depth of nearest neighbour lists used in
the

local search ∗/
long int dlb flag = TRUE; /∗ flag indicating whether don’t look bits are used.
I recommend

to always use it if local search is applied ∗/

long int ∗ generate random permutation(long int n)
/∗

FUNCTION: generate a random permutation of the integers 0 .. n-1
INPUT: length of the array
OUTPUT: pointer to the random permutation
(SIDE)EFFECTS: the array holding the random permutation is allocated in

this
function. Don’t forget to free again the memory!

COMMENTS: only needed by the local search procedures
∗/
{

long int i, help, node, tot assigned = 0;
double rnd;
long int ∗r;

r = malloc(n ∗ sizeof(int));

for (i = 0 ; i < n; i++)
r[i] = i;

for (i = 0 ; i < n ; i++) {
/∗ find (randomly) an index for a free unit ∗/
rnd = ran01 (&seed);
node = (long int) (rnd ∗ (n - tot assigned));
assert(i + node < n);
help = r[i];
r[i] = r[i+node];
r[i+node] = help;
tot assigned++;

}

102

return r;
}

void two opt first(long int ∗tour)
/∗

FUNCTION: 2-opt a tour
INPUT: pointer to the tour that undergoes local optimization
OUTPUT: none
(SIDE)EFFECTS: tour is 2-opt
COMMENTS: the neighbourhood is scanned in random order (this need

not be the best possible choice). Concerning the speed-ups
used

here consult, for example, Chapter 8 of
Holger H. Hoos and Thomas Stuetzle,
Stochastic Local Search---Foundations and Applications,
Morgan Kaufmann Publishers, 2004.
or some of the papers online available from David S. Johnson.

∗/
{

long int c1, c2; /∗ cities considered for an exchange ∗/
long int s c1, s c2; /∗ successor cities of c1 and c2 ∗/
long int p c1, p c2; /∗ predecessor cities of c1 and c2 ∗/
long int pos c1, pos c2; /∗ positions of cities c1, c2 ∗/
long int i, j, h, l;
long int improvement flag, improve node, help, n improves = 0,

n exchanges=0;
long int h1=0, h2=0, h3=0, h4=0;
long int radius; /∗ radius of nn-search ∗/
long int gain = 0;
long int ∗random vector;
long int ∗pos; /∗ positions of cities in tour ∗/
long int ∗dlb; /∗ vector containing don’t look bits ∗/

pos = malloc(n ∗ sizeof(long int));
dlb = malloc(n ∗ sizeof(long int));
for (i = 0 ; i < n ; i++) {

pos[tour[i]] = i;
dlb[i] = FALSE;

}

improvement flag = TRUE;
random vector = generate random permutation(n);

while (improvement flag) {

improvement flag = FALSE;

for (l = 0 ; l < n; l++) {

c1 = random vector[l];
DEBUG (assert (c1 < n && c1 >= 0);)

if (dlb flag && dlb[c1])
continue;

improve node = FALSE;
pos c1 = pos[c1];

103

s c1 = tour[pos c1+1];
radius = instance.distance[c1][s c1];

/∗ First search for c1’s nearest neighbours, use successor of c1 ∗/
for (h = 0 ; h < nn ls ; h++) {

c2 = instance.nn list[c1][h]; /∗ exchange partner, determine its position ∗/
if (radius > instance.distance[c1][c2]) {

s c2 = tour[pos[c2]+1];
gain = - radius + instance.distance[c1][c2] +

instance.distance[s c1][s c2] - instance.distance[c2][s c2];
if (gain < 0) {

h1 = c1; h2 = s c1; h3 = c2; h4 = s c2;
improve node = TRUE;
goto exchange2opt;

}
}
else

break;
}
/∗ Search one for next c1’s h-nearest neighbours, use predecessor c1 ∗/
if (pos c1 > 0)

p c1 = tour[pos c1-1];
else

p c1 = tour[n-1];
radius = instance.distance[p c1][c1];
for (h = 0 ; h < nn ls ; h++) {

c2 = instance.nn list[c1][h]; /∗ exchange partner, determine its position
∗/

if (radius > instance.distance[c1][c2]) {
pos c2 = pos[c2];
if (pos c2 > 0)

p c2 = tour[pos c2-1];
else

p c2 = tour[n-1];
if (p c2 == c1)

continue;
if (p c1 == c2)

continue;
gain = - radius + instance.distance[c1][c2] +

instance.distance[p c1][p c2] - instance.distance[p c2][c2];
if (gain < 0) {

h1 = p c1; h2 = c1; h3 = p c2; h4 = c2;
improve node = TRUE;
goto exchange2opt;

}
}
else

break;
}
if (improve node) {
exchange2opt:

n exchanges++;
improvement flag = TRUE;
dlb[h1] = FALSE; dlb[h2] = FALSE;
dlb[h3] = FALSE; dlb[h4] = FALSE;

104

/∗ Now perform move ∗/
if (pos[h3] < pos[h1]) {

help = h1; h1 = h3; h3 = help;
help = h2; h2 = h4; h4 = help;

}
if (pos[h3] - pos[h2] < n / 2 + 1) {

/∗ reverse inner part from pos[h2] to pos[h3] ∗/
i = pos[h2]; j = pos[h3];
while (i < j) {

c1 = tour[i];
c2 = tour[j];
tour[i] = c2;
tour[j] = c1;
pos[c1] = j;
pos[c2] = i;
i++; j--;

}
}
else {

/∗ reverse outer part from pos[h4] to pos[h1] ∗/
i = pos[h1]; j = pos[h4];
if (j > i)

help = n - (j - i) + 1;
else

help = (i - j) + 1;
help = help / 2;
for (h = 0 ; h < help ; h++) {

c1 = tour[i];
c2 = tour[j];
tour[i] = c2;
tour[j] = c1;
pos[c1] = j;
pos[c2] = i;
i--; j++;
if (i < 0)

i = n-1;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
} else {

dlb[c1] = TRUE;
}

}
if (improvement flag) {

n improves++;
}

}
free(random vector);
free(dlb);
free(pos);

}

105

void two h opt first(long int ∗tour)
/∗

FUNCTION: 2-h-opt a tour
INPUT: pointer to the tour that undergoes local optimization
OUTPUT: none
(SIDE)EFFECTS: tour is 2-h-opt
COMMENTS: for details on 2-h-opt see J. L. Bentley. Fast algorithms

for geometric
traveling salesman problems. ORSA Journal on Computing,

4(4):387--411, 1992.
The neighbourhood is scanned in random order (this need

not be the best possible choice). Concerning the speed-ups
used

here consult, for example, Chapter 8 of
Holger H. Hoos and Thomas Stuetzle,
Stochastic Local Search---Foundations and Applications,
Morgan Kaufmann Publishers, 2004.
or some of the papers online available from David S. Johnson.

∗/
{

long int c1, c2; /∗ cities considered for an exchange ∗/
long int s c1, s c2; /∗ successors of c1 and c2 ∗/
long int p c1, p c2; /∗ predecessors of c1 and c2 ∗/
long int pos c1, pos c2; /∗ positions of cities c1, c2 ∗/
long int i, j, h, l;
long int improvement flag, improve node;
long int h1=0, h2=0, h3=0, h4=0, h5=0, help;
long int radius; /∗ radius of nn-search ∗/
long int gain = 0;
long int ∗random vector;
long int two move, node move;

long int ∗pos; /∗ positions of cities in tour ∗/
long int ∗dlb; /∗ vector containing don’t look bits ∗/

pos = malloc(n ∗ sizeof(long int));
dlb = malloc(n ∗ sizeof(long int));
for (i = 0 ; i < n ; i++) {

pos[tour[i]] = i;
dlb[i] = FALSE;

}

improvement flag = TRUE;
random vector = generate random permutation(n);

while (improvement flag) {

improvement flag = FALSE; two move = FALSE; node move = FALSE;

for (l = 0 ; l < n; l++) {

c1 = random vector[l];
DEBUG (assert (c1 < n && c1 >= 0);)

if (dlb flag && dlb[c1])

106

continue;
improve node = FALSE;
pos c1 = pos[c1];
s c1 = tour[pos c1+1];
radius = instance.distance[c1][s c1];

/∗ First search for c1’s nearest neighbours, use successor of c1 ∗/
for (h = 0 ; h < nn ls ; h++) {

c2 = instance.nn list[c1][h]; /∗ exchange partner, determine its position ∗/
if (radius > instance.distance[c1][c2]) {

pos c2 = pos[c2];
s c2 = tour[pos c2+1];
gain = - radius + instance.distance[c1][c2] +

instance.distance[s c1][s c2] - instance.distance[c2][s c2];
if (gain < 0) {

h1 = c1; h2 = s c1; h3 = c2; h4 = s c2;
improve node = TRUE; two move = TRUE; node move = FALSE;
goto exchange;

}
if (pos c2 > 0)

p c2 = tour[pos c2-1];
else

p c2 = tour[n-1];
gain = - radius + instance.distance[c1][c2] +

instance.distance[c2][s c1]
+ instance.distance[p c2][s c2] - instance.distance[c2][s c2]
- instance.distance[p c2][c2];

if (c2 == s c1)
gain = 0;

if (p c2 == s c1)
gain = 0;

gain = 0;

if (gain < 0) {
h1 = c1; h2 = s c1; h3 = c2; h4 = p c2; h5 = s c2;
improve node = TRUE; node move = TRUE; two move = FALSE;
goto exchange;

}
}
else

break;
}
/∗ Second search for c1’s nearest neighbours, use predecessor c1 ∗/
if (pos c1 > 0)

p c1 = tour[pos c1-1];
else

p c1 = tour[n-1];
radius = instance.distance[p c1][c1];
for (h = 0 ; h < nn ls ; h++) {

c2 = instance.nn list[c1][h]; /∗ exchange partner, determine its position
∗/

if (radius > instance.distance[c1][c2]) {
pos c2 = pos[c2];
if (pos c2 > 0)

107

p c2 = tour[pos c2-1];
else

p c2 = tour[n-1];
if (p c2 == c1)

continue;
if (p c1 == c2)

continue;
gain = - radius + instance.distance[c1][c2] +

instance.distance[p c1][p c2] - instance.distance[p c2][c2];
if (gain < 0) {

h1 = p c1; h2 = c1; h3 = p c2; h4 = c2;
improve node = TRUE; two move = TRUE; node move = FALSE;
goto exchange;

}
s c2 = tour[pos[c2]+1];
gain = - radius + instance.distance[c2][c1] +

instance.distance[p c1][c2]
+ instance.distance[p c2][s c2] - instance.distance[c2][s c2]
- instance.distance[p c2][c2];

if (p c1 == c2)
gain = 0;

if (p c1 == s c2)
gain = 0;

if (gain < 0) {
h1 = p c1; h2 = c1; h3 = c2; h4 = p c2; h5 = s c2;
improve node = TRUE; node move = TRUE; two move = FALSE;
goto exchange;

}
}
else

break;
}

exchange:
if (improve node) {

if (two move) {
improvement flag = TRUE;
dlb[h1] = FALSE; dlb[h2] = FALSE;
dlb[h3] = FALSE; dlb[h4] = FALSE;
/∗ Now perform move ∗/
if (pos[h3] < pos[h1]) {

help = h1; h1 = h3; h3 = help;
help = h2; h2 = h4; h4 = help;

}
if (pos[h3] - pos[h2] < n / 2 + 1) {

/∗ reverse inner part from pos[h2] to pos[h3] ∗/
i = pos[h2]; j = pos[h3];
while (i < j) {

c1 = tour[i];
c2 = tour[j];
tour[i] = c2;
tour[j] = c1;
pos[c1] = j;
pos[c2] = i;
i++; j--;

108

}
}
else {

/∗ reverse outer part from pos[h4] to pos[h1] ∗/
i = pos[h1]; j = pos[h4];
if (j > i)

help = n - (j - i) + 1;
else

help = (i - j) + 1;
help = help / 2;
for (h = 0 ; h < help ; h++) {

c1 = tour[i];
c2 = tour[j];
tour[i] = c2;
tour[j] = c1;
pos[c1] = j;
pos[c2] = i;
i--; j++;
if (i < 0)

i = n-1;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
} else if (node move) {

improvement flag = TRUE;
dlb[h1] = FALSE; dlb[h2] = FALSE; dlb[h3] = FALSE;
dlb[h4] = FALSE; dlb[h5] = FALSE;
/∗ Now perform move ∗/
if (pos[h3] < pos[h1]) {

help = pos[h1] - pos[h3];
i = pos[h3];
for (h = 0 ; h < help ; h++) {

c1 = tour[i+1];
tour[i] = c1;
pos[c1] = i;
i++;

}
tour[i] = h3;
pos[h3] = i;
tour[n] = tour[0];

} else {
/∗ pos[h3] > pos[h1] ∗/
help = pos[h3] - pos[h1];
/∗ if (help < n / 2 + 1) { ∗/
i = pos[h3];
for (h = 0 ; h < help - 1 ; h++) {

c1 = tour[i-1];
tour[i] = c1;
pos[c1] = i;
i--;

}
tour[i] = h3;
pos[h3] = i;

109

tour[n] = tour[0];
/∗ } ∗/

}
} else {

fprintf(stderr," this should never occur, 2-h-opt!! \n");
exit(0);

}
two move = FALSE; node move = FALSE;

} else {
dlb[c1] = TRUE;

}

}
}
free(random vector);
free(dlb);
free(pos);

}

void three opt first(long int ∗tour)

/∗
FUNCTION: 3-opt the tour
INPUT: pointer to the tour that is to optimize
OUTPUT: none
(SIDE)EFFECTS: tour is 3-opt
COMMENT: this is certainly not the best possible implementation of

a 3-opt
local search algorithm. In addition, it is very lengthy;

the main
reason herefore is that awkward way of making an exchange, where
it is tried to copy only the shortest possible part of a tour.
Whoever improves the code regarding speed or solution quality, please
drop me the code at stuetzle no@spam informatik.tu-darmstadt.de
The neighbourhood is scanned in random order (this need

not be the best possible choice). Concerning the speed-ups
used

here consult, for example, Chapter 8 of
Holger H. Hoos and Thomas Stuetzle,
Stochastic Local Search---Foundations and Applications,
Morgan Kaufmann Publishers, 2004.
or some of the papers online available from David S. Johnson.

