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ABSTRACT

The growth of Proton therapy requires new imaging and treatment planning

modalities. X-ray computed tomography (xCT), which is widely available,

has been used for the treatment planning for proton therapy, but since the

basic interactions of xCT in matter are fundamentally different than those

of the protons, the resulting density map from xCT is only an approxima-

tion. Accuracy of the electron density map is crucial to successful use of

proton therapy, thus requiring proton computed tomography (pCT), which

accurately maps the electron density.

The image reconstruction problem for pCT is to obtain the best estimate

for the relative electron density map from the measured proton data. The

problem is not exactly solvable because of two factors: (1) the statistical

fluctuation of the measured energy loss mainly due to energy straggling, and

(2) the statistical deviation of the proton from its most likely path (MLP)

due to multiple Coulomb scattering.

This thesis develops an optimized and effective iterative reconstruction al-

gorithms taking into account the peculiarities of proton transport through

the object, and hardware acceleration methods need to work together syn-

onymously in order to be suitable for clinical applications. Algebraic recon-

struction technique (ART) has shown some promise in the literature, but

its theoretical basis does not fit with the assumptions of pCT. This thesis

explores the assumptions and practical reconstruction of the electron den-

sity maps. In particular the performance in terms of reconstruction time,

and the parallelizability will be examined.
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1. BACKGROUND

1.1 Introduction

Proton computed tomography (pCT) has been explored in the past decades because

of its unique imaging characteristics, low radiation dose, and its possible use for treat-

ment planning and on-line target localization in proton therapy [?, ?]. The use of

protons for medical imaging was first suggested in the late 1960s by Koehler [?]and

first experimental work on the concept of a pCT scanner was performed at the Los

Alamos National Laboratories in the late 1970’s [?, ?] but pCT was never fully de-

veloped because of great advances in x-ray CT (xCT) and other imaging modalities.

In recent years, pCT has gained relevance because proton treatment centers opened

and rotatable proton gantries became available [?, ?].

In his pioneering work, Koehler showed that minute density differences, for ex-

ample, the addition of a 0.035 g cm−2 thick aluminium foil to a stack of aluminum

absorbers 18 g cm−2 thick, could be discerned by means of 2D-projection proton radio-

graphy using radiographic film as the detector. Subsequently, Steward and Koehler

(1973a,b 1974) and others (Cookson 1974, Moffett et al 1975, Kramer et al 1979)

demonstrated that the high contrast images obtained by proton radiography provided

improved imaging of low contrast lesions in human specimens over conventional x-ray

techniques at comparable exposure levels. The high contrast obtained by imaging the
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energy loss of protons with radiography is a consequence of the sharpness of the well

known Bragg peak that occurs near the end of proton range. Even higher contrast

can be achieved through the use of heavy ions rather than protons(Benthon et al

1975, Capp et al 1978) [?].

Although first suggested by Cormack in 1963 (Cormack 1963, 1964) as a possibility

to do tomographic reconstructions with proton imaging, the first author that inves-

tigated pCT experimentally was Goitein (1972). He employed projection data with

alpha particles measured by Lyman to demonstrate the utility of his least-squares re-

construction algorithm for pCT. Later, in comparisons of heavy charged particles CT

(including pCT) with x-ray CT (Crowe et al 1975, Huesman et al 1975, Cormack and

Koehler 1976, Hanson 1978) it was shown that charged particles have a clear dose ad-

vantage over x-rays [?]. This dose advantage might be utilized clinically by providing

CT reconstructions with significantly better density resolution than it is possible with

x-rays at a given dose level. Furthermore, in charged particle CT, it is the electron

density relative to water what is imaged rather than the photon attenuation coeffi-

cient relative to water that is used in x-ray CT. This unique imaging characteristics

of charged particles may prove also to be beneficial in medical diagnosis [?].

X-ray computed tomography (CT) brought slice imaging into wide use for the first

time and represented its breakthrough. Today CT is an essential part of radiological

diagnostic and can be seen as a mature and clinically accepted procedure. It has

supplemented or replaced classical x-ray imaging in many areas [?].

A rapid technical development phase in the seventies was followed by an uneventful

phase with no essential highlights in the eighties. this was partly caused by the expec-
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tation that the importance of CT would decrease successively due to the introduction

of magnetic resonance (MR) tomography. Contrary to these expectations, CT is in

the phase of rapid technical developments and again broadening its application spec-

trum. The development of spiral CT and the transition from scanning single slices

to the raid scanning of complete value has made CT attractive again and has led

to decisive developments in technical and in clinical perspectives. The introduction

of multi-row detector systems and scan times in the sub-second range constitute the

high point of these developments.

Since x-ray CT is widely available, and proton facilities are still limited to a few cen-

ters world wide, current attention is directed to therapeutic applications of pCT [?].

Proton therapy is an advanced form of radiation therapy which offers proven advan-

tages over radiation therapy with photons (e.g., high energy x-rays) [?]. Treatment

planning for proton therapy is currently based on x-ray CT, which has disadvantages

because the mapping of Hounsfield CT values to electron density is not unique [?].

Furthermore, it would be advantageous to use protons for image guidance in the treat-

ment room for several reasons, including the dose advantage of protons and avoidance

of alignment problems between imaging equipment and radiation source.

pCT applied in proton treatment planning would be advantageous because it di-

rectly reconstructs the electron density values and uses the same radiation modality

that is being used for treatment. Therefore, pCT in combination with proton ra-

diation therapy may lead to ultimate form of image-guided radiotherapy. pCT is

generally based on similar underlying principles as other medical imaging modalities

but differs in some aspects from x-ray CT. The imaging information of pCT is the
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energy loss of individual protons rather than the attenuation of a proton. From this

information, the integrated density along the proton path can be estimated. The

most important difference with respect to xCT is that protons undergo multiple scat-

tering inside the object and, therefore, follow paths that statistically deviate from

straight lines. Because of this different reconstruction algorithms than those relying

on straight path assumptions have to be used.

In x-ray CT, data collection is considered mathematically as a Radon transform,

i.e., the integration along straight lines of the object source function. In this case,

the object data represent the attenuation coefficient map and the projection data the

log values of the detected x-ray counts. In pCT, protons with known entry energy

are tracked individually on the entry and exit side of the object and their outgoing

energy is recorded. This can be achieved with modern particle tracking detectors

developed for high-energy physics applications. Because of the random nature of

proton scattering, it is not possible to calculate the precise trajectory of the protons

within the target, but the entry and exit locations and directions of the protons can be

used to estimate their path through the object, and the measured energy loss permits

estimating the integrated electron density along the proton path.However, because

most of the technological development efforts successfully went into improving the

diagnostic xCT in those decades, the interest in developing medical pCT stagnated.

The situation changed with the development of medical proton gantries for delivery

of proton beams, first at Loma Linda University Medical Center, and now in several

other proton treatment centers, resulting in an increasing number of patients treated

with proton therapy. This new technical development and increase of patient number
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elevated the need for an accurate prediction of the proton dose distributions and

verification of the patient position on the treatment table, and also demanded the

development of accurate 3D imaging techniques. This has lead to a renewed interest

in proton imaging and the construction of a proton radiography system at the Paul

Scherrer Institute in Switzerland [?].

The main goal of pCT for proton therapy applications is to determine of the elec-

tron density distribution of the object and to use this information for treatment plan-

ning and image-guidance in the treatment room. The image reconstruction problem

for pCT is then to obtain the best estimate for the relative electron density map from

the measured proton data. The problem is not exactly solvable because of two rea-

sons: (1) the statistical fluctuation of the measured energy loss mainly due to energy

straggling, and (2) the statistical deviation of the proton from its most likely path

(MLP) due to multiple Coulomb scattering. Nevertheless, approximate solutions of

the electron density map can be found by iteratively solving the reconstruction prob-

lem.

Presently, a pCT system utilizing a proton gantry and fast image reconstruction

techniques has not yet been developed. However, a recently published design study

has concluded that a pCT scanner should utilize instrumentation developed for high-

energy physics such as silicon track detectors and crystal calorimeters equipped with

fast readout electronics, allowing one-by-one registration of protons traversing the

body during a full revolution of the proton gantry [?]. Different from proton beam

therapy where the Bragg peak is positioned inside the targeted tumor inside the body,

pCT may label each incident proton and detect that proton when it exits from the
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body by a high-energy detector where the high-dose Bragg peak will occur inside

the detector. The pCT scanner will provide precise information on the protons inci-

dent energy, location and direction, as well as its exit energy, location and direction.

Another recently published study further concluded that a completely new image re-

construction paradigm is needed for pCT which deals with the proton path of curves,

rather than the well-known X-ray path of straight lines in xCT [?]. An adequate

image reconstruction algorithm shall utilize the pCT scanner measurements to map

the energy loss along the proton trajectories through the body.

A major challenge in pCT that requires research and development is to investigate

and optimize reconstruction algorithms. Researchers, using the Monte Carlos sim-

ulation tool GEANT4 and an elliptical object model have shown that, in principle,

an algebraic reconstruction technique (ART) can lead to a satisfactory spatial reso-

lution [?]. However, there are many variants of algebraic reconstruction techniques

(also called series expansion methods) that should be explored and optimized for the

pCT application. These are expected to differ in terms of computer speed, possibility

to perform parallel computations, and the accuracy of the reconstruction. The goal of

this thesis is to establish the computer science basis for this research allowing future

students and researchers to further explore this important field.

1.2 Significance

The number of proton treatment centers has dramatically increased in recent year. For

many years, the proton treatment center at Loma Linda University Medical Center,

which opened in 1990, was the only hospital based center for proton therapy, but now

6



there are about 10 such facilities world wide.

With increasing use of protons for the treatment of patients, doctors want to exploit

their unique ability to stop the beam immediately in front of a critical structure such

as the optic nerve or the spinal cord. This requires very accurate treatment planning

and the ability to predict where the proton beam will stop inside the patient. With

current x-ray CT based treatment planning the accuracy of proton range predictions

is not better than a few millimeters which often causes the radiation oncologist to

avoid beams the that would stop in front of critical structures. Such major limitations

can be over come by developing pCT.

The knowledge of pCT reconstruction is currently very limited and only a few

publications on this subject exist. Therefore, more work in this field is needed and

was initiated with this thesis project. Development of time-efficient computer algo-

rithms is the task of computer scientists and this thesis will be significant for further

development and optimization of reconstruction in pCT.

A successful implementation of pCT would avoid the ambiguities of mapping xCT

Hounsfield units (HU, which is related to the X-ray attenuation coefficients) to elec-

tron densities, and would allow actual dose distribution and also verification of pa-

tient position in the treatment room. In other words, the availability of pCT in the

treatment room will predict very accurately the position of the Bragg peak within

the patients body, resulting in a maximum dose delivery to the targeted tumor and

successful sparing of the surrounding normal tissues. Furthermore, a successful inte-

gration of pCT with proton therapy may lead to the ultimate form of image-guided

3D conformal radiation therapy, which has the potential to deliver the optimal dose to
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any point within the patient and provide arbitrarily shaped inhomogeneous dose dis-

tributions as desired This is now recognized as the major potential of pCT in medicine.

The image formation principles of proton beam are presented below. Hardware con-

figuration and data acquisition for pCT will be discussed. The emphasis will be on the

issue of image reconstruction from projected data along proton trajectories through

the body.

1.3 Purpose of The Thesis

Preliminary work clearly points to algebraic techniques or series expansion meth-

ods for proton CT reconstruction. So far, only an additive algebraic reconstruction

technique (ART) has been attempted on a single object. Other algebraic or series

expansion techniques may give better results. These techniques have parameters that

can be optimized, which has not been done yet. Furthermore, reconstruction has only

been done of a 2-D object and with simulated data, this needs to be extended to a

3D objects and to data that have been acquired with an experimental pCT proto-

type. Lastly, one of the challenges of the algebraic reconstruction or series expansion

techniques is their high computation cost (e.g., twelve hours computation time for an

additive ART reconstruction on a laptop PC [?]). This should be accelerated using

parallel computing techniques and/or hardware accelerators but the performance of

these algorithms will also depend on the choice of relaxation factors and the partic-

ular object type. Clearly, much research is still needed before pCT can be clinically

used to the benefit of patients.

The purpose of this thesis is to establish the basis for this research by developing
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the software that uses simulated or experimental proton CT raw data as input and

calculates most likely paths of protons through the object. It is the plan to use one

or two algebraic reconstruction methods to demonstrate that the original object data

can be reconstructed with sufficient spatial resolution and without artifacts. Based

on the findings of this work recommendations for future directions will be given.

