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ABSTRACT

Magnetic Resonance Imaging (MRI) provides an excellent modality for dis-

tinguishing different tissues in the human body, which makes this modality

essential for medical applications. MRI can also be used for treatment

planning of medical procedures that require a great degree of geometrical

accuracy such as functional radiosurgery. Unfortunately, the accuracy of

MRI for medical targeting applications is compromised by the presence of

geometric distortions such as non-linearities of the magnetic gradient fields

or inhomogeneities of the scanner main field.

The goal of this work was to develop and implement a numerical software-

based method to estimate the gradient isocenter of the magnetic field inside

an 3-Tesla(T) MRI scanner using the MRI scan of a custom-built phantom.

A new phantom has been designed from scratch to capture the distortions

inside 3T MRI scanner. Several algorithms have also been develop to calcu-

late the gradient isocenter of the 3T MRI scanner’s magnetic field, extract

relevant data points from the MR and CT images of new phantom and

compute the undistortion parameters.abstract contents
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1. INTRODUCTION

1.1 Thesis Overview

Magnetic resonance imaging (MRI) provides an excellent modality for distinguishing

different tissues in the human body, which makes this modality essential for medical

applications. MRI can also be used for treatment planning of medical procedures that

require a great degree of geometrical accuracy such as functional radiosurgery [2]. Un-

fortunately, the accuracy of MRI for medical targeting applications is compromised

by the presence of geometric distortions such as non-linearities of the magnetic gra-

dient fields or inhomogeneities of the scanner main field [1, 4, 6, 7, 3, 8, 10, 11].

Gradient nonlinearities can cause over 2mm of distortion to the location of features

in the image [3, 8].

The primary purpose of this thesis was to improve the distortion correction method

developed in a previous thesis [5]. To do this, the following issues were addressed in

this work:

• A new phantom was designed that can capture the distortion in modern 3-

Tesla(T) MRI scanner.

• Algorithms were developed that can extract relevant data points from the MR

images of the new phantom.
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• An new algorithm was developed that can accurately estimate the gradient

isocenter of the magnetic field inside 3T MRI scanners.

• An algorithm was developed that can determine the undistortion paramters,

which can then be used to generate undistorted MR images.

The thesis is organized as follows. After the introduction, Chapter 2 gives back-

ground information on MRI, it’s geometric distortion, and approaches to corrected.

Chapter 3 describe the design details of the new phantom and several phases and

changes the design went through. The main feature of the final design of the phan-

tom and their importance will be discussed. The next chapter discusses the algorithm

for estimation of gradient isocenter based on new phantom design. Chapter 5 describe

a series of algorithms used to extract relevant data from MR and CT images. CT

images were used in this work to obtain accurate dimensions inside the phantom.

Chapter 6 describes the procedure to estimate the parameters of the model that

undistorts the distorted MR images. The final chapter summarizes the main results

and suggests future work.

1.2 Background

The research project associated with this thesis relates to the correction of MRI

images that will be used for functional proton radiosurgery at Loma Linda University

Medical Center (LLUMC). The clinical application of protons was first suggested over

60 years ago [12]. The ability to penetrate human tissue, delivering high dosage of

proton beams at a target region and being able to concentrate on a very small target

area make protons ideal for use in noninvasive surgery [12]. Currently, Loma Linda
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University Medical Center (LLUMC) is using proton beams to treat patients with

tumors or vascular malformations in the brain.

Due to the effectiveness of proton radiosurgery, a new system is proposed that

targets functional disorders in the brain, such as trigeminal neuralgia and Parkin-

son’s disease by creating small lesions in the brain regions affected by the disease.

The current system can treat targets as small as 1 to 3 cm. Target localization is

accomplished using CT and projection angiography. MRI will to be used for target

localization in the new system. The major obstacle of using MRI is the geometric

distortion on MRI images caused by the nonlinearity of the magnetic gradient fields

of the scanner.

For the proposed application, two of the most important requirements for a suc-

cessful distortion correction are:

1. The distortion correction must have submillimeter accuracy.

2. The correction process must be finished within 15 minutes.

This work is based on a published method for gradient nonlinearity correction using

a cubic phantom MRI data set [8], which was also subject of a previous thesis by Tom

S. Lee [5]. The published method utilizes the sum of spherical harmonics to model the

geometrically warped planes of the cube, and applies the model to correct arbitrary

image sets acquired with the same scanner. The cube is placed in the MRI scanner

such that the cube’s center is exactly in the center of the MRI scanner. This work

assumes the center of the MRI scanner corresponds to the isocenter of the magnetic

field of the scanner. Opposite faces of the phantom are averaged, and three midplanes

are fit to these surfaces. Due to the symmetric property of the magnetic field, the
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midplanes of different orientations of the phantom cube are undistorted. Through

each midplane, the ideal planes of different surfaces of the cube are calculated simply

by shifting the midplane to the direction of the ideal plane by one-half the length of

the cube. For each pixel on the ideal plane, the sum of spherical harmonics equation

6.1 is applied to transform that pixel to the corresponding location on the distorted

plane.

ᾱ = α(1 +Kα0(x
2 + y2) +Kα1z

2 +Kα2z
2(x2 + y2) +Kα3(x

2 + y2)2 +Kα4z
4) (1.1)

Where ᾱ and α are undistorted and distorted 3D coordinate respectively; x, y and

z are coordinates of α on each axis; Kαi
are distortion parameters. Thus the distortion

parameters in equation 6.1 are computed using linear least squares technique.

Several assumptions are made for this model:

• The phantom is (reasonably) centered with respect to the gradient isocenter of

the scanner.

• The distortion is (reasonably) symmetric for each pair of faces.

• The origin of the DICOM patient coordinate system conincides with the position

of the gradient isocenter.

In reality, however, these assumptions are not valid. Due to the geometry of the

MR scanner, the phantom cannot be centered, and the phantom center will always

we located in the upper half of the circular scanning plane. The issue of phantom

centering has been identified as a crucial factor in the quality of distortion correction.
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Improper centering of the phantom in the scanner produces strong asymmetry in the

phantom surfaces, thereby violating the assumption of symmetry of the distortion.

The assumption that the origin of the DICOM patient coordinate system cor-

responds to the isocenter of the magnetic field in the MRI scanner is also invalid.

Siemens engineers have confirmed that the exact location of the gradient isocenter

is unknown. Thus, the assumption that the origin of the DICOM patient is at the

same location as the gradient isocenter will further compromise the accuracy of the

distortion correction method.

In addition, with the introduction of the new 3T MR scanner with a larger bore,

the previous phantom, which was designed for a 1.5 T scanner with a much smaller

bore, turned out to be inadequate. The new scanner had only minimal distortion in

the area probed by the original phantom with 16 cm diameter. A larger phantom

was clearly needed that also better probed the circular field of view of the scanner.

1.3 Significance

Geometric distortions are critical for the use of MRI in accurate medical targeting.

Procedures such as functional proton radiosurgery that deliver very high doses to

small targets very accurate targeting is an absolute requirement. The built-in dis-

tortion correction of modern MRI scanners is probably not accurate enough for such

procedures, and distortion correction methods that are based on measurements of the

nonlinearity in the actual scanner are needed. With the work accomplished in this

thesis, we have come a step closer to using MRI for such procedures. The phantom

and algorithms developed will also be useful for other neurosurgical procedures that

5



use MRI as the basis for accuate targeting.
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2. BACKGROUND

2.1 Magnetic Resonance Imaging

The image in MRI is a multidimensional data array representing the spatial dis-

tribution of nuclear magnetic properties of the image object although the original

data acquired represents the frequency distribution of the responses of a multitude

of hydrogen nuclei in an inhomogeneous magnetic field. The information is usually

organized as 2D images, presented discretely in form of image pixels such that each

pixel is a 2D representation of the measured physical quantity in the corresponding

object voxel (a small 3D box).