∗/
{

/∗ In case a 2-opt move should be performed, we only need to store opt2 move
= TRUE,

as h1, .. h4 are used in such a way that they store the indices of the
correct move ∗/

long int c1, c2, c3; /∗ cities considered for an exchange ∗/
long int s c1, s c2, s c3; /∗ successors of these cities ∗/
long int p c1, p c2, p c3; /∗ predecessors of these cities ∗/
long int pos c1, pos c2, pos c3; /∗ positions of cities c1, c2, c3

∗/
long int i, j, h, g, l;

110

long int improvement flag, help;
long int h1=0, h2=0, h3=0, h4=0, h5=0, h6=0; /∗ memorize cities involved

in a move ∗/
long int diffs, diffp;
long int between = FALSE;
long int opt2 flag; /∗ = TRUE: perform 2-opt move, otherwise none or

3-opt move ∗/
long int move flag; /∗

move flag = 0 --> no 3-opt move
move flag = 1 --> between move (c3 between c1 and c2)
move flag = 2 --> not between with successors of c2 and c3
move flag = 3 --> not between with predecessors of c2 and c3
move flag = 4 --> cyclic move

∗/
long int gain, move value, radius, add1, add2;
long int decrease breaks; /∗ Stores decrease by breaking two edges (a,b)

(c,d) ∗/
long int val[3];
long int n1, n2, n3;
long int ∗pos; /∗ positions of cities in tour ∗/
long int ∗dlb; /∗ vector containing don’t look bits ∗/
long int ∗h tour; /∗ help vector for performing exchange move ∗/
long int ∗hh tour; /∗ help vector for performing exchange move ∗/
long int ∗random vector;

pos = malloc(n ∗ sizeof(long int));
dlb = malloc(n ∗ sizeof(long int));
h tour = malloc(n ∗ sizeof(long int));
hh tour = malloc(n ∗ sizeof(long int));

for (i = 0 ; i < n ; i++) {
pos[tour[i]] = i;
dlb[i] = FALSE;

}
improvement flag = TRUE;
random vector = generate random permutation(n);

while (improvement flag) {
move value = 0;
improvement flag = FALSE;

for (l = 0 ; l < n ; l++) {

c1 = random vector[l];
if (dlb flag && dlb[c1])

continue;
opt2 flag = FALSE;

move flag = 0;
pos c1 = pos[c1];
s c1 = tour[pos c1+1];
if (pos c1 > 0)

p c1 = tour[pos c1-1];
else

p c1 = tour[n-1];

111

h = 0; /∗ Search for one of the h-nearest neighbours ∗/
while (h < nn ls) {

c2 = instance.nn list[c1][h]; /∗ second city, determine its position ∗/
pos c2 = pos[c2];
s c2 = tour[pos c2+1];
if (pos c2 > 0)

p c2 = tour[pos c2-1];
else

p c2 = tour[n-1];

diffs = 0; diffp = 0;

radius = instance.distance[c1][s c1];
add1 = instance.distance[c1][c2];

/∗ Here a fixed radius neighbour search is performed ∗/
if (radius > add1) {

decrease breaks = - radius - instance.distance[c2][s c2];
diffs = decrease breaks + add1 + instance.distance[s c1][s c2];
diffp = - radius - instance.distance[c2][p c2] +

instance.distance[c1][p c2] + instance.distance[s c1][c2];
}
else

break;
if (p c2 == c1) /∗ in case p c2 == c1 no exchange is possible ∗/

diffp = 0;
if ((diffs < move value) || (diffp < move value)) {

improvement flag = TRUE;
if (diffs <= diffp) {

h1 = c1; h2 = s c1; h3 = c2; h4 = s c2;
move value = diffs;
opt2 flag = TRUE; move flag = 0;
/∗ goto exchange; ∗/

} else {
h1 = c1; h2 = s c1; h3 = p c2; h4 = c2;
move value = diffp;
opt2 flag = TRUE; move flag = 0;
/∗ goto exchange; ∗/

}
}
/∗ Now perform the innermost search ∗/
g = 0;
while (g < nn ls) {

c3 = instance.nn list[s c1][g];
pos c3 = pos[c3];
s c3 = tour[pos c3+1];
if (pos c3 > 0)

p c3 = tour[pos c3-1];
else

p c3 = tour[n-1];

if (c3 == c1) {

112

g++;
continue;

}
else {

add2 = instance.distance[s c1][c3];
/∗ Perform fixed radius neighbour search for innermost search ∗/
if (decrease breaks + add1 < add2) {

if (pos c2 > pos c1) {
if (pos c3 <= pos c2 && pos c3 > pos c1)

between = TRUE;
else

between = FALSE;
}
else if (pos c2 < pos c1)

if (pos c3 > pos c1 || pos c3 < pos c2)
between = TRUE;

else
between = FALSE;

else {
printf(" Strange !!, pos 1 %ld == pos 2 %ld, \n",pos c1,pos c2);

}

if (between) {
/∗ We have to add edges (c1,c2), (c3,s c1), (p c3,s c2) to get

valid tour; it’s the only possibility ∗/

gain = decrease breaks - instance.distance[c3][p c3] +
add1 + add2 +
instance.distance[p c3][s c2];

/∗ check for improvement by move ∗/
if (gain < move value) {

improvement flag = TRUE; /∗ g = neigh ls + 1; ∗/
move value = gain;
opt2 flag = FALSE;
move flag = 1;
/∗ store nodes involved in move ∗/
h1 = c1; h2 = s c1; h3 = c2; h4 = s c2; h5 = p c3; h6 = c3;
goto exchange;

}
}
else { /∗ not between(pos c1,pos c2,pos c3) ∗/

/∗ We have to add edges (c1,c2), (s c1,c3), (s c2,s c3) ∗/

gain = decrease breaks - instance.distance[c3][s c3] +
add1 + add2 +
instance.distance[s c2][s c3];

if (pos c2 == pos c3) {
gain = 20000;

}

/∗ check for improvement by move ∗/

113

if (gain < move value) {
improvement flag = TRUE; /∗ g = neigh ls + 1; ∗/
move value = gain;
opt2 flag = FALSE;
move flag = 2;
/∗ store nodes involved in move ∗/
h1 = c1; h2 = s c1; h3 = c2; h4 = s c2; h5 = c3; h6 = s c3;
goto exchange;

}

/∗ or add edges (c1,c2), (s c1,c3), (p c2,p c3) ∗/
gain = - radius - instance.distance[p c2][c2]

- instance.distance[p c3][c3] +
add1 + add2 +
instance.distance[p c2][p c3];

if (c3 == c2 || c2 == c1 || c1 == c3 || p c2 == c1) {
gain = 2000000;

}

if (gain < move value) {
improvement flag = TRUE;
move value = gain;
opt2 flag = FALSE;
move flag = 3;
h1 = c1; h2 = s c1; h3 = p c2; h4 = c2; h5 = p c3; h6 = c3;
goto exchange;

}

/∗ Or perform the 3-opt move where no subtour inversion is necessary
i.e. delete edges (c1,s c1), (c2,p c2), (c3,s c3) and
add edges (c1,c2), (c3,s c1), (p c2,s c3) ∗/

gain = - radius - instance.distance[p c2][c2] -
instance.distance[c3][s c3]
+ add1 + add2 + instance.distance[p c2][s c3];

/∗ check for improvement ∗/
if (gain < move value) {

improvement flag = TRUE;
move value = gain;
opt2 flag = FALSE;
move flag = 4;
improvement flag = TRUE;
/∗ store nodes involved in move ∗/
h1 = c1; h2 = s c1; h3 = p c2; h4 = c2; h5 = c3; h6 = s c3;
goto exchange;

}
}

}
else

g = nn ls + 1;
}
g++;

}

114

h++;
}
if (move flag || opt2 flag) {
exchange:

move value = 0;

/∗ Now make the exchange ∗/
if (move flag) {

dlb[h1] = FALSE; dlb[h2] = FALSE; dlb[h3] = FALSE;
dlb[h4] = FALSE; dlb[h5] = FALSE; dlb[h6] = FALSE;
pos c1 = pos[h1]; pos c2 = pos[h3]; pos c3 = pos[h5];

if (move flag == 4) {

if (pos c2 > pos c1)
n1 = pos c2 - pos c1;

else
n1 = n - (pos c1 - pos c2);

if (pos c3 > pos c2)
n2 = pos c3 - pos c2;

else
n2 = n - (pos c2 - pos c3);

if (pos c1 > pos c3)
n3 = pos c1 - pos c3;

else
n3 = n - (pos c3 - pos c1);

/∗ n1: length h2 - h3, n2: length h4 - h5, n3: length h6 - h1 ∗/
val[0] = n1; val[1] = n2; val[2] = n3;
/∗ Now order the partial tours ∗/
h = 0;
help = LONG MIN;
for (g = 0; g <= 2; g++) {

if (help < val[g]) {
help = val[g];
h = g;

}
}

/∗ order partial tours according length ∗/
if (h == 0) {

/∗ copy part from pos[h4] to pos[h5]
direkt kopiert: Teil von pos[h6] to pos[h1], it
remains the part from pos[h2] to pos[h3] ∗/

j = pos[h4];
h = pos[h5];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
h tour[i] = tour[j];

115

n1++;
}

/∗ First copy partial tour 3 in new position ∗/
j = pos[h4];
i = pos[h6];
tour[j] = tour[i];
pos[tour[i]] = j;
while (i != pos c1) {

i++;
if (i >= n)

i = 0;
j++;
if (j >= n)

j = 0;
tour[j] = tour[i];
pos[tour[i]] = j;

}

/∗ Now copy stored part from h tour ∗/
j++;
if (j >= n)

j = 0;
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
else if (h == 1) {

/∗ copy part from pos[h6] to pos[h1]
direkt kopiert: Teil von pos[h2] to pos[h3], it
remains the part from pos[h4] to pos[h5] ∗/

j = pos[h6];
h = pos[h1];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
h tour[i] = tour[j];
n1++;

}

/∗ First copy partial tour 3 in new position ∗/
j = pos[h6];
i = pos[h2];
tour[j] = tour[i];

116

pos[tour[i]] = j;
while (i != pos c2) {

i++;
if (i >= n)

i = 0;
j++;
if (j >= n)

j = 0;
tour[j] = tour[i];
pos[tour[i]] = j;

}

/∗ Now copy stored part from h tour ∗/
j++;
if (j >= n)

j = 0;
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
else if (h == 2) {

/∗ copy part from pos[h2] to pos[h3]
direkt kopiert: Teil von pos[h4] to pos[h5], it
remains the part from pos[h6] to pos[h1] ∗/

j = pos[h2];
h = pos[h3];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
h tour[i] = tour[j];
n1++;

}

/∗ First copy partial tour 3 in new position ∗/
j = pos[h2];
i = pos[h4];
tour[j] = tour[i];
pos[tour[i]] = j;
while (i != pos c3) {

i++;
if (i >= n)

i = 0;
j++;
if (j >= n)

j = 0;

117

tour[j] = tour[i];
pos[tour[i]] = j;

}

/∗ Now copy stored part from h tour ∗/
j++;
if (j >= n)

j = 0;
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
}
else if (move flag == 1) {

if (pos c3 < pos c2)
n1 = pos c2 - pos c3;

else
n1 = n - (pos c3 - pos c2);

if (pos c3 > pos c1)
n2 = pos c3 - pos c1 + 1;

else
n2 = n - (pos c1 - pos c3 + 1);

if (pos c2 > pos c1)
n3 = n - (pos c2 - pos c1 + 1);

else
n3 = pos c1 - pos c2 + 1;

/∗ n1: length h6 - h3, n2: length h5 - h2, n2: length h1 - h3 ∗/
val[0] = n1; val[1] = n2; val[2] = n3;
/∗ Now order the partial tours ∗/
h = 0;
help = LONG MIN;
for (g = 0; g <= 2; g++) {

if (help < val[g]) {
help = val[g];
h = g;

}
}
/∗ order partial tours according length ∗/

if (h == 0) {

/∗ copy part from pos[h5] to pos[h2]
(inverted) and from pos[h4] to pos[h1] (inverted)
it remains the part from pos[h6] to pos[h3] ∗/

j = pos[h5];
h = pos[h2];
i = 0;
h tour[i] = tour[j];

118

n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h1];
h = pos[h4];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
hh tour[i] = tour[j];
n2++;

}

j = pos[h4];
for (i = 0; i< n2 ; i++) {

tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

j = 0;
}

/∗ Now copy stored part from h tour ∗/
for (i = 0; i< n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
else if (h == 1) {

/∗ copy part from h3 to h6 (wird inverted) erstellen : ∗/
j = pos[h3];
h = pos[h6];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

119

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h6];
i = pos[h4];

tour[j] = tour[i];
pos[tour[i]] = j;
while (i != pos c1) {

i++;
j++;
if (j >= n)

j = 0;
if (i >= n)

i = 0;
tour[j] = tour[i];
pos[tour[i]] = j;

}

/∗ Now copy stored part from h tour ∗/
j++;
if (j >= n)

j = 0;
i = 0;
tour[j] = h tour[i];
pos[h tour[i]] = j;
while (j != pos c1) {

j++;
if (j >= n)

j = 0;
i++;
tour[j] = h tour[i];
pos[h tour[i]] = j;

}
tour[n] = tour[0];

}

else if (h == 2) {

/∗ copy part from pos[h2] to pos[h5] and
from pos[h3] to pos[h6] (inverted), it
remains the part from pos[h4] to pos[h1] ∗/

j = pos[h2];
h = pos[h5];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
h tour[i] = tour[j];

120

n1++;
}
j = pos c2;
h = pos[h6];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
hh tour[i] = tour[j];
n2++;

}

j = pos[h2];
for (i = 0; i< n2 ; i++) {

tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

j = 0;
}

/∗ Now copy stored part from h tour ∗/
for (i = 0; i< n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
}
else if (move flag == 2) {

if (pos c3 < pos c1)
n1 = pos c1 - pos c3;

else
n1 = n - (pos c3 - pos c1);

if (pos c3 > pos c2)
n2 = pos c3 - pos c2;

else
n2 = n - (pos c2 - pos c3);

if (pos c2 > pos c1)
n3 = pos c2 - pos c1;

else
n3 = n - (pos c1 - pos c2);

val[0] = n1; val[1] = n2; val[2] = n3;
/∗ Determine which is the longest part ∗/
h = 0;
help = LONG MIN;

121

for (g = 0; g <= 2; g++) {
if (help < val[g]) {

help = val[g];
h = g;

}
}
/∗ order partial tours according length ∗/

if (h == 0) {

/∗ copy part from pos[h3] to pos[h2]
(inverted) and from pos[h5] to pos[h4], it
remains the part from pos[h6] to pos[h1] ∗/

j = pos[h3];
h = pos[h2];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h5];
h = pos[h4];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
hh tour[i] = tour[j];
n2++;

}

j = pos[h2];
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}

for (i = 0; i < n2 ; i++) {
tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

122

j = 0;
}
tour[n] = tour[0];
/∗ getchar(); ∗/

}
else if (h == 1) {

/∗ copy part from pos[h2] to pos[h3] and
from pos[h1] to pos[h6] (inverted), it
remains the part from pos[h4] to pos[h5] ∗/

j = pos[h2];
h = pos[h3];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
h tour[i] = tour[j];
n1++;

}

j = pos[h1];
h = pos[h6];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
hh tour[i] = tour[j];
n2++;

}
j = pos[h6];
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
for (i = 0; i < n2 ; i++) {

tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}

123

else if (h == 2) {

/∗ copy part from pos[h1] to pos[h6]
(inverted) and from pos[h4] to pos[h5],
it remains the part from pos[h2] to
pos[h3] ∗/

j = pos[h1];
h = pos[h6];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h4];
h = pos[h5];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
hh tour[i] = tour[j];
n2++;

}

j = pos[h4];
/∗ Now copy stored part from h tour ∗/
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}

/∗ Now copy stored part from h tour ∗/
for (i = 0; i < n2 ; i++) {

tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
}

124

else if (move flag == 3) {

if (pos c3 < pos c1)
n1 = pos c1 - pos c3;

else
n1 = n - (pos c3 - pos c1);

if (pos c3 > pos c2)
n2 = pos c3 - pos c2;

else
n2 = n - (pos c2 - pos c3);

if (pos c2 > pos c1)
n3 = pos c2 - pos c1;

else
n3 = n - (pos c1 - pos c2);

/∗ n1: length h6 - h1, n2: length h4 - h5, n2: length h2 - h3 ∗/

val[0] = n1; val[1] = n2; val[2] = n3;
/∗ Determine which is the longest part ∗/
h = 0;
help = LONG MIN;
for (g = 0; g <= 2; g++) {

if (help < val[g]) {
help = val[g];
h = g;

}
}
/∗ order partial tours according length ∗/

if (h == 0) {

/∗ copy part from pos[h2] to pos[h3]
(inverted) and from pos[h4] to pos[h5]
it remains the part from pos[h6] to pos[h1] ∗/

j = pos[h3];
h = pos[h2];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h2];
h = pos[h5];
i = pos[h4];
tour[j] = h4;
pos[h4] = j;
while (i != h) {

i++;
if (i >= n)

125

i = 0;
j++;
if (j >= n)

j = 0;
tour[j] = tour[i];
pos[tour[i]] = j;

}
j++;
if (j >= n)

j = 0;
for (i = 0; i < n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
else if (h == 1) {

/∗ copy part from pos[h3] to pos[h2]
(inverted) and from pos[h6] to pos[h1],
it remains the part from pos[h4] to pos[h5] ∗/

j = pos[h3];
h = pos[h2];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h6];
h = pos[h1];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j++;
if (j >= n)

j = 0;
hh tour[i] = tour[j];
n2++;

}

j = pos[h6];
for (i = 0; i<n1 ; i++) {

tour[j] = h tour[i];