1.4 Assumptions

The following assumptions were made throughout this thesis.

1. The electron density distribution relative to water of the object to be recon-

structed using proton CT raw data is exactly known. Differences in the re-

constructed object are, therefore, due to imperfections in the raw data, the

reconstruction algorithm, or both.

2. The protons incident on the object are monoenergetic and have an energy of 200

MeV.

3. The incident beam consists of protons that are all parallel in their direction and

lie in a common plane. The object is reconstructed in this plane.

1.5 Limitations

Note: This thesis is one of the first in the field of pCT reconstruction. Below I

stated only a few known limitations that must be considered when viewing the results.

Additional limitations will be stated throughout the remainder of the thesis as they

become obvious.
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The spatial and electron density resolution of a pCT scanner are inherently limited

by the physical processes of multiple Coulomb scattering (MCS) and energy loss

straggling. A clinically meaningful spatial resolution for proton therapy is about

1mm [?] and I chose this limit for the voxel size of my pCT reconstructions.

My work focuses on building the first version of a software platform for pCT recon-

struction that can be extended to more and more complex algorithms and applications

in the future. As such I have limited the first version of the platform to reconstruc-

tion of a 2D object scanned with parallel, monoenergetic proton beams and without

assuming any technical imperfections in the imaging system.

1.6 Definition of the Terms and Abbreviations

These are standard terms in the field and are included for the convenience of the

reader.

2-D Related to a two-dimensional plane.

3-D Related to a three dimensional volume.

Algorithm A set of ordered steps for solving a problem, such as a mathematical

formula or the instructions in a program.

ART Algebraic reconstruction technique is used to reconstruct and object from pro-

jection data; it is based on matrix algebra. anything.

CERN A large multinational high-energy physics laboratory in Geneva, France.

CT Computed tomography is a technology that allows to reconstruct an object and

displays the reconstruction as a stack of 2D images.
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DSP Digital Signal Processing.

Electron Density Electron density is the number electrons per unit volume present

at a given location of an object.

FPGA Field Programmable Gate Array.

GEANT4 The GEANT4 code developed at CERN is a platform for ”the simulation of

the passage of particles through matter.” It is the most recent in the GEANT se-

ries of software toolkits developed by CERN, and the first to use Object oriented

programming (in C++).

GPU Graphics Processing Unit.

MCS Multiple Coulomb scattering occurs when a charged particle traverses and in-

teracts with the nuclei of matter.

MLP Most likely path of a proton through a reconstruction volume when only entry

and exit position and direction are known.

MRI Magnetic Resonance Imaging, which is diagnostic technique which uses a mag-

netic field and radio waves to provide computerized images of internal body

tissues magnetic resonance imaging. MRIs are used in medicine to help diagnose

things that won’t show up on an X-ray.

NIST The National Institute of Standards and Technology is a federal technology

agency that develops and promotes measurement, standards, and technology.

Particle or atom (nontechnical usage) a tiny piece of anything.

PC Personal Computer.
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pCT Proton Computed Tomography is a novel imaging technique that uses protons

to perform CT.

PET Positron Emission Tomography, is a diagnostic examination that involves the

acquisition of physiologic images based on the detection of radiation from the

emission of positrons.

Proton accelerator A proton accelerator is a device that uses electric fields to accel-

erate protons to a high speed close to the velocity of light and magnetic fields to

keep them on a circular path.

Proton Gantry A proton gantry is a medical device that bends the proton beam and

allows treating a patient from any direction within a plane of rotation.

Proton Therapy An advanced from of radiation therapy that employs protons to treat

tumors and other conditions.

Quadrature A method of numerical integration, often applied to one-dimensional

integrals.

Relative Electron Density Electron density relative to that of water. This allows to

use unit-less numbers in the vicinity of unity for the reconstruction of patient

images.

SPECT Single photon emission computed tomography, is a nuclear medicine tomo-

graphic imaging technique using gamma rays.

Tomography A method to generate 2D images of areas inside the body; in computed

tomography these images are created by a computer.
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x-rays Energetic photons of short wave lengths generated by bombarding electrons

onto a dense metallic target. X-rays are used for CT and radiation treatment.

1.7 Organization of the Thesis

In this thesis I will be researching various series expansion reconstruction techniques

for pCT. In particular, I will perform the following tasks: The first step involves

implementation of various pCT reconstruction algorithms in 2-D and testing their

performance with GEANT4-simulated pCT data. I will optimize the performance

by systematically varying relaxation parameters and iterative refinement steps. This

first task is anticipated to take about 4 months. The second step is to improve

the timing of the selected 2-D algorithm using numerical and parallel processing

techniques. This is anticipated to take about 4 months. The third step is to extend

the optimized 2-D algorithm to three-dimensional objects. This is anticipated to take

two months. After conclusion of these steps, I will suggest the path to be followed

from that point on. I will look at possible hardware implementation using Field

Programmable Gate Array (FPGA), Digital Signal Processing (DSP), and Graphics

Processing Unit (GPU) to speed up the process. Some basic tests and analysis will

be performed for one month. During the final month, conclusions will then be drawn

and recommendations for further work be given.
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2. CONVERSION OF ENERGY LOSS TO THE LINE INTEGRAL OF

RELATIVE ELECTRON DENSITY

2.1 Background

The history of heavy charged particle radiography began in 1968 with the pioneering

work of Koechler (1968). He showed that the addition of an aluminum foil 0.035

gcm2 thick to a stock of aluminium absorbers, 18 gcm−2 thick, could be discerned by

means of proton radiography using film as the detector [?]. Subsequently, Steward

and Koehler (1973a,b, 1974) and others ( Cookson 1974, Moffett et al 1975, Kramer

et al 1979) did a lot of work to finally publish results that the high contrast images

obtained by proton radiography provided improved imaging of low contrast lesions

in human specimens over conventional x-ray techniques. The high contrast obtained

in this energy-loss form of radiography is a consequence of the sharpness of the well

known Bragg peak that occurs near the end of the proton range. Every higher contrast

may be achieved through the use of heavy ions [?].

Although cited as a possibility by Cormack in 1963, the first to apply charged

particles to computed tomography (CT) was Goitein in 1972. He employed projection

data measured by Lyman with alpha particles to demonstrate the utility of his least-

squares reconstruction algorithm. Later, in the comparison of heavy charged particle

CT with x-ray. It was shown that charged particles have a dose advantage over x-
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Fig. 2.1: Gantry-1 Proton Treatment Room at Loma Linda Medical Center and University LUMC

rays. This does advantage might be utilized effectively by providing CT reconstruction

with significantly better density resolution than it possible with x-rays at a given dose

level. Furthermore, in charged particles CT, it is the linear stooping power relative to

water that is imaged rather than x-ray attenuation coefficient. The unique imaging

characteristics of charged particles may prove to be beneficial in medical diagnosis.

The current proton therapy system at LLUMC is illustrated in figure 2.1 [?], where

proton gantry delivers proton from any angle around the patient. It delivers wide

range of beam intensities, of which protons used for pCT will penetrate the patient.

During the gantry rotation, data including, entry and exit location, angle, and energy
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Fig. 2.2: Schematic of the Proposed Approach to Proton Computed Tomography pCT with known entry

energy Ein [?]

loss will be collected.

The main principle of proton computed tomography pCT is based on the deter-

mination of the integrated volume electron density, ρe, or short, the electron density.

This is accomplished by measuring the energy loss of individual protons after travers-

ing the image object. The electron density of a material at a given location is defined

as the number of electrons/cm3.

Schulte, from Loma Linda Medical Center and University, and colleagues from

LLUMC and other research centers [?], suggested a conceptual design for a proton

computer tomography system illustrated in 2.2. The object is traversed by a broad

beam of protons with known energy Ein. A proton-tracking detector is arranged on

both sides of the patient, which records the entrance and exit points and angles of

individual protons. Protons are stopped in a scintillator crystal array to measure

their outgoing energy.
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The figure 2.2 present a schematic of the proposed approach to pCT with known

entry energy Ein are recorded one by one in the detector reference system (t,u,v) as

they traverse the image object from many different projection angle φ. The recorded

data include entry and exit positions and entry and exit angles as well as exit energy

Eout in the energy detector. In this figure, planes (1 and 2) register the location

and direction of each proton on the entry side, planes (3 and 4) register the location

and direction of each proton on the exit side, last we have energy detector measures

residual energy of each proton on the exit side

This chapter deals with the development of the analytic formalism allowing an

computer-time efficient conversion of the measured energy loss to the integrated elec-

tron density along the proton path.

2.2 Interaction of Protons With Matter

When traversing matter, protons lose some of their energy via inelastic collisions

with the outer electrons of the target atoms leading to ionizations and excitations.

Furthermore, they will be deflected by multiple small-angle scattering events (i.e.,

multiple Coulomb scattering –MCS) from the atomic nuclei. These two main pro-

cesses, occurring a great number of times along the macroscopic path of the protons,

lead to the macroscopic effects of the interaction of protons with matter: (1) loss

of energy and (2) deflection from their original direction. As individual interaction

events occur randomly, these two processes result in a statistical distribution of the

following two principal quantities observed for proton imaging: (1) the amount of

energy lost by each proton after traversing the body, and (2) the lateral and angular
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displacement of the proton from its incident position and direction. The amount of

energy-loss variation (i.e., energy straggling, which is reflected by the variation of the

Bragg peak location of a proton traversing along the same path through the same

object) is the principal limitation for the intrinsic image contrast or density resolution

of pCT (Satogata et al. 2003; Schulte et al. 2005). The variation of proton trajec-

tory due to the random MCS, resulting in the lateral and angular displacements, is

the principal limitation for the intrinsic image spatial resolution of pCT. These two

principal limitations are discussed in more detail in [?] [?] [?].

In addition to the two main processes of inelastic collisions with the outer atomic

electrons and elastic deflection from the atomic nuclei due to MCS, protons in the en-

ergy range (at the MeV level) used for pCT also undergo inelastic nuclear interactions,

leading to reduction of proton transmission in a depth-dependent manner. Protons

undergoing nuclear interactions mostly deposit their energies locally and hence con-

tribute to the dose within the patient without contributing to the image formation.

This is important for developing pCT for clinical use, but the magnitude of this effect

is well understood and contribution to patient dose is relatively small (Schulte et al.

2005). For example, the probability of a 200 MeV proton to be transmitted without

undergoing a nuclear interaction is 92.2% for a water layer of 10 cm thickness, and

83.6% for a layer of 20 cm thickness. Thus the majority of protons will contribute to

the image when using energy loss as the physical quantity to reconstruct the electron

density along the path.
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2.3 Energy Loss and Electron Density: The Bethe Bloch Equation

As we will see below, the energy loss of protons going through an object is closely

related to the path integral of electron density. This relationship can be exploited to

reconstruct the object distribution of electron density in 3D.

The protons used for pCT must have sufficient energy to penetrate the body to

be imaged. According to the NIST PSTAR data base 1, the path depth or range in

a continuous slowing-down approximation (CSDA) of 200 MeV protons in a tissue

equivalent plastic is 25.8 cm, which is sufficient to penetrate an adult human skull

(nominal width of 20 cm in anterior-posterior direction). For 250 MeV protons the

range is 37.7 cm, sufficient to penetrate an adult trunk (nominal width of 34 cm,

excluding arms).

The energy-loss method of pCT is based upon the relationship between electron

density and energy loss per unit track length. Let us first consider the relationship

between energy density and physical density, which is is given by:

ρe = ρNA

(
Z

A

)
(2.1)

where ρ is the physical density, NA is Avogadro’s number (6.023× 10−23), and Z

and A are the (effective) atomic number and atomic weight of the traversed material,

respectively. When the object material is comprised of a compound, for example,

water(H2O), or a mixture of elements or compounds, the electron density is given by:

ρe = ρNAΣiwi
Zi

Ai

(2.2)

where wi is the fraction by weight of element i, and Zi and Ai are the atomic number

1 http://www.physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
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and atomic weight of the ith element. The elemental and compound data may be

obtained on-line from the NIST material composition database [?].

Since the ratio Z/A is fairly constant for human tissues, the electron density

closely reflects the physical density of the imaged tissue [?]. To avoid the large

numbers associated with absolute electron density values, which are of the order of

1023 electrons/cm3, it is better to express results in terms of relative volume electron

density, which is defined as:

ηe =
ρe

ρe,water

(2.3)

where ρe,water = 3.343× 1023electrons/cm3 is the electron density of water.