The value of MR image pixels (or corresponding voxels) depends on many intrinsic

physical parameters, including the nuclear spin density, ρ , the spin-lattice relaxation

time T1, the spin-spin relaxation time T2, molecular motions (diffusion and perfu-

sion), susceptibility effects, chemical shift differences, etc. The relative weight of these

parameters in their contribution to the image contrast can be influenced by operator-

selectable parameters, such as the repetition time TR, echo time TE, and flip angle

α. However, this will not be further discussed here because it is not necessary or

understanding and correcting the origin of gradient nonlinearity.

7



2.1.1 Hardware Components of an MRI Scanner

The main components of the MRI scanner system are shown in Fig 2.1. It consists of

three main hardware components: the main magnet (blue), the gradient coil system

(red), and the radiofrequency (RF) coil system (green). The main magnet can be

thought of as a large tube, which fits inside the bore of the MR scanner. The housing

of the three gradient coils also takes the form of a tube, which fit inside the main

magnet. The RF body coil, which both produces and receives RF signals, takes the

shape of another tube that fits inside the gradient coils. Hence the space in which the

body part to be imaged is placed is a cylindrical volume with the longitudinal axis

(z) being parallel to the patient longitudinal body axis and the diameter matching

the inner diameter of the body coil housing. If the head is imaged, a removable RF

head coil, which has a better signal to noise ratio than the body coil, is placed inside

the body coil.

Fig. 2.1: Simplified block diagram of a typical MRI scanner
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2.1.2 Physics of Signal Formation and Detection

The signal source in MRI is the macroscopic magnetization produced by excited

nuclear spins in the imaged object. Spin is a fundamental quantum property of

elementary particles just like electrical charge or mass, which is related to the angular

momentum of the nucleus. In classical terms, angular momentum is due to spinning

of an object about its axis. Spin quantum numbers come discrete, i.e., in multiples of

1
2
, and can be either positive or negative. The total spin quantum number of paired

protons and neutrons equals zero, while unpaired protons and neutrons in a nucleus

each contribute a spin quantum number of . Thus, a nucleus with an uneven number

of nucleons (protons or neutrons) has a nonzero spin quantum number, which is a

multiple of , and a large number of them can, therefore, produce a net magnetization

when placed in an external magnetic field. The most abundant nucleus with uneven

number of nucleons in the human body is hydrogen with just one proton.

In MRI, an ensemble of nuclei of the same type, such as hydrogen, present in

an object being imaged is called a nuclear spin system. Although nuclear spin is a

property of the individual nucleus, characterized by quantum mechanics, with the

large number of nuclei present in bulk matter, the bulk behavior of a spin system

can be described in classical physics terms and the macroscopic magnetization is no

longer discrete.

A single nucleus with a nonzero spin, such as hydrogen, creates a small magnetic

field, which is represented by the vector quantity µ, called the nuclear magnetic

moment. Spin angular momentum J and magnetic moment are linearly related to

each other by
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µ =
γ

2
πJ (2.1)

2.1.3 Distortion Origin and Manifestations

Spatial indexing in MRI is accomplished by gradient coils in three orthogonal direc-

tions. In image reconstruction, gradients are assumed linear throughout the imaging

volume. Due to pragmatic constraints, further considered below, it is difficult to

achieve this situation.

For a patient to fit comfortably, the bore of the main magnet must be as large as

possible. The larger the bore, the more difficult it is to generate a linear gradient.

In general, the gradient along the axis of the main magnet (z axis) has the highest

linearity compared to the other two directions (x and y) due to physical constraints.

Consider a slice of constant z, read in x direction. In the slice image, gradient

field non-linearity distortion manifests itself in two ways. First, due to non-linearities

in the x gradient, Gx, and in the y-gradient, Gy, there is a systematic transverse

distortion in the slice plane. Second, because of the gradient field non-linearity, a

potato chip effect takes place along the slice selection direction (z). Although MRI

slices are usually considered to be planes, in actuality, because of gradient field non-

linearity, these planes tend to warp into a potato chip-like shapes. This distortion is

difficult to correct in 2D imaging but can be, in principle, corrected in 3D imaging

methods.
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2.1.4 The Gradient Coils

Misregistration caused by gradient field non-linearities occur in all three directions.

The magnetic fields generated by the three gradient coils and the main magnet lie

along the z-axis. Due to the strength of the main B0 field, any other component of

the gradient fields can be neglected.

The z-gradient coil is designed to produce a linear variation in the z-component of

the field along the axis of the magnet, with a high degree of gradient uniformity in

the transverse plane. Circular wire loops are the most obvious choice since they are

azimuthally symmetric and possess reasonable radial uniformity. Since the gradient

fields have to be symmetric with respect to the gradient isocenter, the coils are usually

arranged as pairs. For the z-gradient, the current in the coil pair, called Maxwell pair,

is equal in magnitude, but opposite in direction (see Fig. 2.2 (a)). Coils on one side

of the z = 0 plane generate fields parallel to B0 while fields due coils on the other

side are anti-parallel to B0 leading to an overall field variation along z. The relation

between the radius a of the coils and their axial distance d is optimized in order to

minimize all but the linear z-term in the polynomial expansion of the field described

below.

The design of the gradient coils in x and y-direction is more complicated. The

principle design, called Golay arrangement, is shown in Fig. 2.2(b). The x- and

y-gradient coils are identical except for a rotation by 90 degrees.
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(a) (b)

Fig. 2.2: (a) Principal design of a Maxwell pair of coils generating the z-gradient field. (b) Golay arrangement

of a coils producing a y-gradient. Note that the field direction coincides with the z axis.

2.1.5 Physical and Mathematical Description of Nonlinear Gradient Fields

Let B the magnetic flux density and H be the magnetic field intensity vectors pro-

duced by any of the gradient coils. The relationship between these vector quantities

is

B = µH (2.2)

where µ is the permeability of the medium. Gradient fields are usually qua-

sistatic (slowly varying in time) magnetic fields, therefore, displacement currents in

the medium inside the coil may be ignored unless very rapid sequences are used.

Electromagnetic field theory tells us that a quasistatic magnetic field in a current free

region can be described by a scalar magnetic field potential such that

H = −∇ψ (2.3)

A fundamental property of magnetic fields is that its divergence is always zero, thus

∇ ·B = 0 everywhere, and therefore the scalar magnetic potential satisfies Laplaces

12



equation:

∇2ψ = 0 (2.4)

It can be shown that solutions of Laplaces equation can be expressed as linear

combinations of homogeneous polynomials in the coordinates x, y, z. In order to

describe the nonlinearity of a gradient field, one usually decomposes the field into

the ideal linear term and additional nonlinear field terms; the latter are expanded

into homogenous polynomials. Furthermore, if one assumes circular symmetry, which

means that there is no specific angular dependence of the nonlinear field terms, one

obtains following general expressions for the three gradient fields Bx, By, and Bz

Bx = Gxx

[
1 +

∞∑
i=1

Ai

i∑
j=0

ajz
2(i−j)(x2 + y2)j

]

By = Gyy

[
1 +

∞∑
i=1

Bi

i∑
j=0

bjz
2(i−j)(x2 + y2)j

]
(2.5)

Bz = Gcz

[
1 +

∞∑
i=1

Ci

i∑
j=0

cjz
2(i−j)(x2 + y2)j

]

Note that if the nonlinear terms vanish, the gradient fields become perfectly linear.