126

pos[h tour[i]] = j;
j++;
if (j >= n)

j = 0;
}

for (i = 0 ; i < n2 ; i++) {
tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}

else if (h == 2) {

/∗ copy part from pos[h4] to pos[h5]
(inverted) and from pos[h6] to pos[h1] (inverted)
it remains the part from pos[h2] to pos[h3] ∗/

j = pos[h5];
h = pos[h4];
i = 0;
h tour[i] = tour[j];
n1 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
h tour[i] = tour[j];
n1++;

}

j = pos[h1];
h = pos[h6];
i = 0;
hh tour[i] = tour[j];
n2 = 1;
while (j != h) {

i++;
j--;
if (j < 0)

j = n-1;
hh tour[i] = tour[j];
n2++;

}

j = pos[h4];
/∗ Now copy stored part from h tour ∗/
for (i = 0; i< n1 ; i++) {

tour[j] = h tour[i];
pos[h tour[i]] = j;
j++;

127

if (j >= n)
j = 0;

}
/∗ Now copy stored part from h tour ∗/
for (i = 0; i< n2 ; i++) {

tour[j] = hh tour[i];
pos[hh tour[i]] = j;
j++;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
}
else {

printf(" Some very strange error must have occurred !!! \n\n");
exit(0);

}
}
if (opt2 flag) {

/∗ Now perform move ∗/
dlb[h1] = FALSE; dlb[h2] = FALSE;
dlb[h3] = FALSE; dlb[h4] = FALSE;
if (pos[h3] < pos[h1]) {

help = h1; h1 = h3; h3 = help;
help = h2; h2 = h4; h4 = help;

}
if (pos[h3]-pos[h2] < n / 2 + 1) {

/∗ reverse inner part from pos[h2] to pos[h3] ∗/
i = pos[h2]; j = pos[h3];
while (i < j) {

c1 = tour[i];
c2 = tour[j];
tour[i] = c2;
tour[j] = c1;
pos[c1] = j;
pos[c2] = i;
i++; j--;

}
}
else {

/∗ reverse outer part from pos[h4] to pos[h1] ∗/
i = pos[h1]; j = pos[h4];
if (j > i)

help = n - (j - i) + 1;
else

help = (i - j) + 1;
help = help / 2;
for (h = 0 ; h < help ; h++) {

c1 = tour[i];
c2 = tour[j];
tour[i] = c2;
tour[j] = c1;
pos[c1] = j;

128

pos[c2] = i;
i--; j++;
if (i < 0)

i = n - 1;
if (j >= n)

j = 0;
}
tour[n] = tour[0];

}
}

}
else {

dlb[c1] = TRUE;
}

}
}
free(random vector);
free(h tour);
free(hh tour);
free(pos);
free(dlb);

}

129

C.8 parse.h

/∗ This file has been generated with opag 0.6.4. ∗/

#ifndef HDR PARSE
#define HDR PARSE 1

struct options {

/∗ Set to 1 if option --tries (-r) has been specified. ∗/
unsigned int opt tries : 1;

/∗ Set to 1 if option --tours (-s) has been specified. ∗/
unsigned int opt tours : 1;

/∗ Set to 1 if option --time (-t) has been specified. ∗/
unsigned int opt time : 1;

/∗ Set to 1 if option --tsplibfile (-i) has been specified. ∗/
unsigned int opt tsplibfile : 1;

/∗ Set to 1 if option --optimum (-o) has been specified. ∗/
unsigned int opt optimum : 1;

/∗ Set to 1 if option --ants (-m) has been specified. ∗/
unsigned int opt ants : 1;

/∗ Set to 1 if option --nnants (-g) has been specified. ∗/
unsigned int opt nnants : 1;

/∗ Set to 1 if option --alpha (-a) has been specified. ∗/
unsigned int opt alpha : 1;

/∗ Set to 1 if option --beta (-b) has been specified. ∗/
unsigned int opt beta : 1;

/∗ Set to 1 if option --rho (-e) has been specified. ∗/
unsigned int opt rho : 1;

/∗ Set to 1 if option --q0 (-q) has been specified. ∗/
unsigned int opt q0 : 1;

/∗ Set to 1 if option --elitistants (-c) has been specified. ∗/
unsigned int opt elitistants : 1;

/∗ Set to 1 if option --rasranks (-f) has been specified. ∗/
unsigned int opt rasranks : 1;

/∗ Set to 1 if option --nnls (-k) has been specified. ∗/
unsigned int opt nnls : 1;

/∗ Set to 1 if option --localsearch (-l) has been specified. ∗/
unsigned int opt localsearch : 1;

/∗ Set to 1 if option --dlb (-d) has been specified. ∗/

130

unsigned int opt dlb : 1;

/∗ Set to 1 if option --as (-u) has been specified. ∗/
unsigned int opt as : 1;

/∗ Set to 1 if option --eas (-v) has been specified. ∗/
unsigned int opt eas : 1;

/∗ Set to 1 if option --ras (-w) has been specified. ∗/
unsigned int opt ras : 1;

/∗ Set to 1 if option --mmas (-x) has been specified. ∗/
unsigned int opt mmas : 1;

/∗ Set to 1 if option --bwas (-y) has been specified. ∗/
unsigned int opt bwas : 1;

/∗ Set to 1 if option --acs (-z) has been specified. ∗/
unsigned int opt acs : 1;

/∗ Set to 1 if option --help (-h) has been specified. ∗/
unsigned int opt help : 1;

/∗ Argument to option --tries (-r). ∗/
const char ∗arg tries;

/∗ Argument to option --tours (-s). ∗/
const char ∗arg tours;

/∗ Argument to option --time (-t). ∗/
const char ∗arg time;

/∗ Argument to option --tsplibfile (-i). ∗/
const char ∗arg tsplibfile;

/∗ Argument to option --optimum (-o). ∗/
const char ∗arg optimum;

/∗ Argument to option --ants (-m). ∗/
const char ∗arg ants;

/∗ Argument to option --nnants (-g). ∗/
const char ∗arg nnants;

/∗ Argument to option --alpha (-a). ∗/
const char ∗arg alpha;

/∗ Argument to option --beta (-b). ∗/
const char ∗arg beta;

/∗ Argument to option --rho (-e). ∗/
const char ∗arg rho;

/∗ Argument to option --q0 (-q). ∗/
const char ∗arg q0;

131

/∗ Argument to option --elitistants (-c). ∗/
const char ∗arg elitistants;

/∗ Argument to option --rasranks (-f). ∗/
const char ∗arg rasranks;

/∗ Argument to option --nnls (-k). ∗/
const char ∗arg nnls;

/∗ Argument to option --localsearch (-l). ∗/
const char ∗arg localsearch;

/∗ Argument to option --dlb (-d). ∗/
const char ∗arg dlb;

};

/∗ Parse command line options. Return index of first non-option argument,
or -1 if an error is encountered. ∗/

extern int parse options (struct options ∗options, const char ∗program name, int
argc, char ∗∗argv);

extern void check out of range (double value, double MIN, double MAX, char
∗optionName);

extern int parse commandline (int argc, char ∗argv []);

#endif

132

C.9 parse.c

/∗ This file has been generated with opag 0.6.4. ∗/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <stdlib.h>

#include "InOut.h"
#include "utilities.h"
#include "ants.h"
#include "ls.h"

#ifndef STR ERR UNKNOWNLONG OPT
define STR ERR UNKNOWNLONG OPT "%s: unrecognized option ‘--%s’ \n"
#endif

#ifndef STR ERR LONG OPT AMBIGUOUS
define STR ERR LONG OPT AMBIGUOUS "%s: option ‘--%s’ is ambiguous \n"
#endif

#ifndef STR ERR MISSING ARG LONG
define STR ERR MISSING ARG LONG "%s: option ‘--%s’ requires an argument \n"
#endif

#ifndef STR ERR UNEXPECARG LONG
define STR ERR UNEXPECARG LONG "%s: option ‘--%s’ doesn’t allow an
argument \n"
#endif

#ifndef STR ERR UNKNOWNSHORTOPT
define STR ERR UNKNOWNSHORTOPT "%s: unrecognized option ‘-%c’ \n"
#endif

#ifndef STR ERR MISSING ARG SHORT
define STR ERR MISSING ARG SHORT "%s: option ‘-%c’ requires an argument \n"
#endif

#define STR HELP TRIES \
" -r, --tries # number of independent trials \n"

#define STR HELP TOURS\
" -s, --tours # number of steps in each trial \n"

#define STR HELP TIME \
" -t, --time # maximum time for each trial \n"

#define STR HELP TSPLIBFILE \
" -i, --tsplibfile f inputfile (TSPLIB format necessary) \n"

#define STR HELP OPTIMUM\
" -o, --optimum # stop if tour better or equal optimum is found \n"

133

#define STR HELP ANTS \
" -m, --ants # number of ants \n"

#define STR HELP NNANTS\
" -g, --nnants # nearest neighbours in tour construction \n"

#define STR HELP ALPHA \
" -a, --alpha # alpha (influence of pheromone trails) \n"

#define STR HELP BETA \
" -b, --beta # beta (influence of heuristic information) \n"

#define STR HELP RHO \
" -e, --rho # rho: pheromone trail evaporation \n"

#define STR HELP Q0 \
" -q, --q0 # q0: prob. of best choice in tour construction \n"

#define STR HELP ELITISTANTS \
" -c, --elitistants # number of elitist ants \n"

#define STR HELP RASRANKS\
" -f, --rasranks # number of ranks in rank-based Ant System \n"

#define STR HELP NNLS \
" -k, --nnls # No. of nearest neighbors for local search \n"

#define STR HELP LOCALSEARCH\
" -l, --localsearch 0: no local search 1: 2-opt 2: 2.5-opt 3:

3-opt \n"

#define STR HELP DLB \
" -d, --dlb 1 use don’t look bits in local search \n"

#define STR HELP AS \
" -u, --as apply basic Ant System \n"

#define STR HELP EAS \
" -v, --eas apply elitist Ant System \n"

#define STR HELP RAS \
" -w, --ras apply rank-based version of Ant System \n"

#define STR HELP MMAS\
" -x, --mmas apply MAX-MIN ant system \n"

#define STR HELP BWAS\
" -y, --bwas apply best-worst ant system \n"

#define STR HELP ACS \
" -z, --acs apply ant colony system \n"

#define STR HELP HELP \
" -h, --help display this help text and exit \n"

134

#define STR HELP \
STR HELP TRIES \
STR HELP TOURS\
STR HELP TIME \
STR HELP TSPLIBFILE \
STR HELP OPTIMUM\
STR HELP ANTS \
STR HELP NNANTS\
STR HELP ALPHA \
STR HELP BETA \
STR HELP RHO \
STR HELP Q0 \
STR HELP ELITISTANTS \
STR HELP RASRANKS\
STR HELP NNLS \
STR HELP LOCALSEARCH\
STR HELP DLB \
STR HELP AS \
STR HELP EAS \
STR HELP RAS \
STR HELP MMAS\
STR HELP BWAS\
STR HELP ACS \
STR HELP HELP

struct options {

/∗ Set to 1 if option --tries (-r) has been specified. ∗/
unsigned int opt tries : 1;

/∗ Set to 1 if option --tours (-s) has been specified. ∗/
unsigned int opt tours : 1;

/∗ Set to 1 if option --time (-t) has been specified. ∗/
unsigned int opt time : 1;

/∗ Set to 1 if option --tsplibfile (-i) has been specified. ∗/
unsigned int opt tsplibfile : 1;

/∗ Set to 1 if option --optimum (-o) has been specified. ∗/
unsigned int opt optimum : 1;

/∗ Set to 1 if option --ants (-m) has been specified. ∗/
unsigned int opt ants : 1;

/∗ Set to 1 if option --nnants (-g) has been specified. ∗/
unsigned int opt nnants : 1;

/∗ Set to 1 if option --alpha (-a) has been specified. ∗/
unsigned int opt alpha : 1;

/∗ Set to 1 if option --beta (-b) has been specified. ∗/
unsigned int opt beta : 1;

135

/∗ Set to 1 if option --rho (-e) has been specified. ∗/
unsigned int opt rho : 1;

/∗ Set to 1 if option --q0 (-q) has been specified. ∗/
unsigned int opt q0 : 1;

/∗ Set to 1 if option --elitistants (-c) has been specified. ∗/
unsigned int opt elitistants : 1;

/∗ Set to 1 if option --rasranks (-f) has been specified. ∗/
unsigned int opt rasranks : 1;

/∗ Set to 1 if option --nnls (-k) has been specified. ∗/
unsigned int opt nnls : 1;

/∗ Set to 1 if option --localsearch (-l) has been specified. ∗/
unsigned int opt localsearch : 1;

/∗ Set to 1 if option --dlb (-d) has been specified. ∗/
unsigned int opt dlb : 1;

/∗ Set to 1 if option --as (-u) has been specified. ∗/
unsigned int opt as : 1;

/∗ Set to 1 if option --eas (-v) has been specified. ∗/
unsigned int opt eas : 1;

/∗ Set to 1 if option --ras (-w) has been specified. ∗/
unsigned int opt ras : 1;

/∗ Set to 1 if option --mmas (-x) has been specified. ∗/
unsigned int opt mmas : 1;

/∗ Set to 1 if option --bwas (-y) has been specified. ∗/
unsigned int opt bwas : 1;

/∗ Set to 1 if option --acs (-z) has been specified. ∗/
unsigned int opt acs : 1;

/∗ Set to 1 if option --help (-h) has been specified. ∗/
unsigned int opt help : 1;

/∗ Argument to option --tries (-r). ∗/
const char ∗arg tries;

/∗ Argument to option --tours (-s). ∗/
const char ∗arg tours;

/∗ Argument to option --time (-t). ∗/
const char ∗arg time;

/∗ Argument to option --tsplibfile (-i). ∗/
const char ∗arg tsplibfile;

/∗ Argument to option --optimum (-o). ∗/

136

const char ∗arg optimum;

/∗ Argument to option --ants (-m). ∗/
const char ∗arg ants;

/∗ Argument to option --nnants (-g). ∗/
const char ∗arg nnants;

/∗ Argument to option --alpha (-a). ∗/
const char ∗arg alpha;

/∗ Argument to option --beta (-b). ∗/
const char ∗arg beta;

/∗ Argument to option --rho (-e). ∗/
const char ∗arg rho;

/∗ Argument to option --q0 (-q). ∗/
const char ∗arg q0;

/∗ Argument to option --elitistants (-c). ∗/
const char ∗arg elitistants;

/∗ Argument to option --rasranks (-f). ∗/
const char ∗arg rasranks;

/∗ Argument to option --nnls (-k). ∗/
const char ∗arg nnls;

/∗ Argument to option --localsearch (-l). ∗/
const char ∗arg localsearch;

/∗ Argument to option --dlb (-d). ∗/
const char ∗arg dlb;

};

int PC myProc;

/∗ Parse command line options. Return index of first non-option argument,
or -1 if an error is encountered. ∗/

int parse options (struct options ∗const options, const char ∗const
program name, const int argc, char ∗∗const argv)
{

static const char ∗const optstr tries = "tries";
static const char ∗const optstr tours = "tours";
static const char ∗const optstr time = "time";
static const char ∗const optstr tsplibfile = "tsplibfile";
static const char ∗const optstr optimum = "optimum";
static const char ∗const optstr ants = "ants";
static const char ∗const optstr nnants = "nnants";
static const char ∗const optstr alpha = "alpha";
static const char ∗const optstr beta = "beta";
static const char ∗const optstr rho = "rho";
static const char ∗const optstr q0 = "q0";