The energy loss per unit track length of a proton, also called the stopping power,

S, is described by the Bethe Bloch equation [?] as:

S(u) = −dE

du
(u) (2.4)

= ηe(u)F (I(u)E(u)) (2.5)

where u represents the penetration depth of a proton, E(u) is the energy, ηe(u) the

relative electron density defined above, and I(u) the mean excitation potential of the

object material at depth u. The mean excitation potential is a material-dependent

constant that may change with penetration depth if the object’s atom composition

changes with depth. Its value is also given in the NIST material composition data

base [?]. One should note that the mean excitation potential is similar for most

human tissues and, therefore, its value for water of the human body (Iwater = 75eV )

may be used as a representative value for human tissues.
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The function F (I, E)2 in equation 2.4 is defined as [?]:

F (I, E) = K
1

β2(E)

[
ln

(
2mec

2

I

β2(E)

1− β2(E)

)
− β2(E)

]
(2.6)

where mec
2 = 511.011keV is the electron rest energy and β(E) is the proton velocity

relative to the speed of light c. The constant K is defined as:

K = 4πu2
emec

2ρe,water = 0.170
MeV

cm
(2.7)

where re = 2.818× 10−13cm is the classical electron radius. The relationship between

β and E is given by the relativistic relationship [?]:

β(E) =

√
1−

(
Ep

E + Ep

)2

(2.8)

where Ep = 938.29459 MeV is the proton rest energy.

Note that the Bethe-Bloch equation 2.4 is a non-linear first order differential equa-

tion of the function E(u). Since I(u) is usually not exactly known because the object

composition is unknown, integration of this equation is only possible under the as-

sumption that I(u) = const. As discussed above, for human tissues encountered

in proton CT, the variation of I(u) with penetration depth is not very large, and

the function F has only a week logarithmic dependence on I(u). Therefore, the as-

sumption of a constant value of 75.0 eV, the mean excitation potential for water, is

reasonable. In this case, F becomes function of E only, and one can separate the

terms depending on the variable u and the variable E:

ηe(u)du = − dE

F (E, Iwater)
(2.9)

2 Note that the formula given here is only an approximation of the original Bethe Bloch equation, which contains

a term Wmax, the maximum energy transfer in a single collision. The approximation given here is valid if the mass

of the incident particle is large relative to the electron mass, which is the case for protons (mp/me . 1800).
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Integrating the left side of the equation with respect to the penetration depth u

along the proton path and the right side with respect to the energy between initial

energy Ein at the beginning of the path and Eout at the end of the path, we get:

∫ uout

uin

ηe(u)du = −
∫ Eout

Ein

dE

F (E, Iwater)
(2.10)

=

∫ Ein

Eout

dE

F (E, Iwater)
(2.11)

It is now obvious that the integral of the relative electron density along the proton

path can be calculated based on the knowledge of in-and outgoing proton energy. Due

to the complicated energy dependence of F, the integration needs to be performed

numerically or modeled as a polynomial equation. Also note that the integrated

density along the proton trajectory is nothing else than the water-equivalent length

of the proton track through the medium [?]. Unlike the inversion in xCT, the proton

path is unknown in pCT due to MCS and must be estimated. This uniqueness of

pCT renders a challenge for image reconstruction from the projection data along an

unknown path. In addition to this challenge and the approximation made for 2.4

from the original Bethe-Bloch equation, it shall be further noted that the integrated

density along the proton is approximated by the water-equivalent length of the proton

trajectories through the body because of the use of Iwater.

2.4 Simplified Version of The Bethe Bloch Equation

One goal of my thesis was to mathematically simplify the integral in equation 2.10,

in particular the Bethe Bloch equation term F (E, I). The gain will be an increase in

performance by reducing the calculational errors and speeding up the reconstruction.
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Here is the final version of the simplified formula that was derived starting from

equation 2.10:

∫ uout

uin

ηe(u)dx =

∫ Ein

Eout

dE

K
(E+Ep)2

E2+2EEp
[ln(2mec2)− ln(Iwater) + ln(E + 2Ep) + ln(E)− 2 ln(Ep)]−K

(2.12)

2.4.1 Proof of the Simplified Version of Bethe-Bloch Equation

The following is a proof of equation 2.12. Starting from the equation 2.10 we write:

∫ uout

uin

ηe(u)dx = −
∫ Eout

Ein

dE

F (E, Iwater)

=

∫ Ein

Eout

dE

F (E, Iwater)

=

∫ Ein

Eout

dE

K 1
β2(E)

[
ln

(
2mec2

Iwater

β2(E)
1−β2(E)

)
− β2(E)

]

First, let us consider the term equb = ln
(

2mec2

Iwater

β2(E)
1−β2(E)

)
. Taking into account that

ln(a · b) = ln(a) + ln(b)

ln(
a

b
) = ln(a)− ln(b)

and using the definition of β in equation 2.8, we get

equb = ln

(
2mec

2

Iwater

β2(E)

1− β2(E)

)

= ln


2mec

2

Iwater

1− E2
p

(E+Ep)2

1−
(
1− E2

p

(E+Ep)2

)



= ln

(
2mec

2

Iwater

)
+ ln


 1− E2

p

(E+Ep)2

1−
(
1− E2

p

(E+Ep)2

)


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= ln

(
2mec

2

Iwater

)
+ ln


1− E2

p

(E+Ep)2

E2
p

(E+Ep)2




= ln

(
2mec

2

Iwater

)
+ ln


 1

E2
p

(E+Ep)2

− 1




= ln

(
2mec

2

Iwater

)
+ ln

(
(E + Ep)

2

E2
p

− 1

)

= ln

(
2mec

2

Iwater

)
+ ln

(
(E + Ep)

2

E2
p

− E2
p

E2
p

)

= ln

(
2mec

2

Iwater

)
+ ln

(
E2 + 2EpE + E2

p − E2
p

E2
p

)

= ln

(
2mec

2

Iwater

)
+ ln

(
E2 + 2EpE

E2
p

)

= ln

(
2mec

2

Iwater

)
+ ln

(
E(E + 2Ep)

E2
p

)

= ln(2mec)− ln(Iwater) + ln(E + 2Ep) + ln(E)− 2 ln(Ep)

Next, we substitute this term and the term for β into 2.10 and obtain:

∫ uout

uin

ηe(u)dx =

∫ Ein

Eout

dE

K
β2(E)

[
ln

(
2mec2

Iwater

β2(E)

1−β2(E)

)
− β2(E)

]

=

∫ Ein

Eout

dE

K
(E+Ep)2

E2+2EEp
[ln(2mec2)− ln(Iwater) + ln(E + 2Ep) + ln(E)− 2 ln(Ep)]−K

which is the most simplified version of the equation relating energy loss to the path

integral of the relative electron density.

2.5 High Speed (HS) Algorithm for Converting Energy Loss to Integrated Relative

Electron Density

2.5.1 Overview

The High Speed (HS) Algorithm is been implemented to determine the physical den-

sity of a brain tissue using the Bethe-Bloch Equation 2.4. The first challenge faces
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this algorithm was to calculate multiple integrations multiple times in one equation.

The second challenge was to apply this equation on 180 × 50 × 103 protons. This

created a lot of challenge in time, performance, memory leak, and error boundaries.

Thanks to all my math instructors who taught me how to best simplify a math

equation. My skills resulted the simplified version of the Bethe-Bloh Equation 2.13.

My algorithm will output the integrated relative electron density of each proton. The

input will be only the Entry Proton Energy and the Exit Proton Energy. To

The tremendous number of protons, on which I will do my calculations has lead us

toward using MatLab environment, since it can handle huge number of variables and

equations. I input the data file from the experiment data into a MatLab matrixes

and feed it to my HS algorithm. Refer to Appendix A for information about matrix,

and Appendix B for more information about Numerical Analysis.

To know the Integrated Relative Electron Density for every Proton we must apply

a numerical computation including multiple use of quadrature functions object the

result of the physical density starting from the energy loss of protons after traversing

the image object I developed the following algorithm to embed the equation 2.13,

which is:

∫ uout

uin

ηe(u)dx =

∫ Ein

Eout

dE

K (E+Ep)2

E2+2EEp

[
ln(2mec

I(u)
+ ln(E + 2Ep) + ln(E)− 2 ln(Ep)

]
−K

2.5.2 Background Numeric Integration and Quadrature Function

In numerical analysis, numerical integration constitutes a broad family of algorithms

for calculating the numerical value of a definite integral, and by extension, the term is

also sometimes used to describe the numerical solution of differential equations. The
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term quadrature is more or less a synonym for numerical integration, especially as

applied to one-dimensional integrals [?]. Two- and higher-dimensional integration is

sometimes described as cubature, although the meaning of quadrature is understood

for higher dimensional integration as well [?].

The most basic problem to be solved using numerical integration is to compute

the approximate solution of a definite integral:

∫ b

a
f(x)dx. For more information about numeric integration visit Appendix B.

Why Numeric Integration? Why Not?

Several facts and reasons affect scientist to use numeric integrations. For example,

the integrand function f, from the previous equation, may be known only at certain

points, such as obtained by sampling. Many computer applications and computer

embedded systems often use numerical integration for such a reason.

The absente of finding an antiderivative is also another reason of using Numeric

Integration. A formula for the integrand may be known, but it may be difficult or

impossible to find an antiderivative. example exp(t−2).

2.5.3 Description of the Algorithm

Look at the algorithm code 2.5.3. This algorithm carefully translate the Bethe-Bloch

Equation 2.13 blocks into lines of code which run smoothly to successfully meets our

goal.

The second challenge, after translating the Bethe-Bloch Equation into lines of code,

is to apply numerical integration Matlab functions on this algorithm(or I am going
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to call it the HS function). It may be possible to find an antiderivative symbolically,

but it may be easier to compute a numerical approximation than to compute the

antiderivative. That may be the case if the antiderivative is given as an infinite series

or product, or if its evaluation requires a special function which is not available.

Quadrature is a numerical method used to find the area under the graph of a func-

tion, that is, to compute a definite integral. In MatLab, there is a build in numerical

integration functions that helps do the numerical integration. Those functions are

called Quadrature Functions. Quad and Quadl are MatLab Build-in functions, I

used both functions, as I write code for Gaussian Quad function 3.

After developing the Algorithm above and translate it into MatLab code, I applied

the function on a different numerical integration methods, and compare the results

with NIST [?] results.

2.6 Comparison of Different Numerical Integration Methods

2.6.1 Overview

As I described above, I had run my experiment with different numerical integration

functions, one of which I had to create myself.

I have to check for correctness of my function performance against the other func-

tions. Also I have to check my function and the other MatLab functions correctness

against the NIST National Institute of Science and Technology data 2.4.

The first comparison was against time performance between the three functions,

the second was for accuracy. I, as each of my committee members, were very sat-

3 Refer to Appendix B if more information about numeric Integration are needed.
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functionoutput=HS(E)

ep = 938.295; %MeV

K = 0.170; %MeV.cm−2

mec2 = 511.011 ∗ 10−3; %KeV therefore we multiply by three 3

I = 75 ∗ 10−6; %eV therefore we multiply by six 6

I = 91.90000010−6; % this is for bone.

EEP2 = (E + ep). ∗ (E + ep);

E22EP = E. ∗ E + (2 ∗ ep). ∗ E;

div01 = EEP2./E22EP ; div03 = E22EP./EEP2; div02 = 2 ∗mec2/I;

lnmec2i = log(div02);

output = K. ∗ div01. ∗ (lnmec2i + log(E) + log(E + 2 ∗ ep)− 2 ∗ log(ep)− div03);

output = 1./output;

Fig. 2.3: High Speed Algorithm for Converting Energy Loss to Integrated Relative Electron Density
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Fig. 2.4: Comparison of Different Numerical Integration Methods with NIST database
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isfied with the results of my home-constructed gaussian quad function. I will be

going quickly over NIST database 4, and then I will write in details about my per-

formance and accuracy comparison, then I concluded this section with a summary of

this chapter.

2.6.2 Comparison of Computer Run Time

One o the first main reasons to do this thesis is to shorten the time needed to render

56 protons.

We are running this algorithm on millions of protons for one hundred and eighty

time; therefore, every clock cycle we can save will be a plus.