In general, the higher order polynomials in these field equations are insignificant

(contribute very little to the field) and can therefore be ignored. In practice, it is

sufficient to include only polynomials up to the second order i = 2 in x2, y2, and z2.

Thus, the field gradient expressions become:

13



Bx
∼= Gxx

[
1 +Kx0(x

2 + y2) +Kx1z
2 +Kx2z

2(x2 + y2)+

Kx3(x
2 + y2)2 +Kx4z

4
]

By
∼= Gyy

[
1 +Ky0(x

2 + y2) +Ky1z
2 +Ky2z

2(x2 + y2)+

Ky3(x
2 + y2)2 +Ky4z

4
]

(2.6)

Bz
∼= Gcz

[
1 +Kz0(x

2 + y2) +Kz1z
2 +Kz2z

2(x2 + y2)+

Kz3(x
2 + y2)2 +Kz4z

4
]

where we have introduced new constants K (for example, Kx0 = A0a0). Since the

coordinate distortion function can be expressed as:

x′ = x(1 +∇Gx) ≡ fx(x) (2.7)

we have:

f(x) = x
[
1 +Kx0(x

2 + y2) +Kx1z
2 +Kx2z

2(x2 + y2)+

Kx3(x
2 + y2)2 +Kx4z

4
]

f(y) = Gyy
[
1 +Ky0(x

2 + y2) +Ky1z
2 +Ky2z

2(x2 + y2)+

Ky3(x
2 + y2)2 +Ky4z

4
]

(2.8)

f(z) = Gcz
[
1 +Kz0(x

2 + y2) +Kz1z
2 +Kz2z

2(x2 + y2)+

Kz3(x
2 + y2)2 +Kz4z

4
]

Equation 2.8 can be conveniently written in matrix form as

r′ = r +K · F (r) (2.9)
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where r′ is the distorted coordinate vector derived from the undistorted vector r,

K is the distortion parameter matrix formed by the elements K,i , α = x, y, z, i =

0, 1, · · · 4, and F (r) is a nonlinear six-dimensional vector field given by

F (r) =



x(x2 + y2)

xz2

xz2(x2 + y2)

x(x2 + y2)2

z4


(2.10)

2.2 Previous Work
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3. PHANTOM DESIGN

3.1 Introduction

Magnetic Resonance Imaging (MRI) provides an excellent modality for distinguishing

different tissues in the human body, which is essential for medical applications. When

MRI is used for stereotactic treatment planning, its geometric accuracy is crucial.

Previous studies have been conducted to correct the distortion caused by nonlinearity

of the MRI scanners magnetic gradient fields by imaging a cubic phantom [8], [3]

and defining distortion correction functions based on the distorted appearance its

surfaces. Correct mathematical handling of the distortion correction function required

that the cube was centered about the magnetic isocenter, which is defined as the

common center of the three magnetic gradient fields and is not very accurately known.

New 3Tesla MRI systems have a larger bore, making the previous phantom design

impractically small for probing the field nonlinearity in the periphery of the bore,

as the phantom cannot be scaled up due to constraints related to weight and cost of

manufacturing. We are introducing a new phantom design using a different approach,

which can be built to a larger size, improves accuracy of distortion characterization

and reduces cost.
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3.2 Initial Design

The original phantom design, a 16-cm oil-filled cube, could not be scaled up due to

weight and manufacturing constraints. Our first modification was to look at changing

the material to FR-4 since it is rigid, very flat, and could be submerged for short

periods of time to permit scanning the solid liquid interface in an MRI machine.

Since most of the distortion is visible only in the corners, this was rapidly replaced by

8 corners of a virtual cube, which could be connected by a rigid frame. The weight of

a tank to submerge either of these designs to allow scanning was prohibitive, requiring

a complete redesign.

(a) First model (b) Second model

3.3 New Design

The phantom is shaped to be as large as possible, while still fitting in the head coil

of the scanner, so as to achieve the maximum quality of signal and largest distortion.

17



The phantom is an octagonal prism with 205mm between opposite sides. Each face of

the octagonal prism is composed of 8 high precision NMR tubes that are 5mm in outer

diameter and 205 mm in length. These tubes are filled with copper sulfate solution

to generate a strong signal in an MRI scanner. The tubes are placed parallel to the

magnetic field so they will cause less susceptibility distortion [9], and thus provide

more accurate information on the gradient field. In the center of the phantom is a

large water tank to help intensify the signals generated by the tubes. At one end

of the phantom is a cylindrical tank filled with copper sulfate, with a number of

small solid cylinders in a hexagonal pattern that are connecting the two surfaces of

the tank. These cylinders are used to maintain the long-term accuracy of the two

surfaces, making sure they wont deform, and are also aligned to the field to minimize

their effect on the field. The data generated from 64 tubes mounted on the sides are

designed to give us x and y axis distortion information, and the end tank is designed

to provide z-axis distortion data, allowing a complete 3-D distortion correction with

a relatively small amount of data.

3.4 Sealing NMR Tubes

Our original idea for sealing the NMR tubes was to use paraffin wax, either with

or without a silicon seal. Paraffin was heated and a liquid drop was then added to

the tube as a seal , but had an uneven bottom caused by the rapid solidifying of

the wax, when it came in contact with the copper sulfate. Additionally, it tended to

trap air bubbles, which made the end very hard to work with in the images. Worst

yet, after a few weeks the liquid level in the tubes started to drop. We decided to
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compare three potential alternatives: machinable wax, water weld, and silicon sealer.

As the images on the right show, the silicon was far and away the best. There was

no leakage lost, and since the setup time was slower on the liquid side it ended up

being almost completely flat. Every feature was met, and it was also the most cost

effective solution.

3.5 Updated Desgin

3.6 Installation and Use

The new phantom is designed to rest in the head coil of a 3T MRI scanner. It has a

back plate with several leveling screws to align the phantom in the head coil using the

laser alignment system. This alignment is aided by alignment marks on the outside

of the phantom. The phantom is then moved into the MRI scanner, and its center is

placed as close to the isocenter as possible. While it is not required to be centered,

centering does improve the performance. A quick alignment scan is used to ensure

the phantom is in the best location possible. When this is done the scan is taken and

processed using distortion detection and correction software, which is not subject of

the present presentation.

3.7 Initial Experience

The original phantom design, a 16-cm oil-filled cube, could not be scaled up due to

weight and manufacturing constraints. Our first modification was to look at changing

the material to FR-4 since it is rigid, very flat, and could be submerged for short

periods of time to permit scanning the solid liquid interface in an MRI machine.
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Since most of the distortion is visible only in the corners, this was rapidly replaced by

8 corners of a virtual cube, which could be connected by a rigid frame. The weight of

a tank to submerge either of these designs to allow scanning was prohibitive, requiring

a complete redesign.

3.8 Conclusion

A new phantom for the measurement and correction of nonlinear gradient field dis-

tortion of MRI systems is presented. It is lighter, more economic, and allows for both

more accurate measurement of field distortion and the location of the isocenter.
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(a) Paraffin wax at top with floatable silicon at bottom(b) Paraffin wax only

(c) Machinable wax(d) Water weld

(e) Silicon
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4. GRADIENT ISOCENTER LOCALIZATION

4.0.1 Introduction

Magnetic resonance imaging (MRI) provides an excellent modality for distinguishing

different tissues in the human body, which makes this modality essential for medical

applications. MRI can also be used for treatment planning of medical procedures that

require a great degree of geometrical accuracy such as functional radiosurgery [2]. Un-

fortunately, the accuracy of MRI for medical targeting applications is compromised

by the presence of geometric distortions such as non-linearities of the magnetic gra-

dient fields or inhomogeneities of the scanner main field [1, 4, 6, 7, 3, 8, 10, 11].