137

static const char ∗const optstr elitistants = "elitistants";
static const char ∗const optstr rasranks = "rasranks";
static const char ∗const optstr nnls = "nnls";
static const char ∗const optstr localsearch = "localsearch";
static const char ∗const optstr dlb = "dlb";
static const char ∗const optstr as = "as";
static const char ∗const optstr eas = "eas";
static const char ∗const optstr ras = "ras";
static const char ∗const optstr mmas = "mmas";
static const char ∗const optstr bwas = "bwas";
static const char ∗const optstr acs = "acs";
static const char ∗const optstr help = "help";
int i = 0;
options->opt tries = 0;
options->opt tours = 0;
options->opt time = 0;
options->opt tsplibfile = 0;
options->opt optimum = 0;
options->opt ants = 0;
options->opt nnants = 0;
options->opt alpha = 0;
options->opt beta = 0;
options->opt rho = 0;
options->opt q0 = 0;
options->opt elitistants = 0;
options->opt rasranks = 0;
options->opt nnls = 0;
options->opt localsearch = 0;
options->opt dlb = 0;
options->opt as = 0;
options->opt eas = 0;
options->opt ras = 0;
options->opt mmas = 0;
options->opt bwas = 0;
options->opt acs = 0;
options->opt help = 0;
options->arg tries = 0;
options->arg tours = 0;
options->arg time = 0;
options->arg tsplibfile = 0;
options->arg optimum = 0;
options->arg ants = 0;
options->arg nnants = 0;
options->arg alpha = 0;
options->arg beta = 0;
options->arg rho = 0;
options->arg q0 = 0;
options->arg elitistants = 0;
options->arg rasranks = 0;
options->arg nnls = 0;
options->arg localsearch = 0;
options->arg dlb = 0;
while (++i < argc)
{
const char ∗option = argv [i];

138

if (∗option != ’-’)
return i;

else if (∗++option == ’ \0’)
return i;

else if (∗option == ’-’)
{

const char ∗argument;
size t option len;
++option;
if ((argument = strchr (option, ’=’)) == option)

goto error unknown long opt;
else if (argument == 0)

option len = strlen (option);
else

option len = argument++ - option;
switch (∗option)
{
case ’ \0’:
return i + 1;

case ’a’:
if (strncmp (option + 1, optstr acs + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)
{

option = optstr acs;
goto error unexpec arg long;

}
options->opt acs = 1;
break;

}
else if (strncmp (option + 1, optstr alpha + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg alpha = argument;
else if (++i < argc)

options->arg alpha = argv [i];
else
{

option = optstr alpha;
goto error missing arg long;

}
options->opt alpha = 1;
break;

}
else if (strncmp (option + 1, optstr ants + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg ants = argument;
else if (++i < argc)

139

options->arg ants = argv [i];
else
{

option = optstr ants;
goto error missing arg long;

}
options->opt ants = 1;
break;

}
else if (strncmp (option + 1, optstr as + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)
{

option = optstr as;
goto error unexpec arg long;

}
options->opt as = 1;
break;

}
goto error unknown long opt;

case ’b’:
if (strncmp (option + 1, optstr beta + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg beta = argument;
else if (++i < argc)

options->arg beta = argv [i];
else
{

option = optstr beta;
goto error missing arg long;

}
options->opt beta = 1;
break;

}
else if (strncmp (option + 1, optstr bwas + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)
{

option = optstr bwas;
goto error unexpec arg long;

}
options->opt bwas = 1;
break;

}
goto error unknown long opt;

case ’d’:
if (strncmp (option + 1, optstr dlb + 1, option len - 1) == 0)
{

140

if (argument != 0)
options->arg dlb = argument;

else if (++i < argc)
options->arg dlb = argv [i];

else
{

option = optstr dlb;
goto error missing arg long;

}
options->opt dlb = 1;
break;

}
goto error unknown long opt;

case ’e’:
if (strncmp (option + 1, optstr eas + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)
{

option = optstr eas;
goto error unexpec arg long;

}
options->opt eas = 1;
break;

}
else if (strncmp (option + 1, optstr elitistants + 1, option len - 1)

== 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg elitistants = argument;
else if (++i < argc)

options->arg elitistants = argv [i];
else
{

option = optstr elitistants;
goto error missing arg long;

}
options->opt elitistants = 1;
break;

}
goto error unknown long opt;

case ’h’:
if (strncmp (option + 1, optstr help + 1, option len - 1) == 0)
{
if (argument != 0)
{

option = optstr help;
goto error unexpec arg long;

}
options->opt help = 1;
return i + 1;

}

141

goto error unknown long opt;
case ’l’:
if (strncmp (option + 1, optstr localsearch + 1, option len - 1) == 0)
{
if (argument != 0)

options->arg localsearch = argument;
else if (++i < argc)

options->arg localsearch = argv [i];
else
{

option = optstr localsearch;
goto error missing arg long;

}
options->opt localsearch = 1;
break;

}
goto error unknown long opt;

case ’m’:
if (strncmp (option + 1, optstr mmas + 1, option len - 1) == 0)
{
if (argument != 0)
{

option = optstr mmas;
goto error unexpec arg long;

}
options->opt mmas = 1;
break;

}
goto error unknown long opt;

case ’n’:
if (strncmp (option + 1, optstr nnants + 1, option len - 1) == 0)
{
if (option len <= 2)

goto error long opt ambiguous;
if (argument != 0)

options->arg nnants = argument;
else if (++i < argc)

options->arg nnants = argv [i];
else
{

option = optstr nnants;
goto error missing arg long;

}
options->opt nnants = 1;
break;

}
else if (strncmp (option + 1, optstr nnls + 1, option len - 1) == 0)
{
if (option len <= 2)

goto error long opt ambiguous;
if (argument != 0)

options->arg nnls = argument;
else if (++i < argc)

options->arg nnls = argv [i];
else

142

{
option = optstr nnls;
goto error missing arg long;

}
options->opt nnls = 1;
break;

}
goto error unknown long opt;

case ’o’:
if (strncmp (option + 1, optstr optimum + 1, option len - 1) == 0)
{
if (argument != 0)

options->arg optimum = argument;
else if (++i < argc)

options->arg optimum = argv [i];
else
{

option = optstr optimum;
goto error missing arg long;

}
options->opt optimum = 1;
break;

}
goto error unknown long opt;

case ’q’:
if (strncmp (option + 1, optstr q0 + 1, option len - 1) == 0)
{
if (argument != 0)

options->arg q0 = argument;
else if (++i < argc)

options->arg q0 = argv [i];
else
{

option = optstr q0;
goto error missing arg long;

}
options->opt q0 = 1;
break;

}
goto error unknown long opt;

case ’r’:
if (strncmp (option + 1, optstr ras + 1, option len - 1) == 0)
{
if (option len < 3)

goto error long opt ambiguous;
if (argument != 0)
{

option = optstr ras;
goto error unexpec arg long;

}
options->opt ras = 1;
break;

}
else if (strncmp (option + 1, optstr rasranks + 1, option len - 1) ==

0)

143

{
if (option len <= 3)

goto error long opt ambiguous;
if (argument != 0)

options->arg rasranks = argument;
else if (++i < argc)

options->arg rasranks = argv [i];
else
{

option = optstr rasranks;
goto error missing arg long;

}
options->opt rasranks = 1;
break;

}
else if (strncmp (option + 1, optstr rho + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg rho = argument;
else if (++i < argc)

options->arg rho = argv [i];
else
{

option = optstr rho;
goto error missing arg long;

}
options->opt rho = 1;
break;

}
goto error unknown long opt;

case ’t’:
if (strncmp (option + 1, optstr time + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg time = argument;
else if (++i < argc)

options->arg time = argv [i];
else
{

option = optstr time;
goto error missing arg long;

}
options->opt time = 1;
break;

}
else if (strncmp (option + 1, optstr tours + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg tours = argument;

144

else if (++i < argc)
options->arg tours = argv [i];

else
{

option = optstr tours;
goto error missing arg long;

}
options->opt tours = 1;
break;

}
else if (strncmp (option + 1, optstr tries + 1, option len - 1) == 0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg tries = argument;
else if (++i < argc)

options->arg tries = argv [i];
else
{

option = optstr tries;
goto error missing arg long;

}
options->opt tries = 1;
break;

}
else if (strncmp (option + 1, optstr tsplibfile + 1, option len - 1) ==

0)
{
if (option len <= 1)

goto error long opt ambiguous;
if (argument != 0)

options->arg tsplibfile = argument;
else if (++i < argc)

options->arg tsplibfile = argv [i];
else
{

option = optstr tsplibfile;
goto error missing arg long;

}
options->opt tsplibfile = 1;
break;

}
default:
error unknown long opt:

fprintf (stderr, STR ERR UNKNOWNLONG OPT, program name, option);
return -1;

error long opt ambiguous:
fprintf (stderr, STR ERR LONG OPT AMBIGUOUS, program name, option);
return -1;

error missing arg long:
fprintf (stderr, STR ERR MISSING ARG LONG, program name, option);
return -1;

error unexpec arg long:
fprintf (stderr, STR ERR UNEXPECARG LONG, program name, option);

145

return -1;
}

}
else

do
{

switch (∗option)
{
case ’a’:
if (option [1] != ’ \0’)

options->arg alpha = option + 1;
else if (++i < argc)

options->arg alpha = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt alpha = 1;
break;

case ’b’:
if (option [1] != ’ \0’)

options->arg beta = option + 1;
else if (++i < argc)

options->arg beta = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt beta = 1;
break;

case ’c’:
if (option [1] != ’ \0’)

options->arg elitistants = option + 1;
else if (++i < argc)

options->arg elitistants = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt elitistants = 1;
break;

case ’d’:
if (option [1] != ’ \0’)

options->arg dlb = option + 1;
else if (++i < argc)

options->arg dlb = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt dlb = 1;
break;

case ’e’:
if (option [1] != ’ \0’)

options->arg rho = option + 1;
else if (++i < argc)

options->arg rho = argv [i];
else

goto error missing arg short;

146

option = " \0";
options->opt rho = 1;
break;

case ’f’:
if (option [1] != ’ \0’)

options->arg rasranks = option + 1;
else if (++i < argc)

options->arg rasranks = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt rasranks = 1;
break;

case ’g’:
if (option [1] != ’ \0’)

options->arg nnants = option + 1;
else if (++i < argc)

options->arg nnants = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt nnants = 1;
break;

case ’h’:
options->opt help = 1;
return i + 1;

case ’i’:
if (option [1] != ’ \0’)

options->arg tsplibfile = option + 1;
else if (++i < argc)

options->arg tsplibfile = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt tsplibfile = 1;
break;

case ’k’:
if (option [1] != ’ \0’)

options->arg nnls = option + 1;
else if (++i < argc)

options->arg nnls = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt nnls = 1;
break;

case ’l’:
if (option [1] != ’ \0’)

options->arg localsearch = option + 1;
else if (++i < argc)

options->arg localsearch = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt localsearch = 1;

147

break;
case ’m’:
if (option [1] != ’ \0’)

options->arg ants = option + 1;
else if (++i < argc)

options->arg ants = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt ants = 1;
break;

case ’o’:
if (option [1] != ’ \0’)

options->arg optimum = option + 1;
else if (++i < argc)

options->arg optimum = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt optimum = 1;
break;

case ’q’:
if (option [1] != ’ \0’)

options->arg q0 = option + 1;
else if (++i < argc)

options->arg q0 = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt q0 = 1;
break;

case ’r’:
if (option [1] != ’ \0’)

options->arg tries = option + 1;
else if (++i < argc)

options->arg tries = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt tries = 1;
break;

case ’s’:
if (option [1] != ’ \0’)

options->arg tours = option + 1;
else if (++i < argc)

options->arg tours = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt tours = 1;
break;

case ’t’:
if (option [1] != ’ \0’)

options->arg time = option + 1;
else if (++i < argc)

148

options->arg time = argv [i];
else

goto error missing arg short;
option = " \0";
options->opt time = 1;
break;

case ’u’:
options->opt as = 1;
break;

case ’v’:
options->opt eas = 1;
break;

case ’w’:
options->opt ras = 1;
break;

case ’x’:
options->opt mmas = 1;
break;

case ’y’:
options->opt bwas = 1;
break;

case ’z’:
options->opt acs = 1;
break;

default:
fprintf (stderr, STR ERR UNKNOWNSHORTOPT, program name, ∗option);
return -1;

error missing arg short:
fprintf (stderr, STR ERR MISSING ARG SHORT, program name, ∗option);
return -1;

}
} while (∗++option != ’ \0’);

}
return i;

}

void check out of range (double value, double MIN, double MAX, char ∗optionName
)
/∗

FUNCTION: check whether parameter values are within allowed range
INPUT: none
OUTPUT: none
COMMENTS: none

∗/
{

if ((value<MIN)||(value>MAX)) {
if(0 == PC myProc) fprintf(stderr,"Error: Option ‘%s’ out of

range \n",optionName);
exit(1);

}
}

int PC parse commandline (int myProc, int argc, char ∗argv [])
{

PC myProc = myProc;

149

int i;
const char ∗progname;
struct options options;

progname = argv [0] != NULL && ∗(argv [0]) != ’ \0’
? argv [0]
: "acotsp";

i = parse options (&options, progname, argc, argv);

if (i < 2)
{

fprintf (stderr, "No options are specified \n");
fprintf (stderr, "Try ‘%s --help’ for more information. \n",

progname);
exit(1);

}

if (options.opt help)
{

if(0 == PC myProc) printf ("Usage: %s [OPTION]... [ARGUMENT]... \n\n"
"Options: \n" STR HELP, progname);

exit(0);
}

/∗ if(0 == PC myProc) puts ("\t OPTIONS:"); ∗/

if (options.opt time) {
max time = atof(options.arg time);
/∗ if(0 == PC myProc) fputs (" -t --time ", stdout);
if (options.arg time != NULL)

if(0 == PC myProc) printf ("with argument \’’%.3f\’’\n", max time); ∗/
check out of range(max time, 0.0, 86400., "max time (seconds)");

} else {
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: time limit is set to default

%.3f seconds\n", max time); ∗/
}

if (options.opt tries) {
max tries = atol(options.arg tries);
/∗ if(0 == PC myProc) fputs (" -r --tries ", stdout);
if (options.arg tries != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", max tries); ∗/
check out of range(max tries, 1, MAXIMUM NO TRIES, "max tries (tries)");

} else {
/∗ max tries = 10; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: number of trials is set to

default %ld\n", max tries); ∗/
}

150

if (options.opt tours) {
max tours = atol(options.arg tours);
/∗ if(0 == PC myProc) fputs (" -s --tours ", stdout);
if (options.arg tries != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", max tours); ∗/
check out of range(max tours, 1, LONG MAX, "max tries (tries)");

} else {
/∗ max tours = 100; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: maximum number of tours is set

to default %ld\n", max tours); ∗/
}

if (options.opt optimum)
{

optimal = atol(options.arg optimum);
/∗ if(0 == PC myProc) fputs (" -o --optimum ", stdout);
if (options.arg optimum != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", optimal); ∗/
} else {

/∗ optimal = 1; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: optimal solution value is set to

default %ld\n", optimal); ∗/
}

if (options.opt tsplibfile)
{

strncpy(name buf, options.arg tsplibfile, strlen(options.arg tsplibfile));
/∗ if(0 == PC myProc) fputs (" -i --tsplibfile ", stdout);
if (options.arg tsplibfile != NULL)

if(0 == PC myProc) printf ("with argument \’’%s\’’\n", name buf); ∗/
}

if (options.opt ants) {
n ants = atol(options.arg ants);
/∗ if(0 == PC myProc) fputs (" -m --ants ", stdout);
if (options.arg ants != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", n ants); ∗/
check out of range(n ants, 1, MAX ANTS-1, "n ants");

} else {
/∗ n ants = 25; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: number of ants is set to

default %ld\n", n ants); ∗/
}

if (options.opt nnants) {
nn ants = atol(options.arg nnants);
/∗ if(0 == PC myProc) fputs (" -m --ants ", stdout);

151

if (options.arg ants != NULL)
if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", nn ants); ∗/

check out of range(n ants, 1, 100, "nn ants");
} else {

/∗ nn ants = 20; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: number of nearest neighbours

in tour construction is set to default %ld\n", nn ants); ∗/
}

if (options.opt alpha) {
alpha = atof(options.arg alpha);
/∗ if(0 == PC myProc) fputs (" -a --alpha ", stdout);
if (options.arg alpha != NULL)

if(0 == PC myProc) printf ("with argument \’’%f\’’\n", alpha); ∗/
check out of range(alpha, 0., 100., "alpha");