The first run of my HS algorithm shows that the more Protons we render the more

time takes us to do the calculation. After weeks of rendering the algorithm for many

trials on different numbers of protons, I resulted that time will increase exponintially

when applying the algorithm on greater number of Protons. Refer to chart 2.5 for

more details.

After developing many versions of my HS algorithm, and implementing an excellent

gaussian quad function code. the results highlighted that my home-made gaussian

quad algorithm has great performance comparing to the regular build-in math lab

functions.

The following chart followed by its table data will support my argument above.

From the charts 2.6, and in more detail the chart 2.7, and by looking at the

logarithmic scale of the Gaussian quad, we can successfully adopt this home-made

gaussian quad function. because it save us a lot of time especially we are not running

4 Refer to Appendix C for more information about NIST Database.
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Fig. 2.7: In Detailed Logarithmic Scale of Number of Proton Verses Time

more than thirty five thousand (35000)protons at the same time. For almost 310

protons quad needs 1.031 seconds, while quadl needs 0.96 seconds, and our home-

made gaussian quad needs only 0.29 of a second.

Here is a full table of time VS. the three functions.

2.6.3 Comparison of Numerical Accuracy

After running my test for weeks, I resulted that the Numerical Accuracy of my HS

algorithm very satisfiable. Comparing the results of the HS algorithm results, applied

on MatLab functions (Quad, and Quadl), and my custom-build Gaussian Quad func-

tion, with the NIST pStar Database, and by looking at average error, max error, min

error, and standard deviation, I found the error not to exceed %0.14. The following

is a table with supported example of my comparison.

The first test was to compare HS Algorithm result with the NIST results. I tried
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run—E # E quad quadl gu el

1 1000 0.5938 0.375 0.1094

2 2000 0.875 0.6563 0.1875

3 3000 1.031 0.9688 0.2969

4 4000 1.359 1.281 0.3906

5 5000 0.672 1.609 0.5000

6 6000 2.016 1.938 0.5938

7 7000 2.375 2.234 0.6875

8 8000 2.703 2.563 0.7813

9 9000 3.047 2.875 0.8906

10 1.00E+04 3.359 3.203 0.9688

11 1.00E+04 3.375 3.156 0.9531

12 2.00E+04 7.125 7.031 2.2190

13 3.00E+04 11.64 12.48 3.7190

14 4.00E+04 15.28 16.33 5.1250

15 5.00E+04 21.11 22 7.0310

Tab. 2.1: Time Needed by Each Function to Render a Number of Protons
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run—E # E quad quadl gu el

16 6.00E+04 27.83 29.48 10.0500

17 7.00E+04 43.33 45.22 24.0800

18 8.00E+04 58.91 58.56 38.0900

19 9.00E+04 67.03 66.52 45.3800

20 1.00E+05 75.06 74.56 50.4100

21 2.00E+05 729.5 732.5 680.8000

22 3.00E+05 1201 1208 1136.0000

23 4.00E+05 1675 1680 1582.0000

24 5.00E+05 2136 2143 2027.0000

25 6.00E+05 2610 2615 2474.0000

26 7.00E+05 3076 3079 2916.0000

27 8.00E+05 3548 3557 3372.0000

28 9.00E+05 4031 4032 3819.0000

29 1.00E+06 4491 4488 4259.0000

Tab. 2.2: Continued... Time Needed by Each Function to Render a Number of Protons
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Min Max Standard Dev. Average

Gaussian 0.01148834198939 0.13949398745925 0.03940854915190 0.07856807529633

Quad 0.01148834127241 0.13845100255350 0.03916737322183 0.07837578341375

Quadl 0.01148834127241 0.13845100649438 0.03916737525542 0.07837578528167

Tab. 2.3: Error Results Analysis between Quad Functions and NIST pSTAR Database

HS algorithm in Quad, Quadl, and Gaussian Quad with 100 - one hundred random

numbers - using random algorithm technique. Here is my results:

The different quadrature functions were applied on the same HS Algorithm to

determine the physical density from energy lost of proton traversing the image object.

The following chart 2.8 and the above table 2.6.3 show very acceptable results of the

used algorithm, as the error range err > .01mm was acceptable from the thesis

committee members.

2.6.4 Results

I am adopting my HS Algorithm since it is giving me acceptable results when com-

paring it to the NIST pSTAR 5 Database, along with my home-made Gaussian Quad

Algorithm. The result were presented to the Thesis Committee Members, and has

there satisfaction and approval.

2.7 Summary and Conclusion

The performance that I gained from building my home-made Gaussian Quad function,

supported by the correctness of successful implementation of my HS Algorithm, gave
5 Refer to Appended C for more Information about NIST Database.
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hope for Image Reconstruction using Proton Computed Tomography.

The proofed simplified version of the Beth-Bloche Equation, and the successful

implementation of the HS algorithm will have huge impact on the future of Image

reconstruction using pCT.

Graphic User Interface will be great improvement to the usability of such algo-

rithm. Currently, I am feeding my data using the MatLab Environment, but GUI

interface, implemented in C++ for example, will be great advantage to this applica-

tion.

Since each proton is a separate entities; therefore, we can apply our calculations

on each proton individually. Currently, I am only using my 3rd victim laptop, after

burning two computers, to do all my calculation on all the protons. Future continuing

of the project is to use parallel programming applied on distributed system.
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3. MOST LIKELY PATH DERIVATION

3.1 Introduction and Background

One of the challenges of pCT is the tendency for protons to undergoe scattering in

the object by a process called a multiple Coulomb scattering (MCS). The uncertainty

in the exact path of the proton leads to blurring of the image. One can minimize

this spatial uncertainty of proton tracks by measuring the trajectory of individual in-

coming and outgoing protons using modern particle detector technology (Kleinknecht

1998) [?].

Particle detectors can measure the trajectory of a proton before entering and after

leaving the object with better than 0.1 mm accuracy and precision. However, no direct

information is available while the proton is traveling within the object. Therefore,

some type of extrapolation of the external trajectories is required for optimal spatial

resolution in pCT imaging. The best way to do this is to calculate the most likely

path (MLP) of each proton along with its probability envelope using all available

information. This chapter presents the theory of the MLP derivation and derives

a closed-form expression for the MLP when the entrance and exit trajectories are

known. It differs from previous derivations (Schneider and Pedroni 1994, Williams

2004), in that a compact matrix notation will be introduced.



Fig. 3.1: Representation of Most Likely Path MLP

3.2 Multiple-Coulomb Scattering in the Gaussian Approximation

MCS is a physical process that leads to a statistical (or random) change of the di-

rection of charged particles as they cross matter without changing their energy and

velocity. Such scattering events are called ”elastic”. Most high-energy physicists are

familiar with this process since it is often the limiting factor in the spatial resolution

of charged-particle detectors. A summary of this process can be found in the Review

of Particle Physics from the Particle Data Group (Yau 2006) [?]. The most relevant

features of MCS are also described in Williams’ paper [?].

When a proton traverses the object, many individual elastic interactions with the

nuclei of the object material take place. The outcome of each individual nuclear

interaction is a sample from a complicated statistical distribution of scattering angles

governed by the laws of quantum mechanics. However, after undergoing many of these

interactions, the combined result of the angular and spatial deviation from the initial

trajectory is a probability density distribution that is approximately Gaussian or
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normal. Therefore, a Gaussian approximation of the lateral and angular displacement

at any given depth will be assumed in what follows. In this approximation, the we

only need to know the variances and covariances of the scattering variables at any

penetration depth in order to fully describe the distribution [?].

3.3 Derivation of the Matrix Form of the Most Likely Path

A closed analytical form of the 2D-projected MLP for protons traversing a homo-

geneous medium when their entry and exit positions and angles are known can be

found in the work of Schneider et al [?] and Williams [?]. Here, we will derive a

closed analytical form of the MLP using a compact matrix notation, which is advan-

tageous considering the lengthy equations of the previous works. The scattering of

a proton in the object can be described by the lateral displacement and the angle

relative to the initial position and displacement at the entry into the object, i.e., by

the two-dimensional vector function

y(u) =




θ(u)

t(u)


 (3.1)

where: t(u) is the lateral displacement and θ(u) the angle relative to the initial

position and direction of the proton at depth u. At the boundaries u = 0 and u = u2

of the object, y(u) approaches the values

y(0) =




0

0


 (3.2)
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and

y(u2) ≡ y2 =




θ(u2)

t(u2)


 ≡




θ2

t2


 (3.3)

Note that t(u) and θ(u) are statistical variables, which acquire increasing spread with

increasing depth. Also, these variables are not independent from each other, and

therefore have a covariance that is different from zero. The amount of lateral and

angular spread, t1 and θ1, accumulated at an intermediate depth u1 in the object and

the covariance of these quantities can be described by the first variance-covariance

matrix

Σ1 =




σ2
θ1

σ2
t1θ1

σ2
t1θ1

σ2
t1


 (3.4)

Explicit expressions for the matrix elements will be derived later. In the Gaussian

approximation of small-angle Coulomb scattering [3], the probability density function

of y at depth u1,

y1 =




θ(u1)

t(u1)


 ≡




θ1

t1


 (3.5)

is given by the bivariate Gaussian probability density function [?]

f1(y1) = k1e
− 1

2
yT
1 Σ−1

1 y1 ≡ k1e
−χ2

1 (3.6)

where k1 is a constant needed for normalization. Since this probability density is

based on the knowledge of the proton prior to entering the object, we may call it

”prior probability density”.

Next we are interested in the conditional probability density function of y2 at the

exit depth u2 given y1 at intermediate depth u1. Starting from the intermediate depth
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Fig. 3.2: Mathematical Relationship between Proton Scattering Matrix Penetration Depth

u1, the proton will be further scattered between the depth u1 and the exit depth u2,

which can be described by the second variance-covariance matrix

Σ2 =




σ2
θ2

σ2
t2θ2

σ2
t2θ2

σ2
t2


 (3.7)

The probability density function, illustrated in figure[3.2 of y2 is best described by

changing the local coordinate system to the location and orientation of the proton

path at depth u1. This requires the following coordinate transformation:



u
′
2

t
′
2


 =




cos θ1 sin θ1

− sin θ1 cos θ1







u2 − u1

t2 − t1


 (3.8)

from which we get

u
′
2 = cos θ1(u2 − u1) + sin θ1(t2 − t1) (3.9)

t
′
2 = − sin θ1(u2 − u1) + cos θ1(t2 − t1) (3.10)

In addition, the exit angle needs to be expressed relative to the angle θ1 at depth u1,

42



thus

θ
′
2 = θ2 − θ

′
1 (3.11)

The conditional probability density function of of

y
′
2 =




θ(u
′
2)

t(u
′
2)


 ≡




θ
′
2

t
′
2


 (3.12)

is given by the bivariate Gaussian probability density function

f21(y
′
2|y1) = k2e

− 1
2
y
′T
2 Σ−1

2 y
′
2 ≡ k2e

−χ2
2 (3.13)

The MLP and most likely angle are defined by the vector function

ymlp(u) =




θmlp(u)

tmlp(u)


 (3.14)

which maximizes the conditional probability density f12(y1|y′2) of y1 given y2 at

any intermediate depth u1 between 0 and u2. This may be called the ”posterior

probability” because it uses information of the proton after exiting the object. An

expression for the posterior probability can be found by using Bayes’ theorem for

continuous probability density functions [?],

f12(y1|y′2) = k12f1(y1)f21(y
′
2|y1) (3.15)

= ktote
−χ2

1−χ2
2 ≡ ktote

−χ2

(3.16)

where k12 is another normalization constant and ktot is the product of normalization

constants used in the different probability density functions.

Recall that

χ2 =
1

2
y1(u)T Σ−1

1 y1(u) +
1

2
y
′T
2 Σ−1

2 y
′
2 ≥ 0
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To maximize f12(y1|y′2), we need to make χ2 as small as possible. Therefore:

∂χ2

∂θ

∣∣∣∣
θ=θmlp

= 0 (3.17)

∂χ2

∂t

∣∣∣∣
t=tmlp

= 0 (3.18)

The solution θmlp, tmlp, which satisfies this system of two equations are the most likely

angle and MLP. The latter is what we need in particular for pCT reconstruction.

Using vector notation and introducing the gradient vector we can also write:

∇χ2 =




∂θ

∂t


 χ2 =




0

0


 (3.19)

In the following I will show two ways how to find the solution of this vector equation.