Gradient nonlinearities can cause over 2mm of distortion to the location of features

in the image [3, 8].

Modern MRI scanners have built-in distortion correction algorithms, that rely on

knowledge of the magnetic field configuration and its distortion. Built-in algorithms,

which are usually proprietary, are designed based on assumed knowledge of the geom-

etry and location of the gradient coils. A more practical approach is to use a phantom

of known geometry and to derive the distortion by analyzing the MRI images gener-

ated with such a phantom [1, 4, 6, 7, 3, 8, 10, 11]. This method has the advantage

that a scanner-specific correction can be applied, which can also take into account

potential changes in the gradient fields over time.
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Accurate knowledge of the gradient isocenter is essential to very accurate distor-

tion correction methods, To our knowledge, existing distortion correction algorithms,

both built-in and phantom based, make the assumption that the gradient isocenter

coincides with the origin of the DICOM coordinates. This assumption may not be

accurate and should not be used if a high degree of accuracy is necessary.

The goal of this work was to develop and implement a numerical software-based

method to estimate the gradient isocenter of the magnetic field inside an MRI scanner

using the MRI scan of a custom-built phantom. In our previous work [4, 6, 7, 3], we

used an oil filled plexiglas cube with 159.50mm × 159.70mm × 158.11mm dimension

that was designed to fit MR scanners that were available at that time. Current MRI

scanners have a significantly wider aperture, which necessitates a larger phantom

to characterize the field distortion. Furthermore, since the lower part of the scanner

aperture is occupied by the scanner table, the scanning area occupied by the phantom

or the patient is not centered on the gradient isocenter, making correction methods

that assume that the phantom is centered with respect to the gradient isocenter [4,

6, 7, 3, 8] obsolete and potentially inaccurate.

4.0.2 Distortion Phantom

A new phantom design was developed with the intention to probe the distortion in the

50 cm field-of-view (FOV) of a modern 3T MRI scanner (Magnetom Trio, Siemens).

Due to the geometry of the gradient field nonlinearity, the distortion is largest in

the outer fringes of the FOV [4, 6, 7, 3]. Capturing distortion data in the periphery

of the FOV is important for better accuracy of the distortion correction. Building
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a very large cubical oil-filled phantom is a challenge due to weight limitations and

limited capability to accurately machine a very large flat surface. Thus it was felt

to be impractical to simply scale up the original phantom. Another limitation is

that the phantom needs to fit inside the scanner head coil which needs to be used to

achieve a sufficiently high signal-to-noise ratio. To meet all requirements, we designed

a phantom that is comprised of 64 NMR glass tubes of 3 mm inner diameter, filled

with copper sulfate and arranged in 8 surfaces forming an octagon. A water-filled

cylinder in the middle of the octagon ensures a good signal generated by the tubes.

The distance between tubes on the opposite side of the surface is 205mm, which is

about 28% wider than the original phantom. In addition we also added four more

surfaces to provide data and better fit the headcoil. There are 8 removable tubes on

each surface with 10 mm gap between adjacent tubes. Each tube is about 207 mm

long, which is also an increase of about 28% in length from the original phantom.

Tubes are placed along the main axis of the magnetic B0 field to reduce the effects of

chemical shift and magnetic susceptibility and resulting in high-quality axial images.

4.0.3 Computational Algorithm

The algorithm we described here is using simulated data set that is based the geomet-

ric property of the phantom and the properties of the MR images. The MR images we

are using have 1mm per pixel resolution for every image and 1mm thickness between

two adjacent planes. In the simulation, we will be using millimeters as unit for each

data point. Since the images we are using to collect data points are all axial scans,

we will only add noise to x and y coordinate of each data point.
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4.0.4 Tube Modeling

The tubes is 203 mm long. So our simulation data is ranging from -100 to 100 on z

axis for each tube. The arrangement of the tubes could be seen in Figure 4.1. Our

algorithm is based on two standard assumptions [4, 6, 7, 3, 8].: (1) the distortion in

MR images are only caused by the magnetic field inside MRI scanner and (2) the

magnetic field can be perfectly described using the sum of spherical harmonic.

(a) Axial view. (b) Coronal view.

Fig. 4.1: Phantom modeling without distortion

The spacial coordinate of the phantom must be transformed into a coordinate

relative to the gradient isocenter of the magnetic field, see Equation 4.1, then using

the first 5 terms of the spherical harmonic we can estimate a offset in x, y, z direction,

see Equation 4.4. Finally this offset is added the original coordinate to create a

distorted model, see Equation 4.5. Also a very key requirement for this algorithm is

that the z-axis the phantom which is parallel to the tubes must be aligned with the

z-axis of the magnetic field.
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4.0.5 ISO-Center Coordinate Estimation

Using a exaggerated distortion parameter we can visualize the shape of the distor-

tion model. Without distortion, the phantom appears as in Figure 4.1. With large

distortions, the phantom appears as in Figure 4.2, which is useful to understand the
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form of the distortions. A more realistic distortion can be seen in Figure 4.3, which

uses distortion parameters from [3].

(a) Axial view. (b) Enlarged axial view. (c) Coronal view.

Fig. 4.2: Phantom modeling with large distortions

Distortion in the sum of spherical harmonics is coupled in the x and y directions

(orthogonal to axis), making the z axis independent. Noise and distortion are thus

very different in the z direction as opposed to the x-y plane. We break down the

gradient isocenter coordinate estimation into two big steps: estimation of z coordinate

and estimation of x,y coordinate.

Z-Coordinate Estimation

Since the distortion model is based on sum of spherical harmonics, the shape of the

distorted data for each tube is an even polynomial function. Figure 4.3 shows that

the realistic distortion is quite small, being about a maximum of 2 pixels, and the

smaller the distortion the more sensitive the problem becomes. With the first four

terms of sum of spherical harmonics, the shape of the each tube can be seen as part

of a polynomial function of 4th degree. Since the data points of tubes only represent

the middle section of the 4th degree polynomial function, it is also very similar to
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(a) Axial view. (b) Enlarged axial view.

(c) Coronal view.

Fig. 4.3: Phantom modeling with small distortions

a shape of quadratic function. The offset between the largest distortion and the

smallest distortion can be as small as 1mm. With such a small margin, it is more

practical to fit the data points to simpler model than a 4th degree polynomial. Only

the first spherical harmonic is needed in order to estimate the point where gradient

is zero to measure the isocenter. Furthermore, the first term of the sum of spherical

harmonics has the largest signal to noise ratio, so we use a quadratic model to fit the

data points.

We can see the distorted tube models’ middle part is bending toward the center

with both end bending outward. If we were to fit each tubes to a parabola and locate

the point where its gradient is zero, that point’s z-coordinate should be the same as
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the z-coordinate of the gradient isocenter of the magnetic field. The z-coordinate is

measured for all 64 tubes and the result averaged. The resulting estimation is within

0.1 mm of the actual z-coordinate.

X,Y Coordinate Estimation

The estimation of the x and y coordinates of the isocenter is the more difficult problem.

We are assuming that the difference between the distortion on x and y direction are

so small that we can treat them as if they are the same. When this is not true,

the errors on the isocenter location will be asymmetric, and it will be even more

important to maintain a good numerical method to estimate the isocenter. With

that in mind, the distorted data of a tube should all stay on a plane which isocenter

is also in. The intersection of such planes from each tube should be a line that goes

through isocenter. Using the isocenter estimated from previous step we should obtain

an estimation of x and y coordinate.