} else {
/∗ alpha = 1.0; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: alpha is set to default %f\n",

alpha); ∗/
}

if (options.opt beta) {
beta = atof(options.arg beta);
/∗ if(0 == PC myProc) fputs (" -b --beta ", stdout);
if (options.arg beta != NULL)

if(0 == PC myProc) printf ("with argument \’’%f\’’\n", beta); ∗/
check out of range(beta, 0., 100., "beta");

} else {
/∗ beta = 2.0; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: beta is set to default %f\n",

beta); ∗/
}

if (options.opt rho) {
rho = atof(options.arg rho);
/∗ if(0 == PC myProc) fputs (" -e --rho ", stdout);
if (options.arg rho != NULL)

if(0 == PC myProc) printf ("with argument \’’%f\’’\n", rho); ∗/
check out of range(rho, 0., 1., "rho");

} else {
/∗ rho = 0.5; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: rho is set to default %f\n",

rho); ∗/
}

if (options.opt q0) {
q 0 = atof(options.arg q0);
/∗ if(0 == PC myProc) fputs (" -q --q0 ", stdout);

152

if (options.arg q0 != NULL)
if(0 == PC myProc) printf ("with argument \’’%f\’’\n", q 0); ∗/

check out of range(q 0, 0., 1., "q0");
} else {

/∗ q 0 = 0.0; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: q 0 is set to default %f\n",

q 0); ∗/
}

if (options.opt elitistants) {
elitist ants = atol(options.arg elitistants);
/∗ if(0 == PC myProc) fputs (" -m --ants ", stdout);
if (options.arg elitistants != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", elitist ants); ∗/
check out of range(n ants, 0, LONG MAX, "elitistants");

} else {
/∗ elitist ants = 100; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: number of elitist ants is set

to default %ld\n", elitist ants); ∗/
}

if (options.opt rasranks) {
ras ranks = atol(options.arg rasranks);
/∗ if(0 == PC myProc) fputs (" -m --ants ", stdout);
if (options.arg rasranks != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", ras ranks); ∗/
check out of range(n ants, 0, LONG MAX, "rasranks");

} else {
/∗ ras ranks = 6; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: number of ranks is set to

default %ld\n", ras ranks); ∗/
}

if (options.opt nnls) {
nn ls = atol(options.arg nnls);
/∗ if(0 == PC myProc) fputs (" -k --nnls ", stdout);
if (options.arg nnls != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", nn ls); ∗/
check out of range(n ants, 0, LONG MAX, "nnls");

} else {
/∗ nn ls = 20; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: number nearest neighbours in

local search is set to default %ld\n", nn ls); ∗/
}

if (options.opt localsearch) {
ls flag = atol(options.arg localsearch);

153

/∗ if(0 == PC myProc) fputs (" -l --localsearch ", stdout);
if (options.arg localsearch != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", ls flag); ∗/
check out of range(n ants, 0, LONG MAX, "ls flag");

} else {
/∗ ls flag = 3; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: local search flag is set to

default 3 (3-opt)\n"); ∗/
}

if (options.opt dlb) {
dlb flag = atol(options.arg dlb);
/∗ if(0 == PC myProc) fputs (" -d --dlb ", stdout);
if (options.arg dlb != NULL)

if(0 == PC myProc) printf ("with argument \’’%ld\’’\n", dlb flag); ∗/
check out of range(dlb flag, 0, 1, "dlb flag");

} else {
/∗ dlb flag = TRUE; ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: dlb flag is set to default 1

(use don’t look bits)\n"); ∗/
}

if (options.opt as) {
as flag = TRUE;
eas flag = FALSE; ras flag = FALSE; mmas flag = FALSE;
bwas flag = FALSE; acs flag = FALSE;
/∗ if(0 == PC myProc) fprintf(stderr,"as flag is set to 1, run Ant

System\n"); ∗/
/∗ } else { ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: as flag is set to default 0
(don’t run Ant System)\n"); ∗/

}

if (options.opt eas) {
eas flag = TRUE;
as flag = FALSE; ras flag = FALSE; mmas flag = FALSE;
bwas flag = FALSE; acs flag = FALSE;
/∗ if(0 == PC myProc) fprintf(stderr,"eas flag is set to 1, run Elitist Ant

System\n"); ∗/
/∗ } else { ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: eas flag is set to default 0
(don’t run Elitist Ant System)\n"); ∗/

}

if (options.opt ras) {
ras flag = TRUE;
as flag = FALSE; eas flag = FALSE; mmas flag = FALSE;

154

bwas flag = FALSE; acs flag = FALSE;
/∗ if(0 == PC myProc) fprintf(stderr,"ras flag is set to 1, run rank-based

Ant System\n"); ∗/
/∗ } else { ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: ras flag is set to default 0
(don’t run rank-based Ant System)\n"); ∗/

}

if (options.opt mmas) {
mmas flag = TRUE;
as flag = FALSE; eas flag = FALSE; ras flag = FALSE;
bwas flag = FALSE; acs flag = FALSE;
/∗ if(0 == PC myProc) fprintf(stderr,"mmas flag is set to 1, run MAX-MIN Ant

System\n"); ∗/
/∗ } else { ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: mmas flag is set to default 1
(run MAX-MIN Ant System!)\n"); ∗/

}

if (options.opt bwas) {
bwas flag = TRUE;
as flag = FALSE; eas flag = FALSE; mmas flag = FALSE;
ras flag = FALSE; acs flag = FALSE;
/∗ if(0 == PC myProc) fprintf(stderr,"bwas flag is set to 1, run Best-Worst

Ant System\n"); ∗/
/∗ } else { ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: bwas flag is set to default 0
(don’t run Best-Worst Ant System)\n"); ∗/

}

if (options.opt acs) {
acs flag = TRUE;
as flag = FALSE; eas flag = FALSE; mmas flag = FALSE;
ras flag = FALSE; bwas flag = FALSE;
/∗ if(0 == PC myProc) fprintf(stderr,"acs flag is set to 1, run Ant Colony

System\n"); ∗/
/∗ } else { ∗/
/∗ if(0 == PC myProc) fprintf(stderr,"\tNote: acs flag is set to default 0
(don’t run Ant Colony System)\n"); ∗/

}

/∗ if(0 == PC myProc) puts ("Non-option arguments:"); ∗/

while (i < argc) {
fprintf (stderr," \’’%s \’’ \n", argv [i++]);
fprintf (stderr," \nThere were non-option arguments \n");
fprintf (stderr,"I suspect there is something wrong, maybe wrong option name;

exit \n");

155

exit(1);
}

return 0;
}

156

C.10 sos.h

/∗ SOS : Streams, Overlap and Shortcut system ∗/
/∗ Ernesto Gomez 3/02 ∗/

/∗ includes ∗/

#include "mpi.h"
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <string.h>

#define SOS Version .1
#define SOS MPI

/∗ ============= standard defines ================ ∗/

#define TRUE 1
#define FALSE 0
#define NIL 0
#define NONE -1
#define BYTE unsigned char

/∗ systemSize definitions ∗/
#define MAXFUN 128
#define MAXVAR 1024
int MAXSTAT=128; /∗ allow reset of MAXSTAT ∗/
#define MAXNODE 128
#define MSGSIZE 64

/∗ number of calls to dosospoll before status gets checked
ouside the queue loop ∗/

#define STAT 30

/∗ states ∗/

#define Start 0
#define MayS 1
#define MayR 2
#define MayA 3
#define MustS 4
#define MustR 5
#define MustA 6
#define ShortCut 7
#define ShRoot 8
#define Quiet 9
#define Error 10

/∗ use MPI datatypes if SOS MPI is defined
MPI FLOAT - complex is 2 items of this

157

MPI DOUBLE - dcomplex is 2 items of this
MPI INTEGER
MPI LONG
MPI CHAR

- otherwise :

#define SOS FLOAT 1
#define SOS DOUBLE 2
#define SOS INTEGER 3
#define SOS LONG 4
#define SOS CHAR 5

∗/

/∗ messages ∗/

#define NOM -1 /∗ No Message ∗/
#define N 0 /∗ don’t join ∗/
#define J 1 /∗ join ∗/
#define S 2 /∗ Send ∗/
#define R 3 /∗ Receive ∗/
#define A 4 /∗ collective - (All) ∗/
#define SP 12 /∗ final send phase of All operation ∗/
#define RH 5 /∗ Right Hand - variable is read ∗/
#define LH 6 /∗ Left Hand - variable is written ∗/
#define CS 7 /∗ Clear to Send data (received) sent by receiver to sender ∗/
#define MSG 8 /∗ data Message (received) ∗/
#define Z 9 /∗ Zero count - finished ∗/
#define C 10 /∗ shortCut ∗/
#define DC 11 /∗ Define shortCut ∗/

/∗ automaton - overlap+shortcut
use: SOSfsm[old-state][message] -> new-state ∗/

/∗ change - assuming A is a broadcast, then will receive one
message and then only has to send - so goes over from mayA
to mayS => entry is 1 for MS,MayA ∗/

static int SOSfsm[11][13] = {
/∗ msg N J S R A RH LH CS MS Z C DC SP states ∗/

0, 0, 1 ,2 ,3 ,0 ,0 ,0 ,0 ,0 ,7 ,8, 0, /∗ 0 Start ∗/
10,10,1 ,1 ,1 ,1 ,4 ,1 ,10,0 ,7 ,8, 1, /∗ 1 MayS ∗/
10,10,2 ,2 ,2 ,5 ,2 ,2 ,2 ,0 ,7 ,8, 2, /∗ 2 MayR ∗/
10,10,3 ,3 ,3 ,6 ,5 ,3 ,3 ,0 ,7 ,8, 1, /∗ 3 MayA ∗/
10,10,4 ,4 ,4 ,4 ,4 ,4 ,10,0 ,7 ,10,4, /∗ 4 MustS ∗/
10,10,5 ,5 ,5 ,5 ,5 ,5 ,5 ,0 ,7 ,10,5, /∗ 5 MustR ∗/
10,10,6 ,6 ,6 ,6 ,5 ,6 ,6 ,0 ,7 ,10,4, /∗ 6 MustA ∗/
9 ,2 ,10,10,10,10,10,7 ,10,10,10,10,7, /∗ 7 ShortCut ∗/
8 ,8 ,10,10,10,10,10,8 ,10,1 ,8 ,10,8, /∗ 8 ShRoot ∗/

158

0 ,0 ,1 ,2 ,3 ,0 ,0 ,0 ,0 ,0 ,7 ,8, 0, /∗ 9 Quiet - End ∗/
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0, 0 /∗ 10 Error ∗/

};

/∗ making entry LH,MayR = 2 instead of 5 allos system to resolve deadlock
dynamically - igonres write/write conflict?? ∗/

/∗ blocking flag -> 1 for blocking states, 0 to allow exit ∗/

static int SOSblock[11] = {
0, /∗ 0 Start ∗/
0, /∗ 1 MayS ∗/
0, /∗ 2 MayR ∗/
0, /∗ 3 MayA ∗/
1, /∗ 4 MustS ∗/
1, /∗ 5 MustR ∗/
1, /∗ 6 MustA ∗/
1, /∗ 7 ShortCut ∗/
1, /∗ 8 ShRoot ∗/
0, /∗ 9 Quiet - End ∗/
0, /∗ 10 Error ∗/

};

/∗ global definitions ∗/

typedef union SOSitemType {
int ∗intP;
float ∗floatP;
double ∗doubleP;
long ∗longP;
char ∗charP;

} SOStype;

typedef struct SOSfunArrayItem {
long ∗funPT;
int funType;

} SOSfunI;

typedef struct SOSvarArrayItem {
BYTE ∗varPT; /∗ generic pointer to everything ∗/
long size; /∗ size in bytes ∗/
int type;
int fsm;
int status[MAXNODE]; /∗ keep only local status here ?∗/
MPI Request handle[MAXNODE];
MPI Comm channel; /∗ if not MPI, replace with tag ∗/
int age;
int refcount;
int staticv;
short mess[6]; /∗ status message create buffer for each∗/

} SOSvar;

159

typedef struct SOSvarStackItem {
int varHandle;
int pending;
struct SOSvarStackItem ∗next;

} SOSvarStack;

/∗ communication queue entry ∗/
typedef struct SOSqItem {

int ivar; /∗ variable index ∗/
int send; /∗ S for send, CS->R for receive∗/
int to;
int from;
int fun; /∗ function number for gather, -1 for none ∗/
BYTE ∗work; /∗ workspace ∗/
int sel; /∗ function extra parameter ∗/
struct SOSqItem ∗nextCom; /∗ next in same communication ∗/
struct SOSqItem ∗prevCom; /∗ previous in same communication ∗/
struct SOSqItem ∗next; /∗ next in queue ∗/
struct SOSqItem ∗prev; /∗ previous in queue ∗/
int iremote; /∗ variable index at remote node ∗/
int flag; /∗ misc. code ∗/
int group; /∗ flag indicating order doesn’t matter ∗/
long size;
long off;

} SOSq;

typedef struct SOSloopItem {
int level;
struct SOSloopItem ∗next;

} SOSl;

static SOSfunI SOSfuns[MAXFUN]; /∗ functions array ∗/
static SOSvar SOSvars[MAXVAR]; /∗ vars array ∗/

static struct SOSqItem ∗SOSqu=NIL; /∗ queue ∗/
static struct SOSvarStackItem ∗SOSvarS=NIL; /∗ var stack ∗/

static int ME, SOSv; /∗ SOS thisnode and next var ∗/
/∗ stream global data ∗/
static int SOSlevel[MAXNODE]; /∗ array of nesting level, init to 0 ∗/
static int SOSstream[MAXNODE]; /∗ array of indices in stream, init to 0..MAX ∗/

/∗ this array is different for each stream;
the index is the position in the stream and

the content is the global (MPI) id ∗/
static int SOSwork[MAXNODE]; /∗ work array for SOS splits ∗/
static int SOSworkP; /∗ handle for SOS array ∗/
static int SOSloop[MAXNODE]; /∗ loop nesting array ∗/
static struct SOSloopItem ∗SOSls=NIL; /∗ loop level stack ∗/
static int SOSsplitF=FALSE; /∗ split in progress flag ∗/
static int SOSsplitC=0; /∗ split in progress streamcount ∗/
static int SOSsplitS; /∗ split path selector ∗/

static int MIPScnt; /∗ stream count ∗/
static int MIPStop; /∗ stream high index ∗/
static int MIPSbot; /∗ stream low index ∗/

160

/∗ MPI globals ∗/
static MPI Status ∗MPIstate;
static MPI Request MPIhandle;
static MPI Comm SOSchannel;
static MPI Comm SOSdata;

/∗ timer globals ∗/
static int SOSbegin;
#define SOStime (MPI Wtime()-SOSbegin)/1000

/∗ Planguage globals ∗/
static int thisnode,numnode,cubedim;
static short SOSmess[6];
static MPI Request SOShandle=MPI REQUESTNULL;

typedef struct SOSmessStack {
short mess[6];
struct SOSmessStack ∗next;

} SOSmessageStack ;

static struct SOSmessStack ∗SOSmessS=NIL;
static struct SOSmessStack ∗SOSmessW=NIL;

/∗ standard message
mess[0] sending node
mess[1] variable index at message receiver
mess[2] message code
mess[3] variable index at message source
mess[4] variable size
mess[5] variable offset

∗/

/∗ Global change flags ∗/
static int SOSchange=FALSE;
static int SOSforce=FALSE;
static int SOSreceive=0;
/∗ global top variable and function ∗/
static int lastVar;
static int lastFun;
/∗ global dummy variable, index and size - .98∗/
static int SOSdP, ONE=1, ZER=0;
static long SOSd;
/∗ set values of function handles to match assignment

in sosinitfun ∗/
static int SOSADD2=0;
static int SOSMUL2=1;
static int SOSMAX2=2;
static int SOSMIN2=3;
static int SOSADD1=4;
static int SOSMUL1=5;
static int SOSMAX1=6;

161

static int SOSMIN1=7;
static int SOSADDI=8;
static int SOSMULI=9;
static int SOSADDL=10;
static int SOSMULL=11;
static int SOSVOR=12;
static int SOSVAND=13;