3.3.1 Small-Angle Approximation to Find the MLP Solution

When θ is smaller than a few degrees, which is the case for most MCS scattering

events, then sin θ ≈ θ and cos θ ≈ 1. Further, because t is usually much smaller than

u1 and u2 terms involving tθ can be ignored but terms involving u1θ and u2θ can not.

This leads to the simplified equation

u
′
2 = u2 − u1 (3.20)

t
′
2 = −θ1(u2 − u1) + (t2 − t1) (3.21)

We may then use the following simplified notation

y
′
2 = y2 −Ry1 (3.22)

where

R =




1 u2 − u1

0 1


 (3.23)
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With this notation, we can rewrite χ2 as

χ2 =
1

2
yT

1 Σ−1
1 y1 +

1

2
(yT

2 − yT
1 RT )Σ−1

2 (y2 −Ry1) (3.24)

=
1

2
(yT

1 Σ−1
1 y1 + yT

2 Σ−1
2 y2 − 2yT

1 RT Σ−1
2 Ry1 + yT

1 RT Σ−1
2 Ry1) (3.25)

Carrying out the derivation with respect to y1 results in

∇χ2 = Σ−1
1 y1 + RT Σ−1

2 Ry1 −RT Σ−1
2 y2 (3.26)

Thus, the MLP equation becomes

0 = (Σ−1
1 + RT Σ−1

2 R)ymlp −RT Σ−1
2 y2 (3.27)

which has the solution

ymlp = (Σ−1
1 + RT Σ−1

2 R)−1RT Σ−1
2 y2 (3.28)

3.3.2 Exact Solution of the MLP Problem

Using Numeric Analysis techniques and Math skills we can derive the exact solution

to the MLP.

The following variables have known values for each proton:

• entry and exit energy E0 and E2;

• entry and exit lateral displacement t0 and t2;

• entry and exit depth u0 and u2;

• entry and exit angle in the u-t plane θ0 and θ2;

• entry and exit vertical displacement v0 and v2;

45



• entry and exit angle in the u-v plane ϑ0 and ϑ2.

The last two items will be used in future 3-D image reconstruction.

Given y1 =

[
u1 t1 θ1

]T

, which describes the parameter vector of the proton at

depth u1, and y2 =

[
u2 t2 θ2

]T

, which describes the known parameter vector at

the exit location, the solution for y1 that minimizes χ2 = χ2
1 + χ2

2, where:

χ2 = yT
1




0 0

0 Σ−1
1


 y1 + (3.29)

y′T2




0 0

0 Σ−1
2


 y′2 (3.30)

where

y′2 =




Qθ1 0

0 1


 (y2 − y1) (3.31)

and

Qθ1 =




cos θ1 sin θ1

− sin θ1 cos θ1


 (3.32)

will be given as:

ymlp = −




0 0

0 Σ−1
1




+

dy′2
dy1




0 0

0 Σ−1
2


 y′2 (3.33)

where

dy′2
dy1

=


0 0




Rθ1 0

0 0


 (y2 − y1)


−




Qθ1 0

0 1


 (3.34)
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and

Rθ1 =
dQθ1

dθ1

(3.35)

=



− sin θ1 cos θ1

− cos θ1 − sin θ1


 (3.36)

3.3.3 Mathematical Relationship between Proton Scattering Matrix Elements and

Penetration Depth

As we have seen above, the path of an individual proton through the object and

projected into the u-t plane can be described by the two parameters θ and t as a

function of the depth of penetration u. The lateral and angular displacements are

statistically correlated, and, therefore, have non-zero covariance. In the Gaussian

approximation of small-angle MCS [?], the joint probability density function of the

vector

y1 =




θ1

t1


 (3.37)

at depth u1 is given by the bivariate Gaussian:

f1(y1) = k1e
− 1

2
yT
1 Σ−1

1 y1 (3.38)

where Σ−1
1 is the inverse variance-covariance matrix of the θ1 and t1:

Σ1 =




σ2
θ1

σ2
t1θ1

σ2
t1θ1

σ2
t1


 (3.39)
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Similarly, the joint probability density function of the vector

y
′
2 =




θ
′
2

t
′
1


 (3.40)

at depth u2 given the vector y1 at depth u1 is given by the bivariate Gaussian:

f21(y
′
2|y1) = k2e

− 1
2
y
′T
2 Σ−1

2 y
′
2 (3.41)

where Σ−1
2 is the inverse variance-covariance matrix of the θ

′
2 and t

′
2:

Σ2 =




σ2
θ2

σ2
t2θ2

σ2
t2θ2

σ2
t2


 (3.42)

Since we are dealing with relatively thick objects in pCT, one needs to take energy

loss of the proton inside the object into account. Then, the individual variance and

covariance elements of the matrices Σ1 and Σ2 can be expressed by the following

integrals [?]:

σ2
t1
(u1) = Θ2

0

∫ u1

0

(u1 − u)2

β2(u)p2(u)

du

X0

(3.43)

σ2
θ1

(u1) = Θ2
0

∫ u1

0

1

β2(u)p2(u)

du

X0

(3.44)

σ2
t1θ1

(u1) = Θ2
0

∫ u1

0

u1 − u

β2(u)p2(u)

du

X0

(3.45)

σ2
t2
(u1, u2) = Θ2

0

∫ u2

u1

(u1 − u)2

β2(u)p2(u)

du

X0

(3.46)

σ2
θ2

(u1, u2) = Θ2
0

∫ u2

u1

1

β2(u)p2(u)

du

X0

(3.47)

σ2
t2θ2

(u1, u2) = −Θ2
0

∫ u2

u1

u1 − u

β2(u)p2(u)

du

X0

(3.48)

where the terms β2(u), p2(u) are the squared velocity relative to the speed of light and

momentum of the proton at depth u, respectively, and Θ0
∼= 13.6 MeV/c is a physical

constant. The quantity X0 is the radiation length, which is a physical constant for
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a given material. Throughout this thesis, we will assume that the scattering object

consists of water, for which X0 = 36.08 cm.

The integrals in ***** the last six equations ***** have to be calculated numer-

ically. The product β2(u)p2(u) for protons is related to the proton energy by the

relativistic formula:

β2(u)p2(u) =
(E(u) + 2Ep)

2E2(u)

(E(u) + Ep)2c2
(3.49)

where Ep = 938.295 MeV s the proton rest energy.

The change of energy with penetration depth is governed by the energy loss of the

proton, which, in case of water, is described by the differential Bethe Bloch equation:

−dE

du
(u) = F (I, E(u)) (3.50)

where I is the mean excitation proton of water (Iwater = 75 eV) and the function

F (I, E) is defined as before. Starting with an initial energy E0, the proton has

acquired reduced energy E(u1) at depth u1, which is described by the solution of the

integral form of Bethe-Bloch equation:

u1 =

∫ E0

E(u1)

1

F (I, E(u))
du (3.51)

Three ways to solve this equation for E(u1) were investigated in this thesis:

• solving the integral equation numerically.

• use of the NIST PSTAR Database program to find the energy corresponding to

a penetration depth u;

• use of a Monte Carlo simulation program such as GEANT4 to and find the

parameters of a polynomial relationship between energy and penetration depth.
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Fig. 3.3: Scattering Matrix Elements of Σ1t
2 as a Function of Depth

Numerical Solution

One possibility to solve the integral equation for obtaining the energy-depth relation-

ship is using the minerr function of the Mathcad software (Mathsoft, Inc., Cambridge,

MA). This was initially used to calculate the matrix elements of the two scattering

matrices The results for the elements of the matrix Σ1 are shown graphically in

fig 3.3, 3.4, and 3.5and are also tabulated in 0.1 cm intervals in lables 3.3-3.15 of the

Appendix.

Later in this research, I have implemented my own function to calculate the residual

energy as a function of depth u. For now, I am using the Interval Bisection method

(see Matlab code below, [?]), since it has good time performance over the other

methods. Future work should also test Newton’s and other methods.
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Fig. 3.4: Scattering Matrix Elements of Σ1θ
2 as a Function of Depth

Fig. 3.5: Scattering Matrix Elements of Σ1θ
2t2 as a Function of Depth
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National Institute of Standards and Technology Database Solution

NIST, or National Institute of Standards and Technology, has a database called

pSTAR, which is the other possibility to obtain residual energy as function of depth

is to utilize the data tabulated in the NIST PSTAR database [?]. I used this to verify

the results of my numerical solution for the intial energy of 200 MeV, because the

NIST database is based on a more complicated and therefore more accurate model

than the Bethe Bloch equation. The NIST database lists the projected range of pro-

tons, i.e., the average value of the depth to which protons of a certain energy will

penetrate in a material of choice, including water. The data for water for proton

energies between 1 MeV and 200 MeV are shown in the first two columns of the

following table.

From these data, I derived the relationship between residual proton energy and

penetration depth starting from an initial energy of 200 MeV as follows. The initial

proton energy of 200 MeV corresponds to a projected range of 25.93 cm in water as

seen at the bottom of the table; at the next lower tabulated energy of 175 MeV, the

range is reduced to 20.60 cm. From the range difference of 5.33 cm between 200 MeV

protons and 175 MeV protons, one can conclude, in turn, that a proton of 200 MeV

initial energy after penetrating depth of 5.33 cm in water has a residual energy of 175

MeV. The penetration depth derived from the difference between the projected range

at the initial energy (here 200 MeV) and that at lower energies is included in the

third column of Tables 3.1 and 3.2. Thus the third column of the table gives depth

and the first column gives energy corresponding to that depth. Figure 3.6 shows the

relationship between residual energy and penetration depth as derived from numerical

52



Kinetic Projected

Energy Range Depth

MeV cm cm

1 0 25.93

1.25 0 25.93

1.5 0 25.93

1.75 0.01 25.92

2 0.01 25.92

2.25 0.01 25.92

2.5 0.01 25.92

2.75 0.01 25.92

3 0.01 25.92

3.5 0.02 25.91

4 0.02 25.91

4.5 0.03 25.9

5 0.04 25.89

5.5 0.04 25.89

6 0.05 25.88

6.5 0.06 25.87

7 0.07 25.86

7.5 0.07 25.86

Kinetic Projected

Energy Range Depth

MeV cm cm

8 0.08 25.85

8.5 0.09 25.84

9 0.1 25.83

9.5 0.11 25.82

10 0.12 25.81

12.5 0.18 25.75

15 0.25 25.68

17.5 0.33 25.6

20 0.43 25.5

25 0.64 25.29

27.5 0.76 25.17

30 0.88 25.05

35 1.17 24.76

40 1.49 24.44

45 1.84 24.09

50 2.22 23.71

55 2.64 23.29

60 3.09 22.84

Tab. 3.1: Relationship between Initial Proton Energy and Projected Range in Water.
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Kinetic Projected

Energy Range Depth

MeV cm cm

65 3.57 22.36

70 4.08 21.86

75 4.61 21.32

80 5.18 20.75

85 5.77 20.16

90 6.39 19.54

Kinetic Projected

Energy Range Depth

MeV cm cm

95 7.04 18.9

100 7.71 18.22

125 11.44 14.49

150 15.76 10.17

175 20.6 5.33

200 25.93 0

Tab. 3.2: Continue ... Relationship between Initial Proton Energy and Projected range in water.

solution using Mathcad’s minerr function and from the NIST database values. The

good agreement between both data sets confirms the numerical values.

The figure 3.6 illustrates energy-depth relationship for 200 MeV Protons in water.

The points are derived From the NIST data in tables 3.1 and 3.2 and the line is

derived by solving equation with Mathcad’s minerr function.

3.3.4 GEANT4 Solution

Geant4 which is a toolkit for the simulation of the passage of particles through matter.

Its areas of application include high energy, nuclear and accelerator physics, as well

as studies in medical and space science. The two main reference papers for Geant4

are published in Nuclear Instruments and Methods in Physics Research A 506 (2003)

250-303, and IEEE Transactions on Nuclear Science 53 No.1 (2006) 270-278 [?].
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Fig. 3.6: Energy-depth Relationship for Protons in Water.

In order to facilitate the integration for the scattering matrix elements, [?] and [?]

used a five-degree polynomial, 1/β2p2 = Σ5
i=1aiu

i, where the polynomial coefficients

ai were obtained by least-squares fitting the values obtained for a GEANT4 Monte

Carlo simulation for 200-MeV protons traversing a uniform water phantom of 20

cm diameter. Thereby, these investigators avoided numerical integration altogether.