Since the tubes were aligned to the z-axis to reduce magnetic field distortion by

the tubes, the range of data in the z-direction is of necessity larger. In the x-y plane

the range of points is controlled by the distortion, and is thus only a few pixels. The

resulting equations are highly sensitive, requiring careful handling in our numerical

algorithm.

The equation of a plane in three dimensions is as follows.

ax+ by + cz + d = 0 (4.6)

Rewriting eq 5.2 with the measured data, we can solve for the plane each tube

lies in. This in turn can be used to find the intersection of the planes, which is the
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isocenter.
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Note that eq 5.2 can be rewritten so either x or y is independent, which affects

the error in standard least squares. This becomes particularly important when the

non-linearity is not the same in the x and y directions, as scaling is also well known
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to cause problems for least squares.
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As we can see from figure 4.4, by using equation 5.3 and equation 4.9 to estimate

planes in figure 4.4(b) and 4.4(d) respectively we get and quite accurate x and y

coordinate estimate. However, when you swap the choice of equations, even though

they are mathematically identical, they make a huge numeric difference as shown in

4.4(a) and 4.4(b).

When estimating the x-y coordinate using least square we should keep in mind

that least square assumes there is no observation error, it will only try to correct

one side of the equation depending on how it is setup. With this in mind, we uses

equation 4.8 for x coordinate estimation and 4.11 for y estimation. For the tubes on

the diagonal planes, as we can see in fig4.5, they offers neither a good data for x nor

y coordinate estimation as compared to fig 4.4 (b) and (d). So in order to utilize

the diagonal tubes we have to rotate these tubes to either x or y plane, and get an

estimation of a rotated x-y coordinate, then rotate the rotated x-y coordinate back
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(a) LS fit with y orientation. (b) LS fit with x orientation.

(c) LS fit with x orientation. (d) LS fit with y orientation.

Fig. 4.4: Phantom modeling with distortion, showing differences in isocenter estimates due to how the LS

equation is oriented.

and average it with original x-y coordinate estimation.

In order to obtain a good estimate, we thus must separate the estimation of x and

y, as well as rotate the diagonal oriented tube planes and then separate the estimation

of x and y and rotate back. We refer to this algorithm as Rotated Separable Least

Squares (RSLS). We now present the RSLS algorithm to estimate x-y coordinate of

gradient isocenter as follows:

1. Use equation 5.3 to estimate tube planes for tubes at upper and lower surfaces.

2. Solve equation 4.8 for x and y, but only use x for x coordinate.

3. Use equation 4.9 to estimate tube planes for tubes at left and right surfaces.
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(a) LS using x orientation. (b) LS using y orientation.

Fig. 4.5: Phantom modeling with distortion, showing how diagonal tube planes without rotation do not im-

prove the estimates produced.

4. Solve equation 4.11 for y and x, but only use y for y coordinate.

5. Rotate diagonal tubes π/4, and repeat steps 1-4.

6. Rotate x-y coordinate obtained from previous step by −π/4.

7. Average the x-y coordinate from previous step with x-y coordinate calculated

from step 2 and step 4 for final x-y estimation.

Alternatively, after obtaining the plane equation parameters we can put everything

into one matrix and do a one time estimation using either least square or total least

square. In table 4.1, we can see the comparison of accuracy of estimating an isocenter

at [4 4 3] using different methods. Least square tends to lean toward one coordinate

more depends on setup, while total least square has an accurate and very balanced

result due to the property that it will try to correct errors on both side of the equation.

In the contrast, our method has best properties of both methods:

• It is accurate. For both x and y coordinate it does a better job than total least

square, much better than least square’s worst case and very close to least square’s
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x̄ σx err ȳ σy err

RSLS 3.9709 0.1068 0.0291 3.9677 0.1008 0.0323

LS 3.9950 0.1118 0.0050 3.9414 0.1011 0.0586

TLS 4.0800 0.1035 0.0800 4.0800 0.0964 0.0800

Tab. 4.1: Average of 200 runs using different methods for estimating the isocenter at [4 4 3] in the presence

of symmetrical distortion

best case.

• It has very balanced result. Both x and y coordinates are very close the correct

result equally just like total least square.

• It has very tight error boundaries. After 200 runs, it’s error is tighter than

standard least square.

Therefore, our estimation method is a good alternative to traditional least square

or total least square methods. Although it might require more computation, it could

be easily dealt by modern GPU computing. And due to the fact that each least

square estimation has relative small matrix, and each estimation is independent of

each other, it is very close to “embarrassingly parallel” type of problems and makes

it easy to solve.

In table 4.1, the test is run using a symmetric x-y axis distortion. We can see

that all three methods performed very well. RSLS method’s result is slightly better

than Total Least Squares (TLS), and one on y axis it is better than standard Least

Squares method.

When the distortion is not symmetrical the issue of proper estimation becomes
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x̄ σx err ȳ σy err

RSLS 3.8073 0.1117 0.1927 3.9838 0.1059 0.0162

LS 4.2191 0.1117 0.2191 3.8765 0.1003 0.1235

TLS 9.5744 0.2616 5.5744 8.6905 0.2393 4.6905

Tab. 4.2: Average of 200 runs using different methods for estimating the isocenter at [4 4 3] in the presence

of non-symmetrical distortion

crucial. In table 4.2, we show the result of using non-symmetrical distortion in which

the y direction was set to be twice the distortion in the x. In this test, TLS method’s

result is the worst, off by a few millimeters. Both LS and RSLS show comparable

degradation of performance in x. LS shows degradation in the estimation of y as well,

but RSLS, since it is separable, does not experience any degradation of it. Only the

RSLS’s result remains quite accurate. This shows the advantage of RSLS over the

other two traditional methods.

4.0.6 Conclusion

In this work, we developed a new numerical algorithm to accurately determine the

gradient isocenter of MRI scanners based on a new distortion correction phantom.

Knowledge of the gradient isocenter is an essential part of gradient-nonlinearity cor-

rection methods. We have shown that the method used in this work to estimate the

gradient isocenter is a good alternative to more traditional estimation methods such

as least squares and total least squares. The new algorithm is particularly suited

when the image data are extremely sensitive to the presence of noise and asymmet-

ric distortion. Using simulated (but realistic) distortion data, it was shown, that
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the resulting estimated isocenter was within 0.2 mm of the actual gradient isocenter,

leading to a better estimate than the currently used DICOM coordinate center.
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5. DATA EXTRACTION

5.1 Introduction

In order for our estimation to work we need to collect two different types of data

for our calculations. One is the true geometric dimension of our phantom, the other

is the corresponding distorted signal that represent those known geometric locations

inside MR images. Some of these data can be relied on manufacture’s measurement,

while others would require us to extract information from various types of images

to estimate the measurements. In this chapter we will discuss how we obtain each

measurements and algorithm involved in those processes.

5.2 Water Tank

5.2.1 CT Scan overview, target surfaces

Due to the limitation of manufacture equipments, water tank at each end can only

be guaranteed that their surfaces are parallel 1 to each other, their accurate distances

betweeen each other are unknown. We decided to perform a CT scan2 on the phantom,

then collect each surfaces’ data points through coronal view CT images. With enough

data points on each surface, we should be able to have a good estimation of the

1 what’s the error?
2 what’s the CT’s error
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distances with between each pair of surfaces. 3

(a) Coronal view, center slice (b) Marked target surfaces

Above images indicates the target feature we are looking for inside a typical coronal

view of CT image.