/∗ signal control params ∗/
/∗ poll repeat interval, microseconds ∗/

static int SOS REPEAT=100;
static sigset t SOSset;
static sigset t SOSoldSet;
static sigset t SOStestSet;

/∗ shortcut flag ∗/
static int SOSshort=NONE;
static int SOSshortVar=NONE;
static int SOSshortLevel=0;

/∗ timer ∗/
static long sosalarmcount;

/∗
#define TIMER ITIMER REAL
#define ALARM SIGALRM
∗/
#define TIMER ITIMER VIRTUAL
#define ALARM SIGVTALRM

#include "sosdefs.h"

162

C.11 sosdefs.h

/∗ stream functions.
PI is process number
SI is id within stream
PI is a predicate value that selects a stream
D is a decrement number for stream end,
indicates how many nesting levels merge

∗/

int sosstreamstart (int ∗P); /∗ joins processes with common P ∗/
int sosstreamend (int ∗D); /∗ merges D nesting levels of streams ∗/
int sosstreamlevel (int ∗L); /∗ returns nesting level of this stream ∗/
int sosstreammember (int ∗PN, int ∗result); /∗ TRUE if PN is in this stream ∗/
int sosme (int ∗SI); /∗ SI of this process ∗/
int sosid (int ∗PN, int ∗SI); /∗ PN -> SI ∗/
int sospn (int ∗SI, int ∗PN); /∗ SI -> PN ∗/
int sosstreamcount (int ∗count); /∗ returns number of pocesses in stream ∗/
int sosstreamtop (int ∗top);
int sosstreambottom (int ∗bottom);
int sosgetstream (int ∗stream);
int sossplit (int ∗P, int ∗nu);
int sosendsplit ();
int soscount ();
int ∗sosstream ();
int sostop ();
int sosbot ();

#define SPLITCHECK if(SOSsplitF) return NONE
#define DOSPLIT if(SOSsplitF) sosendsplit ()

/∗ overlap - interface ∗/

int sospoint2point (int ∗ivarRH, int ∗ivarLH, long ∗Count, long ∗OffRH,
long ∗OffLH, int ∗SOStype, int ∗fromP, int ∗toP);

int sosgroup2group (void ∗FromBuffer, void ∗ToBuffer, long ∗Count, long ∗Off,
int ∗SOStype, int ∗FromPlist, int ∗ToPlist, int ∗ListCount);

int sospoint2group (void ∗FromBuffer, void ∗ToBuffer, long ∗Count, long ∗Off,
int ∗SOStype, int ∗FromP, int ∗ToPlist, int ∗ListCount);

int sosbroadcast (int ∗ivarRH, int ∗ivarLH, long ∗Count, long ∗Off,
int ∗SOStype, int ∗FromP);

int sospointreduce (int ∗ivarRH, int ∗ivarLH, long ∗Count, long ∗Off,
int ∗SOStype, int ∗FunP, int ∗sel, int ∗rootP);

int sosallreduce (int ∗ivarRH, int ∗ivarLH, long ∗Count, long ∗Off,
int ∗SOStype, int ∗FunP, int ∗sel);

int sosgroupreduce (void ∗FromBuffer, void ∗ToBuffer, long ∗Count, long ∗Off,
int ∗SOStype, int ∗RootPlist, int ∗FunP);

int sosdorh (int ∗ivar);
int sosdolh (int ∗ivar);

/∗ overlap - internal ∗/

/∗ shortcut ∗/
int sosshortcut (int ∗ivar, int ∗DStream);

163

/∗ assert shortcut ∗/
int sosshortcutstart (int ∗PN);

/∗ sets DC local, sends C ∗/
int sosshortcutend ();

/∗ drops stream nesting level by 1 -> SOSstreamEnd ∗/
int sosshortcuttest ();

/∗ checks if we’re in shortcut, returns PN of shortcutter or -1 ∗/

/∗ init ∗/

int sosinit (int ∗argc, char ∗∗∗argv);
int sosinitfun ();
int sosaddvar (int ∗buffer, long∗ size, int∗ type, int∗ iVar, int∗ staticv);
int sosaddfun (int (∗fun)(), int ∗iFun);
int sosremovevar (int ∗iVar);
int soslastvar (int ∗iVar); /∗ returns handle of top var ∗/
int sossize (int ∗iVar); /∗ returns size in bytes of var ∗/

int sospopvar (); /∗ mark for remoce all variables with index >= top of
varstack, pops ∗/
int sospushvar (); /∗ saves value of next var to allocate ∗/
int dosospopvar (); /∗ actually removes vars ∗/
int popLevel; /∗ global level for popvar ∗/

/∗ variable insertion and deletion ∗/
int addVar(void ∗buffer, long ∗size, int ∗type, int ∗staticv);
int SOSindex(int staticv); /∗ returns index for new var insertion ∗/
int findVar(void ∗buffer); /∗ returns index of variable ∗/
/∗ removeVar is not safe inside any stream <> initial stream ∗/
int removeVar(int ivar); /∗ removes variable ∗/
int selectRemoveVar(); /∗ selects var for removal ∗/
struct SOSqItem ∗scanQueue (int iVar); /∗ returns item in queue that references
iVar ∗/

/∗ polling ∗/

int getStatus(); /∗ get all pending status msgs ∗/
int sospoll ();
/∗ sospoll fsa processing:

sets: MSG, CS, Z
uses: RH, LH, C, DC
sends: CS

∗/

/∗ signals ∗/
int dosospoll ();
void sosalarm ();
int setsosalarm (int ∗repeat);
int sosblock ();
int sosunblock ();

/∗ overlap queue ∗/

int setPoint2Point(int ivarLH, int ivarRH, int fromP, int toP,
long Size, long OffRH, long OffLH);

164

/∗ sets S, R ∗/
int setBroadcast(int from, int ivarRH, int ivarLH, long Size, long Off);

/∗ sets S, A - calls makeBroadcast ∗/
int setReduce(int ivarRH, int ivarLH, int ifun, int sel, long Size, long Off);

/∗ sets A - calls makeReduce ∗/
struct SOSqItem ∗makeBroadcast(int ivar, int root, int ∗group,

struct SOSqItem ∗prev, long Size, long Off);
struct SOSqItem ∗makeReduce(int ivar, int root, int ∗group, int ifun, int sel,

long Size, long Off);
/∗ utility overlap functs, called by other functs ∗/
struct SOSqItem ∗makeQuItem(int ivar, int sendF, int Nto, int Nfrom, int Nfun,

long Size, long Off, int iremote);
int offset(int i, int off, int size); /∗ maps i to use root=off ∗/

/∗ finite automata ∗/
int stepFSA(int ivar, int message);
/∗ defs to acces fsa ∗/
#define getFSA(ivar) SOSvars[ivar].fsm
#define getBlock(ivar) SOSblock[SOSvars[ivar].fsm]
#define RefCount(ivar) SOSvars[ivar].refcount
#define IncRef(ivar) SOSvars[ivar].refcount++
#define DecRef(ivar) SOSvars[ivar].refcount--

/∗ utility ∗/
int log2ceil(int ncube);
struct SOSqItem ∗removeItem(struct SOSqItem ∗q);
void printQueue(int id, struct SOSqItem ∗s);
void printCom(int id, struct SOSqItem ∗s);
int sosclear ();
int sosclearstack ();
int SOSdoMess(); /∗ process status message ∗/
int SOScheckMessStack(int iVar); /∗ check for waiting message ∗/

int SOScount(); /∗ count this stream ∗/
int SOScountS(int level); /∗ count this stream and up ∗/
int SOSme();

/∗ message passing ∗/
int doSend(int ivar, int ito, long size, long offset, int iwhat);
int doIrecv(int ivar, int ifrom, long offset, long size);
int doIrecv2(int ivar, int ifrom, BYTE ∗buffer, long size);
int msgTransfer(void ∗mess, int ifrom, int ito, int size);
int stateSend(int ivar, int ito);
void sendCS(struct SOSqItem ∗q); /∗ make CS entry send message and step to
receive ∗/

/∗ timing ∗/
double sosclock ();
long soscounter ();

/∗ stac.h - doubly linked stack defines ∗/

/∗ a stack item is any structure that contains data and

165

a pointers to an item of the same type called "next"
and "prev".

usage: declare the stack to be a pointer to a stack
item structure and set its value to NIL.
then, initialize data items as needed, and PUSH them
on the stack to create, or pop to empty them.

search routines depend on the actual data structures
and may not be generalized.

∗/

#define NIL 0

/∗ init stack, place item on it ∗/
#define PUSH(s , i) i->next=s; if(s) s->prev=i; s=i ; SOSchange=1

/∗ init stack, place item on it - standard ∗/
#define SPUSH(s , i) i->next=s; s=i

/∗ remove item from stack top and return pointer to it ∗/
#define POP(s , i) i=s; s=s->next; i->next=NIL; if(s) s->prev=NIL;

/∗ remove item from stack top and return pointer to it ∗/
#define SPOP(s , i) if(s) { i=s; s=s->next; i->next=NIL; } else { i=s; }

/∗ get pointer to next item on stack ∗/
#define NEXT(s , i) i=s->next

/∗ get pointer to previous item on stack ∗/
#define PREV(s, i) i=s->prev;

/∗ true if stack is empty ∗/
#define EOS(s) (s==NIL)

/∗ sample stack item definition
struct stacItem {

char ∗value;
struct stacItem ∗next;
struct stacItem ∗prev;

} ;
∗/

/∗
#define SOSBLOCK sigprocmask(SIG BLOCK,&SOSset,NULL);
#define SOSCLEAR sigprocmask(SIG UNBLOCK,&SOSset,NULL);
#define SOSCLEAR sigprocmask(SIG SETMASK,&SOSset,NULL);
#define SOSCLEAR sigprocmask(SIG SETMASK,&SOSoldSet,NULL);
∗/

#define SOSBLOCK sigprocmask(SIG BLOCK,&SOSset,NULL);
#define SOSCLEAR sigprocmask(SIG UNBLOCK,&SOSset,NULL);

166

#define SOSPOLL sospoll ();
#define DOSOSPOLL raise(ALARM);
/∗
#define DOSOSCLEAR sigprocmask(SIG SETMASK,&SOSoldSet,NULL);

#define SOSBLOCK
#define SOSCLEAR setsosalarm (&zer);
#define SOSPOLL raise(SIGVTALRM);
∗/

167

C.12 sos-new.h

/∗ SOS : Streams, Overlap and Shortcut system ∗/
/∗ Ernesto Gomez 3/02 ∗/

/∗ includes ∗/

#include "mpi.h"
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <string.h>

#define SOS Version .1
#define SOS MPI

/∗ ============= standard defines ================ ∗/

#define TRUE 1
#define FALSE 0
#define NIL 0
#define NONE -1
#define BYTE unsigned char

/∗ systemSize definitions ∗/
#define MAXFUN 128
#define MAXVAR 1024
#define MAXNODE 64
#define MSGSIZE 64

/∗ number of calls to dosospoll before status gets checked
ouside the queue loop ∗/

#define STAT 30

/∗ states ∗/

#define Start 0
#define MayS 1
#define MayR 2
#define MayA 3
#define MustS 4
#define MustR 5
#define MustA 6
#define ShortCut 7
#define ShRoot 8
#define Quiet 9
#define Error 10

/∗ use MPI datatypes if SOS MPI is defined
MPI FLOAT - complex is 2 items of this
MPI DOUBLE - dcomplex is 2 items of this

168

MPI INTEGER
MPI LONG
MPI CHAR

- otherwise :

#define SOS FLOAT 1
#define SOS DOUBLE 2
#define SOS INTEGER 3
#define SOS LONG 4
#define SOS CHAR 5

∗/

/∗ messages ∗/

#define NOM -1 /∗ No Message ∗/
#define N 0 /∗ don’t join ∗/
#define J 1 /∗ join ∗/
#define S 2 /∗ Send ∗/
#define R 3 /∗ Receive ∗/
#define A 4 /∗ collective - (All) ∗/
#define SP 12 /∗ final send phase of All operation ∗/
#define RH 5 /∗ Right Hand - variable is read ∗/
#define LH 6 /∗ Left Hand - variable is written ∗/
#define CS 7 /∗ Clear to Send data (received) sent by receiver to sender ∗/
#define MSG 8 /∗ data Message (received) ∗/
#define Z 9 /∗ Zero count - finished ∗/
#define C 10 /∗ shortCut ∗/
#define DC 11 /∗ Define shortCut ∗/

/∗ automaton - overlap+shortcut
use: SOSfsm[old-state][message] -> new-state ∗/

/∗ change - assuming A is a broadcast, then will receive one
message and then only has to send - so goes over from mayA
to mayS => entry is 1 for MS,MayA ∗/

static int SOSfsm[11][13] = {
/∗ msg N J S R A RH LH CS MS Z C DC SP states ∗/

0, 0, 1 ,2 ,3 ,0 ,0 ,0 ,0 ,0 ,7 ,8, 0, /∗ 0 Start ∗/
10,10,1 ,1 ,1 ,1 ,4 ,1 ,10,0 ,7 ,8, 1, /∗ 1 MayS ∗/
10,10,2 ,2 ,2 ,5 ,2 ,2 ,2 ,0 ,7 ,8, 2, /∗ 2 MayR ∗/
10,10,3 ,3 ,3 ,6 ,5 ,3 ,3 ,0 ,7 ,8, 1, /∗ 3 MayA ∗/
10,10,4 ,4 ,4 ,4 ,4 ,4 ,10,0 ,7 ,10,4, /∗ 4 MustS ∗/
10,10,5 ,5 ,5 ,5 ,5 ,5 ,5 ,0 ,7 ,10,5, /∗ 5 MustR ∗/
10,10,6 ,6 ,6 ,6 ,5 ,6 ,6 ,0 ,7 ,10,4, /∗ 6 MustA ∗/
9 ,2 ,10,10,10,10,10,7 ,10,10,10,10,7, /∗ 7 ShortCut ∗/
8 ,8 ,10,10,10,10,10,8 ,10,1 ,8 ,10,8, /∗ 8 ShRoot ∗/
0 ,0 ,1 ,2 ,3 ,0 ,0 ,0 ,0 ,0 ,7 ,8, 0, /∗ 9 Quiet - End ∗/

169

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0, 0 /∗ 10 Error ∗/
};

/∗ making entry LH,MayR = 2 instead of 5 allos system to resolve deadlock
dynamically - igonres write/write conflict?? ∗/

/∗ blocking flag -> 1 for blocking states, 0 to allow exit ∗/

static int SOSblock[11] = {
0, /∗ 0 Start ∗/
0, /∗ 1 MayS ∗/
0, /∗ 2 MayR ∗/
0, /∗ 3 MayA ∗/
1, /∗ 4 MustS ∗/
1, /∗ 5 MustR ∗/
1, /∗ 6 MustA ∗/
1, /∗ 7 ShortCut ∗/
1, /∗ 8 ShRoot ∗/
0, /∗ 9 Quiet - End ∗/
0, /∗ 10 Error ∗/

};

/∗ global definitions ∗/

typedef union SOSitemType {
int ∗intP;
float ∗floatP;
double ∗doubleP;
long ∗longP;
char ∗charP;

} SOStype;

typedef struct SOSfunArrayItem {
long ∗funPT;
int funType;

} SOSfunI;

typedef struct SOSvarArrayItem {
BYTE ∗varPT; /∗ generic pointer to everything ∗/
long size; /∗ size in bytes ∗/
int type;
int fsm; /∗ finite state machine ∗/
int status[MAXNODE]; /∗ keep only local status here ?∗/
MPI Request handle[MAXNODE];
MPI Comm channel; /∗ if not MPI, replace with tag ∗/
int age; /∗ use by sosindex and selectremove var ∗/
int refcount;
int staticv;
short mess[6]; /∗ status message create buffer for each∗/

} SOSvar;

typedef struct SOSvarStackItem {

170

int varHandle;
int pending;
struct SOSvarStackItem ∗next;

} SOSvarStack;