For depths larger than 20 cm, the values for 1/β2p2 have to be extrapolated from

this polynomial. The derived polynomial coefficients were a0 = 7.507 × 10−4 , a1 =

3.320 × 10−5, a2 = −4.171 × 10−7, a3 = 4.488 × 10−7, a4 = −3.739 × 10−8, and

a5 = 1.455 × 10−9, where the units are c2/MeV divided by powers of cm according

to the power of u. Figure 3.7 compares the relationship between 1/β2p2 and the

penetration depth for the present calculation and those in [?]. The two results

agree well up to a depth of 20 cm, when they start diverging. This difference can be

explained by the fact that the polynomial fit was only for data up to a depth of 20
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Fig. 3.7: Depth Dependence of the Product 1/β2p2 for a Polynomial Approximation and the Present Cal-

culation

cm.
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

0 0 0 0

0.1 1.28E-06 0.012641 0.00011

0.2 1.03E-05 0.025334 0.000442

0.3 3.47E-05 0.03808 0.000995

0.4 8.23E-05 0.05088 0.001771

0.5 0.000161 0.06376 0.002771

0.6 0.000278 0.076667 0.003997

0.7 0.000443 0.089629 0.005448

0.8 0.000661 0.102646 0.007126

0.9 0.000943 0.11572 0.009031

1 0.001295 0.128848 0.011166

1.1 0.001725 0.142033 0.013529

1.2 0.002242 0.155273 0.016124

1.3 0.002853 0.168576 0.01895

1.4 0.003568 0.181932 0.022009

1.5 0.004392 0.195348 0.025301

1.6 0.005337 0.208819 0.028828

1.7 0.006408 0.222358 0.03259

1.8 0.007615 0.235952 0.03659

1.9 0.008965 0.249605 0.040828

Tab. 3.3: Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

2 0.010468 0.263321 0.045303

2.1 0.012131 0.277098 0.050019

2.2 0.013962 0.290936 0.054977

2.3 0.015972 0.304838 0.060175

2.4 0.018166 0.318755 0.065617

2.5 0.020555 0.33283 0.071304

2.6 0.023147 0.346923 0.077235

2.7 0.02595 0.361079 0.083414

2.8 0.028974 0.375304 0.089841

2.9 0.032225 0.389593 0.096515

3 0.035714 0.403944 0.103438

3.1 0.03945 0.418367 0.110616

3.2 0.043439 0.432842 0.118042

3.3 0.047694 0.447414 0.125725

3.4 0.05222 0.462041 0.133662

3.5 0.057028 0.476727 0.141856

3.6 0.062126 0.491503 0.150243

3.7 0.067524 0.506355 0.159012

3.8 0.073231 0.521249 0.167977

3.9 0.079253 0.536231 0.177204

Tab. 3.4: Continued ... Sigmas Verses Depth

58



Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

4 0.085605 0.551285 0.186698

4.1 0.092291 0.566414 0.196451

4.2 0.099322 0.581613 0.206468

4.3 0.106708 0.596891 0.216754

4.4 0.114459 0.612246 0.227306

4.5 0.122579 0.627677 0.238115

4.6 0.131086 0.643179 0.249216

4.7 0.139971 0.658766 0.260574

4.8 0.149279 0.674379 0.272211

4.9 0.158989 0.690168 0.284119

5 0.169119 0.70599 0.296303

5.1 0.179678 0.721892 0.308763

5.2 0.190676 0.737878 0.321344

5.3 0.202109 0.753946 0.334462

5.4 0.214034 0.770097 0.347819

5.5 0.226413 0.786334 0.361403

5.6 0.23927 0.802655 0.375271

5.7 0.252615 0.81906 0.389422

5.8 0.266594 0.835791 0.40386

5.9 0.280814 0.852271 0.418589

Tab. 3.5: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

6 0.295684 0.868806 0.433604

6.1 0.311087 0.885565 0.448916

6.2 0.32703 0.902415 0.46452

6.3 0.34352 0.919356 0.480416

6.4 0.360513 0.936359 0.496595

6.5 0.378331 0.953593 0.513101

6.6 0.396397 0.970558 0.529898

6.7 0.41519 0.988054 0.546985

6.8 0.434579 1.005279 0.564344

6.9 0.454596 1.022981 0.582085

7 0.475255 1.040548 0.600137

7.1 0.496459 1.0583 0.618385

7.2 0.518206 1.076111 0.637058

7.3 0.54098 1.094043 0.655971

7.4 0.564253 1.112007 0.675299

7.5 0.58811 1.130157 0.6948

7.6 0.612712 1.148381 0.714678

7.7 0.638005 1.16649 0.73488

7.8 0.664013 1.185155 0.755394

7.9 0.69071 1.203719 0.776209

Tab. 3.6: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

8 0.71822 1.222357 0.797422

8.1 0.746417 1.241131 0.818914

8.2 0.775406 1.260036 0.840689

8.3 0.805058 1.279001 0.862832

8.4 0.835639 1.298116 0.885394

8.5 0.866956 1.317353 0.908214

8.6 0.898977 1.336751 0.931288

8.7 0.93197 1.356156 0.954876

8.8 0.965719 1.375746 0.978718

8.9 1.000379 1.395436 1.002919

9 1.034917 1.415294 1.027437

9.1 1.072087 1.435236 1.052301

9.2 1.109202 1.455323 1.077507

9.3 1.147254 1.475546 1.103097

9.4 1.186304 1.495886 1.129031

9.5 1.226028 1.516361 1.155314

9.6 1.266881 1.536934 1.18197

9.7 1.308545 1.557504 1.208892

9.8 1.35176 1.578597 1.236314

9.9 1.394878 1.599621 1.264077

Tab. 3.7: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

10 1.439536 1.62078 1.292177

10.1 1.485143 1.642081 1.320659

10.2 1.531799 1.663459 1.349576

10.3 1.579358 1.685122 1.378711

10.4 1.628 1.706971 1.408319

10.5 1.677614 1.728747 1.438306

10.6 1.72854 1.750796 1.468768

10.7 1.780219 1.772991 1.499417

10.8 1.833099 1.795423 1.530561

10.9 1.88686 1.817938 1.56209

11 1.942161 1.840607 1.594019

11.1 1.998362 1.863423 1.626457

11.2 2.055712 1.886447 1.659069

11.3 2.11421 1.909602 1.69219

11.4 2.174035 1.932937 1.725715

11.5 2.234682 1.956448 1.759719

11.6 2.297506 1.98206 1.794621

11.7 2.359925 2.003984 1.828784

11.8 2.423783 2.028159 1.864264

11.9 2.489766 2.052242 1.899575

Tab. 3.8: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

12 2.557117 2.076646 1.935897

12.1 2.625194 2.101242 1.972627

12.2 2.694683 2.126032 2.00896

12.3 2.76564 2.150375 2.046281

12.4 2.837444 2.176174 2.083759

12.5 2.910995 2.201539 2.122406

12.6 2.985707 2.227165 2.160745

12.7 3.061885 2.2529 2.199542

12.8 3.139203 2.278837 2.239463

12.9 3.217986 2.304152 2.279005

13 3.298459 2.331578 2.319998

13.1 3.380564 2.3587 2.361136

13.2 3.463293 2.384998 2.402327

13.3 3.547816 2.411825 2.445261

13.4 3.634136 2.439184 2.48651

13.5 3.721638 2.467044 2.529393

13.6 3.809812 2.494073 2.572116

13.7 3.900891 2.522811 2.616363

13.8 3.993531 2.550933 2.663424

13.9 4.086931 2.579542 2.705456

Tab. 3.9: Continued ... Sigmas Verses Depth

63



Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

14 4.182014 2.608282 2.750705

14.1 4.278484 2.637323 2.79658

14.2 4.376949 2.666611 2.842764

14.3 4.4762 2.696262 2.889574

14.4 4.579149 2.725992 2.936908

14.5 4.682111 2.756287 2.984558

14.6 4.788226 2.786541 3.033539

14.7 4.893922 2.815181 3.081858

14.8 5.002484 2.848283 3.13132

14.9 5.112661 2.879215 3.181356

15 5.224732 2.910976 3.232538

15.1 5.338265 2.942794 3.282919

15.2 5.453902 2.97508 3.334671

15.3 5.571283 3.007537 3.387823

15.4 5.69036 3.040188 3.439661

15.5 5.811322 3.073528 3.49308

15.6 5.934047 3.107149 3.546721

15.7 6.059063 3.141083 3.601491

15.8 6.185633 3.17497 3.656683

15.9 6.314041 3.209827 3.712223

Tab. 3.10: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

16 6.444814 3.24473 3.770548

16.1 6.577284 3.280002 3.825567

16.2 6.711924 3.319998 3.882706

16.3 6.84846 3.352289 3.938815

16.4 6.987082 3.388197 4.000248

16.5 7.127758 3.425224 4.058986

16.6 7.269588 3.462337 4.119244

16.7 7.415441 3.500367 4.180422

16.8 7.56404 3.537464 4.241884

16.9 7.708393 3.57755 4.304191

17 7.862757 3.616373 4.366794

17.1 8.01647 3.654884 4.43031

17.2 8.172165 3.695681 4.494706

17.3 8.328794 3.736403 4.559321

17.4 8.490444 3.777592 4.624824

17.5 8.654897 3.818988 4.691157

17.6 8.817969 3.86126 4.758148

17.7 8.986203 3.904005 4.82695

17.8 9.153198 3.946948 4.894542

17.9 9.32664 3.990446 4.963648

Tab. 3.11: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

18 9.500945 4.03498 5.033681

18.1 9.67926 4.080137 5.104356

18.2 9.857957 4.125707 5.175818

18.3 10.04048 4.171975 5.248617

18.4 10.22422 4.219528 5.321795

18.5 10.41048 4.265722 5.395191

18.6 10.59601 4.313981 5.470855

18.7 10.79322 4.363355 5.546332

18.8 10.9865 4.412959 5.623007

18.9 11.18603 4.463292 5.700584

19 11.38584 4.51438 5.779123

19.1 11.58895 4.56619 5.858003

19.2 11.79507 4.619031 5.938164

19.3 12.00391 4.67262 6.019165

19.4 12.21513 4.72684 6.101032

19.5 12.43049 4.781982 6.184111

19.6 12.64653 4.838593 6.268461

19.7 12.86773 4.895688 6.353101

19.8 13.09046 4.954129 6.439677

19.9 13.317 5.013147 6.527303

Tab. 3.12: Continued ... Sigmas Verses Depth

66



Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

20 13.54627 5.073395 6.614662

20.1 13.77746 5.135851 6.70267

20.2 14.01464 5.197655 6.79375

20.3 14.24694 5.262294 6.884907

20.4 14.49515 5.326137 6.976739

20.5 14.74057 5.393588 7.070963

20.6 14.9873 5.458995 7.165559

20.7 15.24026 5.529707 7.261757

20.8 15.4939 5.598903 7.359513

20.9 15.75407 5.668858 7.456739

21 16.01614 5.74103 7.557176

21.1 16.28433 5.818029 7.658071

21.2 16.55071 5.895899 7.759371

21.3 16.82337 5.973428 7.863933

21.4 17.09905 6.053269 7.967996

21.5 17.37894 6.135502 8.074264

21.6 17.66343 6.220639 8.182023

21.7 17.95417 6.305674 8.295543

21.8 18.24132 6.392631 8.401447

21.9 18.53333 6.483033 8.51333

Tab. 3.13: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

22 18.83731 6.574559 8.628469

22.1 19.1513 6.671115 8.744384

22.2 19.45268 6.769341 8.861356

22.3 19.75654 6.87042 8.975476

22.4 20.07419 6.972037 9.104156

22.5 20.3939 7.080605 9.21893

22.6 20.71788 7.190889 9.348356

22.7 21.048 7.309589 9.477093

22.8 21.38037 7.41792 9.603357

22.9 21.71723 7.542977 9.733464

23 22.05992 7.669872 9.861692

23.1 22.40826 7.800529 10.00174

23.2 22.76102 7.937617 10.14393

23.3 23.11371 8.07578 10.28107

23.4 23.47424 8.223391 10.42099

23.5 23.8432 8.377318 10.56621

23.6 24.21907 8.535913 10.714

23.7 24.59234 8.700757 10.86385

23.8 24.97309 8.877659 11.02178

23.9 25.33077 9.067096 11.17668

Tab. 3.14: Continued ... Sigmas Verses Depth
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Depth s2t1 s2q1 s2t1q1

cm mm2 deg2 mmdeg

24 25.75127 9.255748 11.33259

24.1 26.14975 9.460161 11.49843

24.2 26.56196 9.675525 11.6639

24.3 26.96409 9.905364 11.8347

24.4 27.38303 10.15001 12.01593

24.5 27.80323 10.41203 12.17715

24.6 28.23052 10.69017 12.37328

24.7 28.66821 10.99825 12.56305

24.8 29.10374 11.32817 12.75761

24.9 29.55757 11.69821 12.96016

25 30.0012 12.09181 13.15106

25.1 30.4813 12.53968 13.38146

25.2 30.94884 13.04281 13.60422

25.3 31.42808 13.62588 13.83626

25.4 31.91643 14.299 14.08046

25.5 32.41103 15.12239 14.33837

25.6 32.91706 16.12973 14.6079

25.7 33.44924 17.52398 14.89933

25.8 33.95201 19.451 15.21766

25.9 34.50148 24.22958 15.59279

Tab. 3.15: Continued ... Sigmas Verses Depth
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4. RECONSTRUCTION

4.1 Introduction and Background

The pCT reconstruction problem differs in some respects from that of xCT, PET and

SPECT, and requires new approaches, although some of the underlying principles are

the same [?]. In xCT, data collection is usually considered as the Radon transform

of the object source function. In this case, the object data represent the attenuation

coefficient map and the projection data the log values of the detected x-ray count [?].