5.2.2 Canny Edges

The obvious method is to extract the data points is to apply an edge detection

algorithm on the image, then iterate through the resulting edge image to collection

the desired lines. However, the resulting edge image from this approach often contain

fair amount of noise edges some of which overlap with the desired edges we are looking

for. This problem is illustrated in figure 5.1, 5.2 and 5.3.

In figure 5.1(a), we can see that Matlab’s canny algorithm with default parameter

gives descent edges when applied to image #141. However, the same parameters will

create many noisy edges in some other images, e.g. #270 in the same series in figure

3 brief outline of full algorithm
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5.2(c). Setting higher threshold is able to reduce those noisy edges as we can see in

figure 5.2(c), but that threshold will eliminate some edges we are looking for as shown

in 5.1(c).

To get rid of this noisy edges, different types algorithms might be involved, proba-

bly including validating all the edges in an image, which might involve multiple pass

to the whole image, and in which case the process could be slowed down by factor of

several times. So if there is a simpler and faster way, it would be preferred choice.

5.2.3 Surface Location

Since all objects we are looking for has a very uniform and distinct shape, we could

start with finding a small regions each contains one object. In our case, the choice is

very obvious. The objects we are looking for are four straight lines at fixed location

and parallel to each other. For images that contain those objects, they should have

them at almost exactly the same location with possibility of a few pixels offset due

to potential tiltness of the phantom during scan. If we choose a slice in the middle

of the series, that should give us a relatively smaller overall error margin both above

and below the surface location on that particular slice comparing to picking a slice at

the beginning or at the end of the series which would give a relatively larger error on

either above or below the surface location. Also the slice in the middle of series tends

to have better quality. We would call this middle slice as surface location sample.

In the surface location sample, we would plot a histogram of gradient of the sum of

middle 7 columns as shown in figure 5.4(a) and a histogram of intensity distribution as

shown in figure 5.4(b). From figure 5.4(b), we can see that there are three very obvious
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normal distribution in the graph. From left to right, they represent background

noise signal, water signal and phantom tank signals respectively. In figure 5.4(c), a

zoomed in picture of the region between water signal distribution and phantom tank

distribution, we can see that two distributions’ tails overlaps with each other. From

the fact that the number of pixels in this overlap region is quite small and that this

region is between two distributions, we can determine that most of them should be

the pixels on the boundary between water and tank. So, according to ranges of two

distributinos as we can observer from the diagram, the range of difference between

tank signal and water signal should be somewhere between 40 to 300. However, since

the difference we are looking for is on the boundary of water and phantom tank,

signals in those regions should tend to be close to each other. Therefore we should

expect the to see spikes in gradient to be around ±40. In figure 5.4(a), we can clearly

see six spikes that can be uniquely identified. Their values are -41.8404, 44.2372,

-36.2271, 50.4055, -40.9654 and 29.8124, and they are right around the predicted

range. Thus, we can identify them with high confidence that they are on each of the

boundary between water and phantom tank.

With one pixel on each locations of the water and phantom tank boundaries are

identified, we can also narrow down the location of each surface by specifying the

surfaces are within the ±5 rows of the row coordinate of each identified pixels. The

±5 rows should give enough room for any horizontal or vertical tiltness.
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5.2.4 Edge Detection On Local Surface Region

After the regions of boundaries of water and phantom tank are extract we can proceed

to extract the surface edge from these regions. The following issues are need to be

resolved:

1. Identify the left and right boundaries of the edges.

2. Remove the noisy edges, and there are two types noisy edges:

(a) Noisy edges that are not in contact with the target edge.

(b) Noisy edges that are in contact with the target edge.

Boundary Finding

To detect the left and right boundary we plot the histogram of sum of intensities of

each column across the region as well as the gradient for the intensity graph as shown

in figure 5.6.

Upper pair of arrows in figure 5.6 indicates where the inside edges of the phantom

tanks are, and the lower pair of arrows indicates how do those edges shows up in its

gradient graph. The two small edges are identifiable with properties of value bewteen

200 and 1000. We can identify them with this property for most of the sliceds. The

transition from phantom tank to water become smoother on the slices more toward

anterior or posterior in coronal view.

There are couple of issues with this approach.

• For images close to either edges of the two tanks, contrast ratio between water

and tank material become very weak. As shown in figure 5.9, the transition from
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tank to water become very smooth, and their gradient, therefore, become very

small, and fallen out the filter range we specified. If we lower the range of the

filter, it will pick up too many noise.

• For superior tank’s outside surface, its regions also include the end part of tubes.

Structure on those regions of tubes are fairly complex, which will result in fre-

quent change of each column’s total intensities in regions that have tubes.

However, with the slices that able to identify the edges, we can reconstruct majority

of each water tank surface and they are more than enough for us to estimate the

distances between each surfaces, especially with the assumption that they are all flat

and parallel to each other.

Removing Noise

We are going to remove the noise of the each edge in two steps.

1. Remove noisy edges that are unattached to target edges.

2. Filter out small edges sticking out of target edges.

Noisy edges unattached to target edges has one characteristic which is short. Since

these edges are generated by noises, all observations has shown that they all tend to

be very short in length due to lack of consistent pattern. To remove the noisy edges

that are unattached to the target edges, we do the following steps:

1. Create an empty image that has the same size of the input image.

2. Iterate every pixel of input image
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(a) if current pixel in input image is not zero:

i. We recursively collect all the nonzero pixels from the input image and

set those pixel values on the input image to 0.

(b) If there has been an edge collected, we check the length of this group of

pixels

i. If the length is less than a threshold, say, 15, we assume they are a noisy

edge and complete ignore this group of pixels

ii. Otherwise, we will write these pixels’ values to the image we initially

created.

After follwing above steps, the resulting image will look like something like figure

5.8 (c).

At this stage, we will apply the boundary limit to this newly filtered edge, removing

all the pixels beyond either left or right boundary. And this will left us with target

edges with some small noisy edges sticking out as shown in figure 5.8 (d).

To filter these sticking edges out, we do the following steps:

1. Extract 2d coordinate informate of every edge pixels, and fit them to a straight

line, since we know our target edge is a straight line. We can setup the equation

as: [
columns 1

]m
k

 =

[
rows

]
(5.1)

where columns is column values of all edge pixels and rows is row values of all

edge pixels. m and k will the line parameter of the straight line we are trying to

fit into.

43



2. Group all edge pixels by their column value.

3. Iterate all column groups. We pick a pixel from each group having the minimum

value of |Pixelrow − (m ∗ Pixelcolumn + k)| and ignore the rest.

4. At the end we should have one pixel per column group left, they will be our final

edge.

For testing we write out these filtered edges to original input image. We can see

the result in figure 5.9 (a). For some edges, in some image we are unable to determine

the left and right boundary. We will skip them as we have more than enough data

with images that can gives us good edges. Figure Figure 5.9 (b) is an example where

some edges are identifiable while others not.

Improvement

5.2.5 Creating Surfaces

Surface in 3D space can be represented by equation:

ax+ by + cz + d = 0 (5.2)

With somewhere between 50,000 70,000 date points for each surfaces, it’s the

best to use least square (Ax = b) to esitmate each surfaces’ equation paramters.

Considering the following fact:

1. Least square assumes that there is error in measurement but not observation, so

it will only try to minimize error in A not b.

2. For every data point we only have measurement error in two axis, the third one

is taking for granted from DICOM info. Though there should be some very
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small error during CT image reconstruction as well, but that’s not necessary to

be consider here.