/∗ communication queue entry ∗/
typedef struct SOSqItem {

int ivar; /∗ variable index ∗/
int send; /∗ S for send, CS->R for receive∗/
int to;
int from;
int fun; /∗ function number for gather, -1 for none ∗/
BYTE ∗work; /∗ workspace ∗/
int sel; /∗ function extra parameter ∗/
struct SOSqItem ∗nextCom; /∗ next in same communication ∗/
struct SOSqItem ∗prevCom; /∗ previous in same communication ∗/
struct SOSqItem ∗next; /∗ next in queue ∗/
struct SOSqItem ∗prev; /∗ previous in queue ∗/
int iremote; /∗ variable index at remote node ∗/
int flag; /∗ misc. code ∗/
int group; /∗ flag indicating order doesn’t matter ∗/
long size;
long off;

} SOSq;

typedef struct SOSloopItem {
int level;
struct SOSloopItem ∗next;

} SOSl;

static SOSfunI SOSfuns[MAXFUN]; /∗ functions array ∗/
static SOSvar SOSvars[MAXVAR]; /∗ vars array ∗/

static struct SOSqItem ∗SOSqu=NIL; /∗ queue ∗/
static struct SOSvarStackItem ∗SOSvarS=NIL; /∗ var stack ∗/

static int ME, SOSv; /∗ SOS thisnode and next var ∗/
/∗ stream global data ∗/
static int SOSlevel[MAXNODE]; /∗ array of nesting level, init to 0 ∗/
static int SOSstream[MAXNODE]; /∗ array of indices in stream, init to 0..MAX ∗/

/∗ this array is different for each stream;
the index is the position in the stream and

the content is the global (MPI) id ∗/
static int SOSwork[MAXNODE]; /∗ work array for SOS splits ∗/
static int SOSworkP; /∗ handle for SOS array ∗/
static int SOSloop[MAXNODE]; /∗ loop nesting array ∗/
static struct SOSloopItem ∗SOSls=NIL; /∗ loop level stack ∗/
static int SOSsplitF=FALSE; /∗ split in progress flag ∗/
static int SOSsplitC=0; /∗ split in progress streamcount ∗/
static int SOSsplitS; /∗ split path selector ∗/

static int MIPScnt; /∗ stream count ∗/
static int MIPStop; /∗ stream high index ∗/
static int MIPSbot; /∗ stream low index ∗/

171

/∗ MPI globals ∗/
static MPI Status ∗MPIstate;
static MPI Request MPIhandle;
static MPI Comm SOSchannel;
static MPI Comm SOSdata;

/∗ timer globals ∗/
static int SOSbegin;
#define SOStime (MPI Wtime()-SOSbegin)/1000

/∗ Planguage globals ∗/
static int thisnode,numnode,cubedim;
static short SOSmess[6];
static MPI Request SOShandle=MPI REQUESTNULL;

typedef struct SOSmessStack {
short mess[6];
struct SOSmessStack ∗next;

} SOSmessageStack ;

static struct SOSmessStack ∗SOSmessS=NIL;
static struct SOSmessStack ∗SOSmessW=NIL;

/∗ standard message
mess[0] sending node
mess[1] variable index at message receiver
mess[2] message code
mess[3] variable index at message source
mess[4] variable size
mess[5] variable offset

∗/

/∗ Global change flags ∗/
static int SOSchange=FALSE;
static int SOSforce=FALSE;
static int SOSreceive=0;
/∗ global top variable and function ∗/
static int lastVar;
static int lastFun;
/∗ global dummy variable, index and size - .98∗/
static int SOSdP,ONE=1;
static long SOSd;
/∗ set values of function handles to match assignment

in sosinitfun ∗/
static int SOSADD2=0;
static int SOSMUL2=1;
static int SOSMAX2=2;
static int SOSMIN2=3;
static int SOSADD1=4;
static int SOSMUL1=5;
static int SOSMAX1=6;
static int SOSMIN1=7;

172

static int SOSADDI=8;
static int SOSMULI=9;
static int SOSADDL=10;
static int SOSMULL=11;
static int SOSVOR=12;
static int SOSVAND=13;

/∗ signal control params ∗/
/∗ poll repeat interval, microseconds ∗/

static int SOS REPEAT=100;
static sigset t SOSset;
static sigset t SOSoldSet;
static sigset t SOStestSet;

/∗ shortcut flag ∗/
static int SOSshort=NONE;
static int SOSshortVar=NONE;
static int SOSshortLevel=0;

/∗ timer ∗/
static long sosalarmcount;

/∗
#define TIMER ITIMER REAL
#define ALARM SIGALRM
∗/
#define TIMER ITIMER VIRTUAL
#define ALARM SIGVTALRM

#include "sosdefs.h"

173

C.13 TSP.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: TSP.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: TSP.h
Author: Thomas Stuetzle
Purpose: TSP related procedures, distance computation, neighbour lists
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

174

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#define RRR 6378.388
#ifndef PI /∗ as in stroustrup ∗/
#define PI 3.14159265358979323846
#endif

struct point {
double x;
double y;

};

struct problem {
char name[LINE BUF LEN]; /∗ instance name ∗/
char edge weight type[LINE BUF LEN]; /∗ selfexplanatory ∗/
long int optimum; /∗ optimal tour length if known,

otherwise a bound ∗/
long int n; /∗ number of cities ∗/
long int n near; /∗ number of nearest neighbors ∗/
struct point ∗nodeptr; /∗ array of structs containing

coordinates of nodes ∗/
long int ∗∗distance; /∗ distance matrix: distance[i][j] gives

distance
between city i und j ∗/

long int ∗∗nn list; /∗ nearest neighbor list; contains for
each node i a

sorted list of n near nearest
neighbors ∗/
};

extern struct problem instance;

long int n; /∗ number of cities in the instance to be solved ∗/

long int (∗distance)(long int, long int); /∗ pointer to function returning
distance ∗/

long int round distance (long int i, long int j);

long int ceil distance (long int i, long int j);

long int geo distance (long int i, long int j);

long int att distance (long int i, long int j);

long int compute tour length(long int ∗t);

long int ∗∗compute distances(void);

long int ∗∗ compute nn lists (void);

175

176

C.14 TSP.c

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: TSP.c
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: TSP.c
Author: Thomas Stuetzle
Purpose: TSP related procedures, distance computation, neighbour lists
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

177

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <assert.h>

#include "InOut.h"
#include "TSP.h"
#include "ants.h"
#include "ls.h"
#include "utilities.h"

#define M PI 3.14159265358979323846264

long int n; /∗ number of cities in the instance to be solved ∗/

struct problem instance;

static double dtrunc (double x)
{

int k;

k = (int) x;
x = (double) k;
return x;

}

long int (∗distance)(long int, long int); /∗ function pointer ∗/

/∗
FUNCTION: the following four functions implement different ways of

computing distances for TSPLIB instances
INPUT: two node indices
OUTPUT: distance between the two nodes

∗/

long int round distance (long int i, long int j)
/∗

FUNCTION: compute Euclidean distances between two nodes rounded to next
integer for TSPLIB instances

INPUT: two node indices
OUTPUT: distance between the two nodes
COMMENTS: for the definition of how to compute this distance see TSPLIB

∗/
{

double xd = instance.nodeptr[i].x - instance.nodeptr[j].x;
double yd = instance.nodeptr[i].y - instance.nodeptr[j].y;
double r = sqrt(xd ∗xd + yd ∗yd) + 0.5;

178

return (long int) r;
}

long int ceil distance (long int i, long int j)
/∗

FUNCTION: compute ceiling distance between two nodes rounded to next
integer for TSPLIB instances

INPUT: two node indices
OUTPUT: distance between the two nodes
COMMENTS: for the definition of how to compute this distance see TSPLIB

∗/
{

double xd = instance.nodeptr[i].x - instance.nodeptr[j].x;
double yd = instance.nodeptr[i].y - instance.nodeptr[j].y;
double r = sqrt(xd ∗xd + yd ∗yd) + 0.000000001;

return (long int)r;
}

long int geo distance (long int i, long int j)
/∗

FUNCTION: compute geometric distance between two nodes rounded to next
integer for TSPLIB instances

INPUT: two node indices
OUTPUT: distance between the two nodes
COMMENTS: adapted from concorde code

for the definition of how to compute this distance see TSPLIB
∗/
{

double deg, min;
double lati, latj, longi, longj;
double q1, q2, q3;
long int dd;
double x1 = instance.nodeptr[i].x, x2 = instance.nodeptr[j].x,

y1 = instance.nodeptr[i].y, y2 = instance.nodeptr[j].y;

deg = dtrunc (x1);
min = x1 - deg;
lati = M PI ∗ (deg + 5.0 ∗ min / 3.0) / 180.0;
deg = dtrunc (x2);
min = x2 - deg;
latj = M PI ∗ (deg + 5.0 ∗ min / 3.0) / 180.0;

deg = dtrunc (y1);
min = y1 - deg;
longi = M PI ∗ (deg + 5.0 ∗ min / 3.0) / 180.0;
deg = dtrunc (y2);
min = y2 - deg;
longj = M PI ∗ (deg + 5.0 ∗ min / 3.0) / 180.0;

q1 = cos (longi - longj);
q2 = cos (lati - latj);
q3 = cos (lati + latj);
dd = (int) (6378.388 ∗ acos (0.5 ∗ ((1.0 + q1) ∗ q2 - (1.0 - q1) ∗ q3)) +

179

1.0);
return dd;

}

long int att distance (long int i, long int j)
/∗

FUNCTION: compute ATT distance between two nodes rounded to next
integer for TSPLIB instances

INPUT: two node indices
OUTPUT: distance between the two nodes
COMMENTS: for the definition of how to compute this distance see TSPLIB

∗/
{

double xd = instance.nodeptr[i].x - instance.nodeptr[j].x;
double yd = instance.nodeptr[i].y - instance.nodeptr[j].y;
double rij = sqrt ((xd ∗ xd + yd ∗ yd) / 10.0);
double tij = dtrunc (rij);
long int dij;

if (tij < rij)
dij = (int) tij + 1;

else
dij = (int) tij;

return dij;
}

long int ∗∗ compute distances(void)
/∗

FUNCTION: computes the matrix of all intercity distances
INPUT: none
OUTPUT: pointer to distance matrix, has to be freed when program stops

∗/
{

long int i, j;
long int ∗∗matrix;

if((matrix = malloc(sizeof(long int) ∗ n ∗ n +
sizeof(long int ∗) ∗ n)) == NULL) {

fprintf(stderr,"Out of memory, exit.");
exit(1);

}
for (i = 0 ; i < n ; i++) {

matrix[i] = (long int ∗)(matrix + n) + i ∗n;
for (j = 0 ; j < n ; j++) {

matrix[i][j] = distance(i, j);
}

}
return matrix;

}

180

long int ∗∗ compute nn lists(void)
/∗

FUNCTION: computes nearest neighbor lists of depth nn for each city
INPUT: none
OUTPUT: pointer to the nearest neighbor lists

∗/
{

long int i, node, nn;
long int ∗distance vector;
long int ∗help vector;
long int ∗∗m nnear;

/∗ TRACE (printf("\n computing nearest neighbor lists, ");) ∗/

nn = MAX(nn ls,nn ants);
if (nn >= n)

nn = n - 1;
DEBUG (assert(n > nn);)

/∗ TRACE (printf("nn = %ld ... \n",nn);) ∗/

if((m nnear = malloc(sizeof(long int) ∗ n ∗ nn
+ n ∗ sizeof(long int ∗))) == NULL) {

exit(EXIT FAILURE);
}
distance vector = calloc(n, sizeof(long int));
help vector = calloc(n, sizeof(long int));

for (node = 0 ; node < n ; node++) { /∗ compute cnd-sets for all node ∗/
m nnear[node] = (long int ∗)(m nnear + n) + node ∗ nn;

for (i = 0 ; i < n ; i++) { /∗ Copy distances from nodes to the others ∗/
distance vector[i] = instance.distance[node][i];
help vector[i] = i;

}
distance vector[node] = LONG MAX; /∗ city is not nearest neighbour ∗/
sort2(distance vector, help vector, 0, n-1);
for (i = 0 ; i < nn ; i++) {

m nnear[node][i] = help vector[i];
}

}
free(distance vector);
free(help vector);

/∗ TRACE (printf("\n .. done\n");) ∗/
return m nnear;

}

long int compute tour length(long int ∗t)
/∗

FUNCTION: compute the tour length of tour t
INPUT: pointer to tour t
OUTPUT: tour length of tour t

∗/

181

{
int i;
long int tour length = 0;

for (i = 0 ; i < n ; i++) {
tour length += instance.distance[t[i]][t[i+1]];

}
return tour length;

}

182

C.15 unix timer.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: times.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: times.h
Author: Thomas Stuetzle
Purpose: routines for measuring elapsed time (CPU or real)
Check: README.txt and legal.txt

∗/

int time expired();

void start timers();

double elapsed time();

typedef enum type timer {REAL, VIRTUAL} TIMER TYPE;

183

C.16 unix timer.c

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: times.c
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: times.c
Author: Thomas Stuetzle
Purpose: routines for measuring elapsed time (CPU or real)
Check: README.txt and legal.txt

∗/

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

#include "timer.h"

static struct rusage res;
static struct timeval tp;
static double virtual time, real time;

void start timers()
/∗

FUNCTION: virtual and real time of day are computed and stored to
allow at later time the computation of the elapsed time

(virtual or real)
INPUT: none
OUTPUT: none
(SIDE)EFFECTS: virtual and real time are computed

∗/
{

getrusage(RUSAGE SELF, &res);
virtual time = (double) res.ru utime.tv sec +

(double) res.ru stime.tv sec +

184

(double) res.ru utime.tv usec / 1000000.0 +
(double) res.ru stime.tv usec / 1000000.0;

gettimeofday(&tp, NULL);
real time = (double) tp.tv sec +

(double) tp.tv usec / 1000000.0;
}

double elapsed time(type)
TIMER TYPE type;

/∗
FUNCTION: return the time used in seconds (virtual or real,

depending on type)
INPUT: TIMER TYPE (virtual or real time)
OUTPUT: seconds since last call to start timers (virtual or real)
(SIDE)EFFECTS: none

∗/
{

if (type == REAL) {
gettimeofday(&tp, NULL);
return((double) tp.tv sec +

(double) tp.tv usec / 1000000.0
- real time);
}
else {

getrusage(RUSAGE SELF, &res);
return((double) res.ru utime.tv sec +

(double) res.ru stime.tv sec +
(double) res.ru utime.tv usec / 1000000.0 +
(double) res.ru stime.tv usec / 1000000.0
- virtual time);
}

}

185

C.17 utilities.h

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: utilities.h
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: utilities.h
Author: Thomas Stuetzle
Purpose: some additional useful procedures
Check: README.txt and legal.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

186

Fachbereich Informatik
Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#define INFTY LONG MAX
#define MAXIMUM NO TRIES 100

#define TRUE 1
#define FALSE 0

/∗ general macros ∗/

#define MAX(x,y) ((x)>=(y)?(x):(y))
#define MIN(x,y) ((x)<=(y)?(x):(y))

#define DEBUG(x)

#define TRACE(x) x

/∗ constants for a random number generator, for details see numerical recipes in
C ∗/

#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define MASK 123459876

extern long int seed;

double mean (long int ∗values, long int max);

double meanr (double ∗values, long int max);

double std deviation (long int ∗values, long int i, double mean);

double std deviationr (double ∗values, long int i, double mean);

long int best of vector (long int ∗values, long int i);

long int worst of vector (long int ∗values, long int i);

void swap (long int v[], long int i, long int j);

void sort (long int v[], long int left, long int right);

double quantil (long int vector[], double q, long int numbers);

void swap2(long int v[], long int v2[], long int i, long int j);

void sort2(long int v[], long int v2[], long int left, long int right);

187

double ran01 (long ∗idum);

long int random number (long ∗idum);

long int ∗∗ generate int matrix(long int n, long int m);

double ∗∗ generate double matrix(long int n, long int m);

188

C.18 utilities.c

/∗

AAAA CCCC OOOO TTTTTT SSSSS PPPPP
AA AA CC OO OO TT SS PP PP
AAAAAA CC OO OO TT SSSS PPPPP
AA AA CC OO OO TT SS PP
AA AA CCCC OOOO TT SSSSS PP