The main goal of pCT for therapy application is the determination of the volume

electron density, ρe, by measuring the energy loss of protons after traversing the

object. Ionization and atomic excitation are the main processes for energy loss of

protons as we have seen in the “Energy Loss Chapter” of this thesis.

In his paper [?] Dr. Schulte explain that in pCT, multiply scattered protons

traversing the object travel along a curved zigzag path,which may deviate significantly

from a straight line and is not confined to a 2D plane. Furthermore, protons usually

do not get absorbed but traverse the object completely. thus, the proton counting

rate used in x-ray CT, PET, and SPECT has to be replaced by the energy loss

measurement for proton traveling along tracks : that lead to the same image pixel.

Given the known proton entrance energy and the measured exit energy, the energy

integral can be computed, resulting in the projection data. The image reconstruction
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problem for pCT is then to obtain the best estimate for the relative electron density

map from the measured proton data.

Using the Beth-Block Equation and the difference between the entry and exit

energy for every proton, in the “Energy Loss chapter” we can get the projected

traversity of a proton. On the other hand, and by using the same Beth-Block Equation

and the entry and Exit Energy, and by knowing the entry and exit angle θ0 and θ2,

we can calculate our sigmas Σ1 and Σ2 and then the MLP as that was covered in the

“Most Likely Path Chapter”. Now it is the time to introduce my third step of my

research mission, which is reconstruct the image using the Path for each proton.

4.2 Steps Toward Solving the Reconstruction Problem

The following steps must be executed in order for us to reconstruct an image from

a collected data. Some of the equations will be precalculated, while others will be

calculated for each proton.

1. Calculate the line integral of relative electron density (must be calculated for

each proton)

2. Pre-calculate sigma(s) for the object. (sigma will be precalculated one time only,

and stored in a data file, and loaded in before calculating the object’s data.)

3. Calculate the object boundary, using each proton in each data file.

4. Calculate the MLP for each proton at each angle φ of the rotation

5. Consider the rotational angle φ, and transfer the rotated coordinate into the

original coordinate φ
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6. Map the MLP into the path matrix map

7. Victorize the path map (for each proton)

8. Insert the path map vector into the sparse matrix

The solution for the first, second, and third step has been explained in the previous

chapters of this thesis document. Let me explain the work done in each of the step

remaining.

4.3 Identifying the Shape of The Object

Non in the previous research done any job related to identifying the shape of the

object. Tianfang Li [?] assumes that the shape of the object is known in advance.

In his experiment to calculate and reconstruct an image, he assumes that the outer

shape and the coordinates of that shape is known too.

In my research I didn’t assume that I know anything about the object or its coor-

dinates in the experiment space. I just knew that currently I have a two dimensional

(2D) square of 30cm by 30cm, and the object that we would like to reconstruct relay

somewhere in this space.

The technique, which I came up with, to get the object’s boundary is very simple.

My technique depends on the energy loss for the protons, which travels through

the space. Most likely that the outer protons in the top and the bottom of each

measurement, therefore they will not hit the object; therefore, these protons will loss

a very small amount of energy. This small amount of energy lost indecate that they

most likely will travel in a straight line without hitting the object.
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Fig. 4.1: Object Boundary Image Resulted from Proton Energy Loss

A proof for this fact will by analyzed by just looking at the entry energy and exit

energy, the entry height and the exit height for each one of those protons. I stated

a tolerance, if the proton loss more than 5MeV (five) it means that this proton hit

an object, so at the height of that proton there is an object. So by moving from the

edges toward the center, I can calculate the last two point from the top and bottom

where there is no object. I will mark those two points as they belong to the edge of

that object.

Since I have 180 trajectories. I can get 360 points around the object. which will

lead me to know the edges of that object. Look at figure 4.1 to see the result.
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4.4 Calculating the MLP for Each Proton at Each Angle:

Since we know the object outer shape, I can calculate the MLP for that object by

using the entry and exit height of that proton.

From the entry point at the level zero, I draw a straight line to the point where it

will hit the surface of the object. On the other hand I will draw a straight line from

the point, of which the proton will leave the object surface, to the to the exit point

where it hit the sensors. Taking in consideration the entry and exit angle. Currently

we assume that the entry angle is zero, and the exit angle is given in the data set.

4.5 Map the Most Likely Path(MLP) into the Path Matrix

The idea behind mapping the MLP is to isolate the most likely path for one proton

and map that path on a pixelated map where if the proton visit the pixel then we get

one (1), while it will mark the pixel with zero (0) otherwise. since we know the hight

(t) at every depth (u) we will know the pixels, which the proton has visited at every

depth.

4.6 Consider the Rotational Angle, And Transfer Back to The Original Coordinate

For the first read of the protons where φ = 0 we don’t have to rotate. The MLP that

we got from the equation will be the MLP for that read. but how about the other

group of protons where φ will equal an incremental number of 2.

Therefore before we apply our MLP to our reconstruction matrix, we must rotate

our coordinates back to the original coordinates.
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Fig. 4.2: A Pixelated Most Likely Path

Thanks to rotational matrix which will rotate our map to the original coordinates.

As we will adopt the same when moving to three diminutions 3D objects.

4.7 Convert the Mapped MLP Matrix into a String of Zeros and Ones.

After having a map of zeros and ones for each protons. we will each map into a string

vector of zeros and ones. Also then we will insert the resulted string vector into a

bigger matrix which will hold all our MLPs.

I also have implemented an algorithm to covert the canvas into a vector. I have

tested the algorithm against number of MLP and it worked.
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Fig. 4.3: A Victorized Most Likely Path with the Solving Algorithm

4.8 Image Reconstruction Matrix and Function

4.8.1 The Need for Sparse Matrix

As I mentioned before, I am dealing with a huge number of proton data sets; on

which, I am applying many complex integrations.

Currently, I have one hundred and eighty (180) data files (for each angle), each

includes seventeen registration for each on of the forty five thousand (45000) proton.

Each proton will be mapped to three hundred by three hundred (300× 300) matrix,

which will be converted to a victor of zeros and ones of size ninety thousands (90000).

Each on of those bits need eight bytes. Taking in consideration each proton, and

ignoring the number of protons that register error information, we must have 180 ×

45000×90000×8 which would equal to 5832000000000bytes ' 5.3Terabyte of Random

access memory needed to hold this matrix.

Until now in the end of 2007, we don’t have a machine which will hold that much

of RAM to be allocated by this matrix, not to mention the RAM needed for the the

operating system OS, other applications, this current application which will calculate

the reconstruction and other matrixes needed for this application.

All of the above created the need to use sparse matrix, which reduces the size of
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the protons’ matrix from 5.3 TB to 10.x GB, which couldn’t fit in the RAM of my

current laptop or my desktop, but it will fit in a cluster or future laptop.

For this experiment I only used a sampled data set of the current data set.

4.8.2 The Need for Algebraic Reconstruction Technique

Algebraic Reconstruction Technique (ART) is a well known technique or method

in solving sparse systems of linear equations. Thanks to Kaczmarz, this method is

inherently sequential according to its mathematical definition since, at each step, the

current iteration is projected toward one of the hyperplanes defined by the equations.

ART has many advantage in the world of solving sparse systems of linear equations.

The main advantages of ART are its robustness, its cyclic convergence on inconsistent

systems, and its relatively good initial convergence [?].

An entirely different approach for tomographic imaging consists of assuming that

the cross section consists of an array of unknowns, and then setting up algebraic

equations for the unknowns in terms of the measured projection data. Although

conceptually this approach is much simpler than the transform-based methods dis-

cussed in previous sections, for medical applications it lacks the accuracy and the

speed of implementation [?]. However, there are situations where it is not possible

to measure a large number of projections, or the projections are not uniformly dis-

tributed over 180 or 360) both these conditions being necessary requirements for the

transform based techniques to produce results with the accuracy desired in medical

imaging [?].Problems of this type are sometimes more amenable to solution by alge-

braic techniques. Algebraic techniques are also useful when the energy propagation
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paths between the source and receiver positions are subject to ray bending on account

of refraction, or when the energy propagation undergoes attenuation along ray paths

as in emission CT, which we have talked about in the first chapter of this thesis.

ART is widely used as an interactive solution to the problem of image reconstruc-

tion from projections in computerized tomography (CT), since it produces successful

results when implemented with a small relaxation parameter produces.

In many ART implementations the path visit to cell cik, from the MLP, are simply

replaced by ls and Os, depending upon whether the center of the kth image cell is

within the ith row. This makes the implementation easier because such a decision

can easily be made at computer run time. In this case the denominator in 4.1 The

correction to the jth cell from the ith equation will be determined in 4.3 for all the

cells whose centers are within the ith row:

4
∫ i

j

=

∫ i

j

−
∫ i−1

j

(4.1)

4
∫ i

j

=
pi − qi∑N

k=1 w2
ik

wij (4.2)

4
∫ i

j

=
pi − qi

Ni

(4.3)

ART reconstructions usually suffer from salt and pepper noise [?], which is caused

by the inconsistencies introduced in the set of equations by the approximations com-

monly used for the proton position at each depth u.
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Fig. 4.4: Simulated Object with Density Represented by High(Four), Medium(Two), and Low(Zero)

4.8.3 Use the Numerical Algebraic Reconstruction Technique A = bx to Solve for

the Reconstruction

For this thesis I only used numerical ART that is build in MatLab application. Due

to the lake of memory, I am only using a small portion of my data set.I have tried my

algorithms on this small data set and apply the resulted data to the MatLab build-in

least square technique.

Illustrated in figure[4.4],My small data set consist of a simulated object with low

density where it shows zeros 0s, and high density where it shows fours (4s), and

medium density where it shows twos.

After calculating the MLP for number of proton travels through the object I got

the matrix illustrated in figure[4.5].
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Fig. 4.5: Sample of Protons’ Vectorized Most Likely Path Constructed on a Matrix
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Fig. 4.6: Reconstructed Image of Sample Data Collection

This will result the final picture of the reconstructed sample of figure[4.4]. The

picture in figure[4.6].

4.8.4 Results

Although I couldn’t my target object from the given data set due to lake of memory,

but I am very confident that each step in my reconstruction technique was carefully

planned, strongly implemented, and successfully tested, and match the expected re-

sult when compaired to the NIST database result.

Fortunately, the home made functions, which I implemented through out the last

two and a half year working on this research, has the support of my thesis committee

members. With better performance, tt produced same result, and sometime better,

which was produced by other build-in functions; but with better performance.
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4.9 Summary of Future Work

The performance that I gained from building my home-made Gaussian Quad function,

supported by the correctness of successful implementation of my HS algorithm, gave

hope for Image Reconstruction using Proton Computed Tomography. However, better

hardware must be used to implement this algorithm to handle Memory leak, which

will be huge when upgrading to 3-D computed tomography.

Since each proton is a separate entities; we can apply our calculations on each

proton individually. Currently, I am only using my 3rd victim laptop, after burning

two computers, to do all my calculation on all the protons. Future continuing of the

project is to use parallel programming applied on distributed system.

Graphic User Interface will be great future improvement to the usability of such

algorithm. Currently, I am feeding my data using the MatLab Environment. A

future GUI interface, implemented in C++ for example, will be great advantage to

this application.