Since the image set we are dealing with is coronal view, which means it’s the y-axis

we are taking for granted, we are setting up our least square as follows:

a

b
x+

c

b
z +

d

b
= −y (5.3)

x0 z0 1

...
...

...

xn zn 1




a/b

c/b

d/b

 =


−y0
...

−yn

 (5.4)

With this setup, our estimated paramters for each planes are:

a b c d

surface 1 −1.0617× 10−06 1 −6.9880× 10−10 −2.0644

surface 2 −3.8209× 10−06 1 −2.3851× 10−9 −6.7681

surface 3 3.2496× 10−06 1 4.3242× 10−10 −4.8297

surface 4 3.3399× 10−06 1 1.2575× 10−10 −2.0644

Reconstructed surfaces can be see below:

Notice that in the YZ view in figure 5.10(a) (b) (c), all four surfaces are tilted.

This is consistant with what we observed on saggital reconstruction of this image set.
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5.2.6 Estimating Surfaces Distances

5.3 MR Tubes

5.3.1 Introduction

There are total 64 MR tubes filed Copper Sulfate (CuSO4) places on the outer region

of the phantom. We filled them with CuSO4 due to this solution has very good

magnetic suspetibility inside MRI scanner. They produce very strong signals in MR

images which make them much easier to extract. Tubes can be purchased separately,

and easy to replace if necessary. Tubes are sealed with silicon to prevent leaking and

could stored vertically for a long period of time.

These tubes are used to estimate MRI scanner’s gradient isocenter as well as

calculate the x and y axis’ undistortion parameters. To calculation undistortion

parameter, we need both original accurate 3D locations and distorted 3D locations

of each tubes. We can use tube holders’ spacing specified in phantom’s specification

to determine their undistorted locations since these holders are precision made. So

the missing information are distorted tubes locations. MRI’s distortion is nonlinear,

which means the 3D shifts at different locations are different. The way we extract

tubes’ distortion is by analyzing the axial scan/reconstruction of the phantom to

determine a starting and ending slice of those tubes, and for every slices in between

them, we find the center of the each tube. Each bended tube in MR images can

be viewed as series. We will use these cetners in later calculation of undistortion

parameters.
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5.3.2 Range

This section describes how to determine the first and the last axial slices that are

used to extract tube centers.

Tube holders at both end of the MR tubes will cause the regions of the tubes inside

the tube holder to shift. Depending on how the original scan is performed, the shifts’

direction may vary. If the original scan is done in axial directin, the the shift will

occur inside xy plane; if the original scan is performed in sagittal direction the shift

will occur on z-axis. So this means that we cannot use the signal from the regions

where tube holders are at.

One way to determine where the tube holders’s z-axis location is to find the middle

water tank boundaries. Tube holder is usually at least 5mm away from each tank

surfaces in MR images. So after finding the location of two water tank surfaces we

can add or subtract 4mm as two boundaries. For every axial slices, we will check it’s

z-axis location to see if that slice is between the boundary, if it is, we will continue

to process the slice, otherwise we will ignore it.

To find a accurate middle tank surfaces, we can work on either coronal or sagittal

series, and use the following steps:

1. Averge the middle slice of the series with its two adjacent slices to produce a

sample slice. This way we can get rid of some noise and would give a more

reliable result.

2. In the sample slice, we average middle 3 columns of pixels to produce a sample

column.
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3. Produce a gradient for the sample column.

4. The top surface of the middle water tank could be set to be the first peak in

second half of the data that is greater than 150; and the bottom surface of the

water tank could be set to the last peak in the first half that’s lower than -150.

5. Two pixels will be used for calculating the z-axis location of the two tank surfaces.

Their row values are the two values we calculated from previous step repectively,

and their column values are both middle column of the middle slice of this series.

6. Two pixels will be converted into 3D dicom coordinate using DICOM affine

formula. The one with positive z coordinate will be added 4mm and the one with

negative z coordinate will be subtract 4mm. These two z coordinates defines a

range which axial slices used to extract MR tubes centers should be in.

7. To validate a axial slice, we use the ImagePatientPosition parameter to see if the

slice is in the range.

5.3.3 Tube Centers Extraction

This section describes the method used in tube center extraction.

A typical axial view of phantom in MR images looks like this:

The strategy to extract tube centers is to use one slice to produce a series of masks

which specified the tube locations. For reest of the slices, we use the masks to extract

regions where tubes are at and process each region separately. There are several

advantage of doing this:

• This method will make the whole process runs a lot faster due to significant less
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amount of pixels needed to process.

• It also has a lot potential to run much more faster. Once a set of masks is

produced from a image, not only a number of images following that slice could

be processed simultaneously, 64 regions in each images could also be processed

at the same time after they are extracted.

• It will be less error prone as well, due to masks narrows down the problem

regions.

Mask Extraction

This section describes how the masks are produced.

The following steps are used to extract a set of tube mask from an axial MR images

within the range we have calculated previously.

1. Use a threshold to produce a binary image that only contains tube signals. Due

to the good suspetibility of CuSO4 solutions, signals from solutions inside MR

tubes are much higher than other regions of in the same image.

2. Apply canny edge detection on the binary image produced from previous step.

Note: Applying canny directly on original image with high threshold will also

yield a good quality edge images with much smaller circles.

3. Masks of tubes at top row, bottom row, left column and right column are gen-

erated first. for top row:

(a) Iterate the the top left region of the image, sweeping row wise from left to

right to search for a pixel that belongs to left most tube on top row.
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(b) Once an edge pixel is found, all the edge pixels of the this tube will be

collected, i.e. record and remove from the image. And a center of the tube

is computed using steepest descent method.

(c) Use the center calculated from previous method as a starting point and walk

the pixels on the same row to the right to obtain 7 other tube centers of top

row by repeating previous steps.

4. Use similar method that obtained centers of top row to obtain bottom rown, left

column and right column. For bottom row, lower right region of the image are

searched initially, sweeping from right to left, once the first tube center is found,

algorithm traverse to left to collect the rest tube; for left column, top left region

is swept column wise from up to down, after finding the first center, algorithm

traverse down ward on the same column to search for other tubes. for right

column, bottom right region is swept column wise from bottom to top, after

finding the first center, algorithm traverse upward to search for other tubes.

5. For diagnal tubes, similar initial search is used to look for the first pixel of the

first tube. When looking remaining tubes, row wised sweeping is motion is used.

6. After a center is found, a square region is allocated for a mask for that tube. In

total, there are 64 masks extracted from on image. Each region will have it’s

top left coordinate on the image as well as width and height.

Center calculation is using steepest descent. Several other algorithms are tested,

such as, weighted average, least square, but steepest descent has the best result among

the three.
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Center Extraction Using Masks

With a set of mask is extracted, it would much easier to extract centers on other

images with the masks:

1. Using each region’s top left corner coordinate and it’s width and height, 64 much

smaller regions only containing tubes can be extracted.

2. Each region can use the same edge algorithm used earlier step, then extract

pixels and calculate the centers. Center coordinate in the region will add to the

top left corner coordinate to become a coordinate in original image.

5.4 Water Tank MRI

5.4.1 Introduction

Naturally due to the similarity of MR image and CT images, one can imagine that

we shall reuse the algorithm we used to estimate water tank surfaces in CT images

in MR images. However there are following challanges:

1. MR images’ quality is not as good as CT images. Espeically the water tank

appeared at lower portion of images. That portion of the phantom is not com-

pletely inside the head coil, so the signals from that portion of the phantom

contains a lot of noises. With that amount of noises, algorithm we used in CT

images tends to get incorrect results.