HH
HHHHHHHHHH ACO algorithms for the TSP HHHHHHHHHH
HH

Version: 2.0
File: utilities.c
Author: Sammy D’Souza
Purpose: modifications for PC
Check: README and gpl.txt
Copyright (C) 2007 Sammy D’Souza

Version: 1.0
File: utilities.c
Author: Thomas Stuetzle
Purpose: some additional useful procedures
Check: README and gpl.txt
Copyright (C) 2002 Thomas Stuetzle

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Program’s name: acotsp

Ant Colony Optimization algorithms (AS, ACS, EAS, RAS, MMAS, BWAS) for the
symmetric TSP

Copyright (C) 2004 Thomas Stuetzle

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: stuetzle no@spam informatik.tu-darmstadt.de
mail address: Universitaet Darmstadt

Fachbereich Informatik

189

Hochschulstr. 10
D-64283 Darmstadt

Germany

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

/∗ #define USE MPI ∗/
/∗ #define SIMPLE SPRNG ∗/

#include "InOut.h"
#include "utilities.h"
#include "TSP.h"
#include "ants.h"
#include "timer.h"

/∗ #include "/home0/sdsouza/Nirvana/sprng/sprng2.0/include/sprng.h" ∗/

long int seed = 12345678;

double mean(long int ∗values, long int max)
/∗

FUNCTION: compute the average value of an integer array of length
max

INPUT: pointer to array, length of array
OUTPUT: average
(SIDE)EFFECTS: none

∗/
{

long int j;
double m;

m = 0.;
for (j = 0 ; j < max ; j++) {

m += (double)values[j];
}
m = m / (double)max;
return m;

}

double meanr(double ∗values, long int max)
/∗

FUNCTION: compute the average value of a floating number array of
length max

INPUT: pointer to array, length of array

190

OUTPUT: average
(SIDE)EFFECTS: none

∗/
{

long int j;
double m;

m = 0.;
for (j = 0 ; j < max ; j++) {

m += values[j];
}
m = m / (double)max;
return m;

}

double std deviation(long int ∗values, long int max, double mean)
/∗

FUNCTION: compute the standard deviation of an integer array
INPUT: pointer to array, length of array, mean
OUTPUT: standard deviation
(SIDE)EFFECTS: none

∗/
{

long int j;
double dev = 0.;

if (max <= 1)
return 0.;

for (j = 0 ; j < max; j++) {
dev += ((double)values[j] - mean) ∗ ((double)values[j] - mean);

}
return sqrt(dev/(double)(max - 1));

}

double std deviationr(double ∗values, long int max, double mean)
/∗

FUNCTION: compute the standard deviation of a floating number array
INPUT: pointer to array, length of array, mean
OUTPUT: standard deviation
(SIDE)EFFECTS: none

∗/
{

long int j;
double dev;

if (max <= 1)
return 0.;

dev = 0.;
for (j = 0 ; j < max ; j++) {

dev += ((double)values[j] - mean) ∗ ((double)values[j] - mean);
}

191

return sqrt(dev/(double)(max - 1));
}

long int best of vector(long int ∗values, long int l)
/∗

FUNCTION: return the minimum value in an integer value
INPUT: pointer to array, length of array
OUTPUT: smallest number in the array
(SIDE)EFFECTS: none

∗/
{

long int min, k;

k = 0;
min = values[k];
for(k = 1 ; k < l ; k++) {
if(values[k] < min) {

min = values[k];
}

}
return min;

}

long int worst of vector(long int ∗values, long int l)
/∗

FUNCTION: return the maximum value in an integer value
INPUT: pointer to array, length of array
OUTPUT: largest number in the array
(SIDE)EFFECTS: none

∗/
{

long int max, k;

k = 0;
max = values[k];
for(k = 1 ; k < l ; k++) {
if(values[k] > max) {

max = values[k];
}

}
return max;

}

double quantil(long int v[], double q, long int l)
/∗

FUNCTION: return the q-quantil of an ordered integer array
INPUT: one array, desired quantil q, length of array
OUTPUT: q-quantil of array
(SIDE)EFFECTS: none

192

∗/
{

long int i,j;
double tmp;

tmp = q ∗ (double)l;
if ((double)((long int)tmp) == tmp) {

i = (long int)tmp;
j = (long int)(tmp + 1.);
return ((double)v[i-1] + (double)v[j-1]) / 2.;

} else {
i = (long int)(tmp +1.);
return v[i-1];

}
}

void swap(long int v[], long int i, long int j)
/∗

FUNCTION: auxiliary routine for sorting an integer array
INPUT: array, two indices
OUTPUT: none
(SIDE)EFFECTS: elements at position i and j of array are swapped

∗/
{

long int tmp;

tmp = v[i];
v[i] = v[j];
v[j] = tmp;

}

void sort(long int v[], long int left, long int right)
/∗

FUNCTION: recursive routine (quicksort) for sorting an array
INPUT: one array, two indices
OUTPUT: none
(SIDE)EFFECTS: elements at position i and j of the two arrays are swapped

∗/
{

long int k, last;

if (left >= right)
return;

swap(v, left, (left + right)/2);
last = left;
for (k=left+1; k <= right; k++)
if (v[k] < v[left])

swap(v, ++last, k);
swap(v, left, last);
sort(v, left, last);

193

sort(v, last+1, right);
}

void swap2(long int v[], long int v2[], long int i, long int j)
/∗

FUNCTION: auxiliary routine for sorting an integer array
INPUT: two arraya, two indices
OUTPUT: none
(SIDE)EFFECTS: elements at position i and j of the two arrays are swapped

∗/
{

long int tmp;

tmp = v[i];
v[i] = v[j];
v[j] = tmp;
tmp = v2[i];
v2[i] = v2[j];
v2[j] = tmp;

}

void sort2(long int v[], long int v2[], long int left, long int right)
/∗

FUNCTION: recursive routine (quicksort) for sorting one array;
second

arrays does the same sequence of swaps
INPUT: two arrays, two indices
OUTPUT: none
(SIDE)EFFECTS: elements at position i and j of the two arrays are swapped

∗/
{

long int k, last;

if (left >= right)
return;

swap2(v, v2, left, (left + right)/2);
last = left;
for (k=left+1; k <= right; k++)
if (v[k] < v[left])

swap2(v, v2, ++last, k);
swap2(v, v2, left, last);
sort2(v, v2, left, last);
sort2(v, v2, last+1, right);

}

/∗
double ran01(long ∗idum)

FUNCTION: generate a random number that is uniformly distributed in
[0,1]

194

INPUT: pointer to variable with the current seed
OUTPUT: random number uniformly distributed in [0,1]
(SIDE)EFFECTS: random number seed is modified (important, this has to be

done!)
ORIGIN: numerical recipes in C

∗/
double ran01(long ∗idum)
{

long k;
double ans;

/∗
ans = sprng();
TRACE(printf("%lf \t", ans););
return ans;

∗/

k =(∗idum)/IQ;
∗idum = IA ∗ (∗idum - k ∗ IQ) - IR ∗ k;
if (∗idum < 0) ∗idum += IM;
ans = AM ∗ (∗idum);
return ans;

}

/∗
double ran01(long ∗ idum)
{

return sprng();
}
∗/

long int random number(long ∗idum)
/∗

FUNCTION: generate an integer random number
INPUT: pointer to variable containing random number seed
OUTPUT: integer random number uniformly distributed in

{0,2147483647}
(SIDE)EFFECTS: random number seed is modified (important, has to be

done!)
ORIGIN: numerical recipes in C

∗/
{

long k;

k =(∗idum)/IQ;
∗idum = IA ∗ (∗idum - k ∗ IQ) - IR ∗ k;
if (∗idum < 0) ∗idum += IM;
return ∗idum;

}

195

long int ∗∗ generate int matrix(long int n, long int m)
/∗

FUNCTION: malloc a matrix and return pointer to it
INPUT: size of matrix as n x m
OUTPUT: pointer to matrix
(SIDE)EFFECTS:

∗/
{

long int i;
long int ∗∗matrix;

if((matrix = malloc(sizeof(long int) ∗ n ∗ m +
sizeof(long int ∗) ∗ n)) == NULL) {

printf("Out of memory, exit.");
exit(1);

}
for (i = 0 ; i < n ; i++) {

matrix[i] = (long int ∗)(matrix + n) + i ∗m;
}

return matrix;
}

double ∗∗ generate double matrix(long int n, long int m)
/∗

FUNCTION: malloc a matrix and return pointer to it
INPUT: size of matrix as n x m
OUTPUT: pointer to matrix
(SIDE)EFFECTS:

∗/
{

long int i;
double ∗∗matrix;

if((matrix = malloc(sizeof(double) ∗ n ∗ m +
sizeof(double ∗) ∗ n)) == NULL) {

printf("Out of memory, exit.");
exit(1);

}
for (i = 0 ; i < n ; i++) {

matrix[i] = (double ∗)(matrix + n) + i ∗m;
}
return matrix;

}

196

D. GLOSSARY OF TERMS

ACO (Ant Colony Optimization)

A metaheuristic invented by Marco Dorigo and inspired by the foraging behavior

of real ants. In ACO, a number of artificial ants build solutions to an optimization

problem and exchange information on their quality via a communication scheme

that is reminiscent of the one adopted by real ants.

AS (Ant System)

The original algorithm in the ACO class. AS was inspired by the foraging be-

havior of ants in finding shortest paths to food sources, and was used to show

probabilistic techniques for solving the TSP. The main characteristic was that

pheromone values are updated by all the ants that have completed the tour.

Combinatorial Optimization (CO)

A field of applied mathematics that aims to solve optimization problems that

are believed to be hard in general, using techniques from combinatorics, linear

programming, and the theory of algorithms. A typical CO problem involves

finding values for discrete variables such that the optimal solution for a given

objective function is found.

Distributed Computing

A system of computation in which multiple computers or processors collaborate

over a network to solve a common problem. The computers themselves are in-

dependent and may be heterogenous in many aspects, however, this aggregation

is transparent.

Evolutionary Computatation (EC)

Problem solving and computation techniques based in some form or other on the

evolution of biological species in the natural world. Three large classes within

EC are evolution strategies, evolutionary programming and genetic algorithms.

Metaheuristic

A set of algorithmic concepts that can be used to define heuristic methods ap-

plicable to a wide set of different problems. In other words, a metaheuristic is

a general-purpose algorithmic framework that can be applied to different op-

timization problems with relatively few modifications. Simulated Annealing,

Tabu Search, Iterated Local Search and Ant Colony Optimization are examples

of metaheuristics.

MMAS(MAX-MIN Ant System)

An improvement over the original ant system proposed by Sttzle and Hoos

(2000). The most important difference in MMAS was that the pheromone value

was bounded between a maximum and a minimum value and only the best ant

updated the pheromone trails.

NP-hard

An NP (non-deterministic, polynomial time) problem is one that can be solved

in polynomial time by a non-deterministic Turing Machine. If the algorithm for

solving it can translated into one for solving any other NP problem, then we say

the problem is NP-hard.

Overlapping

A parallel communication protocol that tries to minimize the synchronization

199

delay between data generation at one process and its consumption by another.

Overlapping achieves this by scheduling communications dynamically and guar-

anteeing correct placement of these calls, blocking if necessary.

Shortcutting

A parallel computing technique that exploits time irregularity and non-determinism.

A computation may terminate faster on one node than the others; this node can

then effectively shortcut the other nodes.

SOS (Streams, Overlapping and Shortcutting)

A library built on MPI and callable from Fortran or C that allows a programmer

to incorporate Streams, Overlapping communications, and Shortcutting into a

parallel program.

SPMD (Single Program Multiple Data)

A parallel computing approach in which a single program executes differently

on different processors. Although it is common to refer to the processor number

explicity to achieve different execution, such differences can also be made through

implicit mechansims such as compiler directives.

Stigmergy

Originally used to denote the class of mechanisms that mediate animal-animal

interactions. Stigmergy now refers to a method of indirect communication that

takes place by modifying the environment.

Streams

A set of programs executing the same control path. A parallel execution will

always start and end as a single stream, but may split into different streams and

possibly merge along the way depending on program logic.

200

TSP (Traveling Salesman Problem)

An NP-hard optimization problem in computer science that involves finding the

minimum length Hamiltonian circuit of a complete weighted graph. In lay terms,

the problem involves a salesman who wants to start from home, take a shortest

tour through a set of cities, visit each city exactly once and return hom. In a

Symmetric TSP, the distance from node i to i is the same as that from node j

to i

TSPLIB

A library of sample instances for the TSP maintained by Professor Gerhard

Reinelt at the University of Heidelberg, Germany. The TSPLIB also contains

problem instances for other problems, such as the Sequential Ordering Prob-

lem (SOP) and the Capacitated Vehicle Routing Problem (CVRP) and optimal

solutions and values for some of these.

201

REFERENCES

[1] Prasanna Balaprakash. Ant Colony Optimization under Uncertainty. Technical

Report TR/IRIDIA/2005-028, Universit Libre de Bruxelles, 2005.

[2] M. Birattari, G. Di Caro, and Marco Dorigo. For a Formal Foundation of

the Ant Programming Approach to Combinatorial Optimization. Technical Re-

port TR-H-301, ATR Human Information Processing Research Laboratories, Ky-

oto,Japan, 2000.

[3] M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman prob-

lem. BioSystems, 43(2):73–81, 1997.

[4] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1(1):53–66, April 1997.

[5] M. Dorigo and L.M. Gambardella. Ant Algorithms for Discrete Optimization.

Technical Report IRIDIA/98-10, IRIDIA, Universite Libre de Bruxelles, Brus-

sels, Belgium, 1998.

[6] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics

Part B, 26(1):29–41, 1996.

[7] Marco Dorigo and Thomas Stutzle. Ant Colony Optimization. MIT Press, 2004.

[8] John R. Ellis. Bulldog – A Compiler for VLIW Architectures. MIT Press, 1986.

[9] L.M. Gambardella and M. Dorigo. Ant-Q: A Reinforcement Learning Aproach to

the Traveling Salesman Problem. In Proc. Twelfth International Conference on

Machine Learning, ML-95, pages 252–260. Morgan Kaufmann Publishers, 1995.

[10] Ernesto Gomez. PC Reference Manual. Available with the PC distribution,

http://csci.csusb.edu/egomez/cs624.html.

[11] Ernesto Gomez. The SOS library. http://csci.csusb.edu/egomez/html-

res/sos.html.

[12] Ernesto Gomez. Single Program Task Parallelism. PhD thesis, University of

Chicago, March 2005.

[13] Ernesto Gomez and L. Ridgway Scott. Overlapping and Shortcutting Techniques

in Loosely Synchronous Irregular Problems. Solving Irregularly Structured Prob-

lems in Parallel, LNCS 1457:116–127, August 1998.

[14] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction

to Parallel Computing. Addison-Wesley, 2nd edition, 2004.

[15] L. Ridgway Scott, Terry W. Clark, and Babak Bagheri. PFortran - a Parallel Ex-

tension of Fortran (the PFortran Reference Manual). Research Report UH/MD

124, Department of Mathematics, University of Houston, 1992.

[16] L. Ridgway Scott, Terry W. Clark, and Babak Bagheri. Pfortran: A Parallel

Dialect of Fortran. Fortran Forum. ACM Press, 1992.

[17] L. Ridgway Scott, Terry W. Clark, and Babak Bagheri. Scientific Parallel Com-

putation. MIT Press, 2004.

[18] David Brian Sturgill. Nagging: a general, fault-tolerant approach to parallel

search pruning. PhD thesis, Cornell University, Ithaca, NY, USA, 1997.

203

[19] T. Stutzle, M. Dorigo, and M. Birattari. Ant colony optimization– artificial

ants as a computational intelligence technique. IEEE Computational Intelligence

Magazine, November 2006.

[20] T. Stutzle and H.H. Hoos. MAX MIN Ant System. Journal of Future Generation

Computer Systems, 16:889–914, 2000.

[21] Thomas Stutzle. Parallelization strategies for ant colony optimization. Parallel

Problem Solving from Nature - PPSN V, LNCS 1498:722–731, 1998.

204