Although not reached, but good continuing in this research is to implement differ-

ent ART algorithm for image reconstruction and compare their performance.

4.10 Conclusion

I am honored to work on such a research, among few other challengers who didn’t

hesitate to take this challenge. It was big research to accomplish. I started with zero

experience about biology, proton, X-RAY, pCT, MatLAB, LaTeX, thesis templates

... etc, but looking at myself now, I gained a lot of experience from this thesis, and I

didn’t, as I will never, gave up.
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This project will be a good help for brain and body imaging. Especially in the

field of tumors imaging. A lot has been done, and a lot more are waiting

Any challengers...

JT

Seattle, WA

NOV 29th, 200704 : 59 : 49AM
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APPENDIX A

MATRIX
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1.1 Introduction

Looking around, we will analyze that everything can be digitalized into a matrix.

Spreadsheet in Excel file, table or any other respectable data file that contain set of

numbers related to each other. Matrices Make presentation of numbers clearer and

make calculations easier to program.

Kay [?] define matrix as a rectangular array of elements, the elements can be

symbolic expressions or numbers. For example Matrix [A] is denoted by:

[A] =




a11 a12 a13 ...... a1n

a21 a22 a23 ...... a2n

. .

. .

. .

am1 am2 am3 ....... am4




(1.4)

We define a row i as it has n elements, which are [ai1ai3ai3.....ain] and we define

a column j as it has m elements, which are:




a1j

a2j

.

.

amj




The size of a matrix is the result of multiplying the number of rows m by the

number of column n; it is donated by (m x n).

Element of matrix is donated by aij. The following is an matrix example:
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[A] =




30 24 55 11 27 45

21 10 9 8 11 2

3 15 16 32 20 24

6 17 3 5 8 13




(1.5)

The above matrix [A] has a size of 4x6 = 24. The elementa46 has a value of 13.

Note that for regular matrix we always write the name of a matrix in capital

letters.

The proper study of matrix computation begins with the study of the matrix-

matrix multiplication problem [?]. Although this problem is very simple mathemat-

ically, it is very rich from the computational point of view.

Matrix computation are build upon hierarchy of linear algebraic operations. Dot

products involve the scalar operation of addition and multiplication. Matrix vector

multiplication is mad up of dot products. Matrix-matrix multiplication amounts to

a collection of matrix vector products [?]. All of these operation and more can be

described in algorithmic from or in the language of linear algebra. If it was to me,

I will ask Education Department to teach Matrix computation with the very First

Mathematics Classes.

1.2 Definition of Matrix

There is obvious importance in adopting a methodical arrangement of equations and

all such polynomial expressions, involving several variables x,y,z [?]. Also, because of

the convenient fact that many of the properties of a square of oblong formation can

be illustrated by arranging for or six things two by two in a square, or two by three
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in a oblong, we can continue to extract useful general notations from our equations

above (1.6). The set of coefficients:

a1b1c1

a2b2c2 of (1.6), arranged in their relative positions, is an example of a matrix of order

two and three. In definition a matrix of orders m and n simply means a set of mn

numbers arranged in rectangular array with m rows and n columns [?].

1.3 Special Types of Matrix

Vector: a vector is a matrix that include only one row or one column. This results

two types of vector matrices, row matrices and vector matrices.

Row Vector Row vector is a matrix that has one row. As standard we always

choose vector name to be capital letters. Example of a row matrix [B] = [1123581321].

We describe matrix [B]as a row vector of dimension 8.

Column Vector Column Vector is a matrix that include only one column. As

a standard we also choose vector name to be capital letters. Example of a vector

matrix

[C] =




8

13

21

34

55

89




We describe matrix [C] as a column vector with 6 rows.

Square Matrix We call a matrix a Square matrix if the number of the rows (m)
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is equal to the number of columns (n) of the matrix (m=n). where the entries a11,a22,

... , ann are the diagonal elements of a square matrix.

Diagonal Matrix We call matrix a Diagonal Matrix if all non-diagonal elements

equal to zero.On the other hand, only the diagonal entries of the square matrix can

be non-zero, (aij = 0, i 6= j)

Example: [A] =




3 0 0

0 3.5 0

0 0 6




Zero Matrix Zero Matrix is a matrix, of which

all its entries are equal to zero. (aij = 0 for all i and j)

Example [A] =




0 0 0

0 0 0

0 0 0




[B] =




0 0 0 0

0 0 0 0

0 0 0 0




[C] =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




[D] =

(
0 0 0 0

)

A, B, C, and D are all zero matrixes.

Note: if any matrix is multiplied by the Zero Matrix the answer is the Zero Matrix.

Matrix of Ones Matrix of Ones is a matrix, of which all its entries are equal to

one. (aij = 1 for all i and j)
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Example: [A] =




1 1 1

1 1 1

1 1 1




[B] =




1 1 1 1

1 1 1 1

1 1 1 1




[C] =




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




[D] =

(
1 1 1 1

)

A, B, C, and D are all zero matrixes.

Note: if any matrix is multiplied by the Ones Matrix the answer is that same

matrix.

Diagonally Dominant Matrix This only applied for matrix of n × n squar

matrixes. and it has to meet the following condition:

|aii ≥ Σn
j=1,i=j| for all i=1,2,3 ...n and

|aii| > Σn
j=1,i=j|aij| for at least one i,

that is, for each row, the absolute entry value of the diagonal element is greater

than or equal ≥ to the sum of the absolute values of the rest of the elements of

that row, and that the inequality is strictly greater than for at least one row. Such

matrix are very important in ensuring convergence in iterative schemes of solving

simultaneous linear equations, and liner problems.

89



Magic Square Matrix Magic Matrix is a square matrix where the sum of the

row elements equal to the sum of the column elements.

Some special magic square matrix have the sum of element is a row equal to the

sum of the element of column equal to the sum of the diagonals elements.

Example

[A] =




8 1 6

3 5 7

4 9 2




Another example o a square matrix:

[B] =




16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1




1.4 Notation

The fundamental importance of determinants as working tools in mathematics has

come to be so widely recognized that it may be assumed that the reader has some

practical knowledge of them, and in particular that he has realized their value in

providing a simple general rule for the solution of linear equations. Certain introduc-

tory results may therefore be given without undue emphasis on intermediate steps,

which can easily be supplied [?]. Let us learn about notations and go through some

definitions. Suppose there are two homogeneous linear equations in three variables
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x,y,z,

a1x + b1y + c1z = 0 (1.6)

a2x + b2y + c2z = 0 (1.7)

Then in general they have a solution

x

b1c2 − b2c1

=
y

c1a2 − c2a1

=
z

a1b2 − a2b1

(1.8)

We call those ”denominators”, which are called determinants of the second order

[?], can be written shortly in various ways, all of them have great value.

• |b1c2|, |c1a2|, |a1b2|,

• (bc)12, (ca)12, (ab)12,

• (bc), (ca), (ab).

the last of these ways makes use of the obvious fact that if two letters bc are

written down side by side, one if first and the other is second, read from left to right.

We agree to drop the suffixes in the last item, whenever they are 1,2, for exactly the

reason that we drop the index 1 in writing ap when p = 1. In fact we define (bc)ij

to mean bici − bjcj and merely suppress the suffixes ij on the case when i = 1 and

j = 2. A Fourth and more familiar notation for the determinant b1c2 − bjci is the

well-known square array, introduced by Cayley in 1841 [?] long after determinants

were first invented. It is:∣∣∣∣∣∣∣

b1 c1

b2 c2

∣∣∣∣∣∣∣
which has the advantage of showing such coefficients of the original equations, as

appear in the first determinant, exactly in their same relative positions.
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APPENDIX B

NUMERICAL ANALYSIS
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2.5 Introduction

In numerical analysis, numerical integration constitutes a broad family of algorithms

for calculating the numerical value of a definite integral, and by extension, the term is

also sometimes used to describe the numerical solution of differential equations [?].

The term quadrature is more or less a synonym for numerical integration, especially

as applied to one-dimensional integrals. Two- and higher-dimensional integration is

sometimes described as cubature, although the meaning of quadrature is understood

for higher dimensional integration as well [?].

The most basic problem to be solved using numerical integration is to compute

the approximate solution of a definite integral:

∫ b

a
f(x)dx

2.6 Why Numeric Integration? Why not?

Several facts and reasons affect scientist to use numeric integrations. For example,

the integrand function f, from the previous equation, may be known only at certain

points, such as obtained by sampling. Many computer applications and computer

embedded systems often use numerical integration for such a reason.

The absente of finding an antiderivative is also another reason of using Numeric

Integration. A formula for the integrand may be known, but it may be difficult or

impossible to find an antiderivative. example exp(t−2).

It may be possible to find an antiderivative symbolically, but it may be easier to

compute a numerical approximation than to compute the antiderivative. That may

be the case if the antiderivative is given as an infinite series or product, or if its
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evaluation requires a special function which is not available.

Quadrature is a numerical method used to find the area under the graph of a func-

tion, that is, to compute a definite integral. In MatLab, there is a build in numerical

integration functions that helps do the numerical integration. Those functions are

called Quadrature Functions. Quad and Quadl are MatLab Build-in functions.

2.7 MatLab Build-in Quadrature Functions

2.7.1 Quad

quad q = quad(fun,a,b) tries to approximate the integral of function fun from a to

b to within an error of 1e-6 using recursive adaptive Simpson quadrature. fun is a

function handle. See Function Handles in the MATLAB Programming documentation

for more information. The function y = fun(x) should accept a vector argument x

and return a vector result y, the integrand evaluated at each element of x.

2.7.2 Quadl

Numerically evaluate integral, adaptive Lobatto quadrature q = quadl(fun, a, b) ap-

proximates the integral of function fun from a to b, to within an error of 10-6 using

recursive adaptive Lobatto quadrature. fun is a function handle. (write this myself)

2.7.3 Gaussian Quadrature

The numerical integration methods described so far are based on a rather simple

choice of evaluation points for the function f(x). They are particularly suited for

regularly tabulated data, such as one might measure in a laboratory, or obtain from
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computer software designed to produce tables. If one has the freedom to choose the

points at which to evaluate f(x), a careful choice can lead to much more accuracy in

evaluating the integral in question.
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APPENDIX C

THE NATIONAL INSTITUTE OF STANDARDS AND

TECHNOLOGY DATABASE
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”From automated teller machines and atomic clocks to mammograms and

semiconductors, innumerable products and services rely in some way on technology,

measurement, and standards provided by the National Institute of Standards and

Technology” [?, ?].” from the NIST official website.

The National Institute of Standards and Technology NIST,Founded in 1901,is a

non-regulatory federal agency within the U.S. Department of Commerce. NIST’s

mission is to promote U.S. innovation and industrial competitiveness by advancing

measurement science, standards, and technology in ways that enhance economic se-

curity and improve our quality of life [?].

NIST ccarries out its mission in four cooperative programs, which are The NIST

Laboratories, The Bladrige National Quality Program, The Hollings Man-

ufacturing Extension Partnership, and most important The Technology In-

novation Program which is planned to provide cost-shared awards to industry,

universities and consortia for research on potentially revolutionary technologies that

adress critical national and societal needs. More common information about the NIST

org can be found on its website http://www.nist.gov.

3.8 Advance Technology Program (ATP)

Managed by NIST between 1990 and 2007, the Advanced Technology Program (ATP)

bridges the gap between the research lab and the market place., simulating prosperity

through innovation [?].
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3.9 pSTAR Database

The PSTAR database is a program which will calculate stopping power and range

tables for protons in various materials.

With that program a user an select a material and enter the desired input energies,

or select default.The energies’ unit will be in MeV and must be within the range1of

0.001 MeV to 10000 MeV.

1 For our experiment, our input energy 250 MeV or 200 MeV, and or exit Energy will be less that 250 or 200 MeV

since the proton has to travel through an object and it must loose at least a fraction of an energy

98



REFERENCES

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The

LATEXCompanion. Addison–Wesley Pub. Co., Reading, MA, 1994.

[2] Donald E. Knuth. The TEXbook. Addison–Wesley Pub. Co., Reading, MA, 1984.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison–Wesley Pub.

Co., Reading, MA, 1986.

[4] F. Rellich. Darstellung der Eigenwerte von ∆u + λu = 0 durch ein Randintegral.

Math Z., 46:635–636, 1940.

[5] E. Zeidler. Nonlinear Functional Analysis, volume IIa. Springer Verlag, New

York, 1988.