2. Unlike CT images, which has no distortion in the images, MR images are dis-

torted. Tank surfaces in MR images have curvature. So when processing the
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curvatured noisy edge, we can’t really use straight line anymore, there has to be

another reliable way to help us trace the broken, noisy curved edges.

3. Because CT images are not distorted, missing some data points at the edges is

not that important. With most data we collected, we can still construct a pretty

accurate surfaces. However, since MR images are distorted, data points on the

edges are especially important because they contain the most information about

the distortion model.

Once apprach is to use

Different cases:

• Top surface: remove robber pads

• bottom surface: noise

• Slices toward the edge

NOTE: old get˙horizontal˙boundaries is obvious not as sophisticated as the newer

one, it would not even handle the mid slice well.

horizontal boundaries for surfaces:

1. Locate tube regions on either side of the water tank

2. First we need to start from the middle to get an accurate middle slice’s left and

right boundary. To do this we will average middle slice and it’s previous and

next images to get rid of some of noise signals as well as enhance the real data

signals.

3. We will use both coronal and saggital set to extract surfaces
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4. Bottom tank’s boundaries could just use the upper tank’s

5. Only the exterior inside surface will use canny for edges, every other surface will

use column wised data analysis. All surfaces will use the same left and right

boundaries derived from exterior inside surface. Column wised pixel analysis

should be able distinguish padding region and columns that might be outside

left or right boundaries.

6. Averging three slices work well for most of the slices. Experiments have shown

that 60% mid slices is a good cut off point
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(a) Default parameters (b) Low threshold 0.01, high threshold 0.02

(c) Low threshold 0.02, high threshold 0.04(d) Low threshold 0.05, high threshold 0.1

Fig. 5.1: Canny algorithm applied to coronal sequence 141 with different parameters
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(a) Default parameter (b) Low threshold 0.01, high threshold 0.02

(c) Low threshold 0.02, high threshold 0.04(d) Low threshold 0.05, high threshold 0.1

Fig. 5.2: Canny algorithm applied to coronal sequence 270 with different parameters
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(f) Low threshold 0.02, high threshold 0.04(h) Low threshold 0.05, high threshold 0.1

Fig. 5.3: Canny algorithm applied to coronal sequence 276 with different parameters
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(a) mid slice intensity histogram (b) Mared overlap region

(c) mid slice surface locations

Fig. 5.4: Histograms of middle column of middle slice of a coronal series
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(a) Histogram for inferior tank inside edge

Fig. 5.5: Histogram for boundary detection on image sequence #270
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(a) Histogram for superior tank outside edge

Fig. 5.6: Histogram for boundary detection on image sequence #100
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(a) Extra edge caused by tube section(b) Histgram of the superior outside surface in (a)

Fig. 5.7: Superior outside surface artifacts

(a) Extracted region (b) Raw edges

(c) Removed noisy edges (d) Edges within the boundary

Fig. 5.8: Edge extraction intermediate results on image sequence #270’s inferior tank inside edge

(a) Edge result on image sequence #270(b) Edge result on image sequence #100

Fig. 5.9: Final edge results
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(a) (b)

(c) (d)

Fig. 5.10: Water tank surfaces reconstruction from CT scan, YZ view
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(a) (b)

(c) (d)

Fig. 5.11: Water tank surfaces reconstruction from CT scan, XY view
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6. PARAMETERS CALCULATION

6.1 Introduction

With both original measurements of the phantom and distorted data points, distortion

or undistortion parameters can now be calculated

x̄i = xi(1 +Kx0(x
2
i + y2i ) +Kx1z

2
i +Kx2z

2
i (x

2
i + y2i ) +Kx3(x

2
i + y2i )

2 +Kx4z
4
i ) (6.1)

ȳi = yi(1 +Ky0(x
2
i + y2i ) +Ky1z

2
i +Ky2z

2
i (x

2
i + y2i ) +Ky3(x

2
i + y2i )

2 +Ky4z
4
i ) (6.2)

z̄i = zi(1 +Kz0(x
2
i + y2i ) +Kz1z

2
i +Kz2z

2
i (x

2
i + y2i ) +Kz3(x

2
i + y2i )

2 +Kz4z
4
i ) (6.3)

where (x̄i, ȳi, z̄i) and (xi, yi, zi) represent distorted and undistroted data sets. If

(x̄i, ȳi, z̄i) is distorted data set, Kxi
, Kyi , Kzi would be distortion parameters, i.e.

parameters used to distort original phantom data. If (x̄i, ȳi, z̄i) and (xi, yi, zi) are

swapped, Kxi
, Kyi , Kzi would work as undistortion parameters, i.e. parameters used

to convert distorted data points into their original position. In this case, what need to

be calculated is undistortion parameters which will be used to correct the distortions

inside MR images.

Both (xi, yi, zi) and (x̄i, ȳi, z̄i) have to be in DICOM coordinate, i.e. relative co-

ordinate from gradient isocenter. The gradient isocenter computed in early chapters

are using data points extracted from MR images, so it can be used to convert data
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points from MR images into DICOM coordinate, but not the undistorted data.

6.2 XY Axis Correction Parameters Calculation

This section describes how to setup and calculate the X and Y axis correction pa-

rameters.

Consider using two data points from two separate MR tubes in the same xy plane,

two equations could be setup:

x̄0 = x0(1 +Kx0(x
2
0 + y20) +Kx1z

2
0 +Kx2z

2
0(x

2
0 + y20) +Kx3(x

2
0 + y20)

2 +Kx4z
4
0) (6.4)

x̄1 = x1(1 +Kx1(x
2
1 + y21) +Kx1z

2
1 +Kx2z

2
1(x

2
1 + y21) +Kx3(x

2
1 + y21)

2 +Kx4z
4
1) (6.5)

where (x0, y0, z0) and (x1, y1, z1) are DICOM coordinates of the two points from

distorted space, which are known, and (x̄0, ȳ0, z̄0), (x̄1, ȳ1, z̄1) are DICOM coordinates

of two points from undistorted spaces which are unknown. However, the exact dis-

tance of tube spacings are known, as well as the distance between opposite side of

tubes. So (δx0,1, δy0,1, δz0,1) can be calculated using

(δxi,j, δyi,j, δzi,j) = (x̄i, ȳi, z̄i)− (x̄j, ȳj, z̄j) (6.6)

where i, j should belong to the same row of tubes for calculating X-axis correction

parameters or should belong to the same column of tubes for calculating Y-axis

correction parameters. figure 6.1 shows how the pairing is done for x, and y axis.
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(a) (b)

Fig. 6.1: Pairing of MR tubes. (a) Pairing for X-axis (b) Pairing for Y-axis

For each pairing, a new formula is produced.

δx̄ij = δxij(1 +Kx0((x
2
i + y2i )− (x2j + y2j )) +

Kx1(z
2
i − z2j ) +
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6.3 Z Axis Correction Parameters Calculation

Similarly to xy correction, we pair up surfaces of water tanks. Figure 6.2, show the

pairing.

(a)

Fig. 6.2: Pairing of tank surfaces.
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And the formula we used for z axis correction is:

δz̄ij = δzij(1 +Kz0((x
2
i + y2i )− (x2j + y2j )) +

Kz1(z
2
i − z2j ) +

Kz2(z
2
i (x

2
i + y2i )− z2j (x

2
j + y2j )) +

Kz3((x
2
i + y2i )

2 − (x2j + y2j )
2) +

Kz4(z
4
0 − z4j )) (6.9)

Accuracy

The accuracy has been tested in matlab simulation. XY axis correction tends to stay

around within 0.001 mm while Y axis correction is around 0.1mm accuracy.
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7. SUMMERY AND CONCLUSION
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