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Abstract

A New Look at Robust Estimation and Identification

by

Keith Evan Schubert

Estimation and identification are important areas of almost every problem in

science and engineering. A typical way of stating an estimation or identification

problem is that there is a system, described by a matrix, A, with inputs, x, and

outputs, b. The inputs and outputs could either be matrices or vectors. The

equation which describes this is thus Ax = b. The outputs of the system are

considered measurable, and from them and the matrix A, it is desired to find

the unknown inputs, x. In real systems the equality rarely holds because b is

never measured perfectly, modeling and identification do not produce an exact

A, and the basic equation Ax = b is a linear approximation. The fundamental

problem considered is thus Ax ≈ b, where both A and b are assumed to have

errors associated with them.

This Dissertation proposes five regression methods to handle the fundamental

problem of Ax ≈ b. In particular, let the ”true” system, Atrue, be related to the

nominal model, A, by an error matrix EA. Similarly let the true outputs, btrue

be related to the measured outputs, b, by Eb. Since the true system is not a

mathematical model, the resulting equation is still approximate, (A + EA)x ≈

(b + Eb), but is the best approximation possible. The goal is to find the best x,

in the resulting minimization problem, minx ‖(A+EA)x− (b+Eb)‖. Each of the
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five methods in this dissertation consider this problem and makes assumptions

on the size and structure of the errors, EA and Eb. All problems are solved using

secular equation techniques, so finding the solution corresponds to finding the

zero of a possibly multi-dimensional secular equation.

The first three methods are extensions of min max regression, which minimizes

the cost over x and maximizes it over EA and Eb. The fourth method is the

degenerate case (multiple solutions) of min min regression, which minimizes over

x, and the errors EA and Eb. The fifth is actually a family of regression problems

with rational cost functions based off the backward error criterion of Numerical

Analysis.
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Pilate therefore said unto him, Art thou a king then? Jesus answered,
Thou sayest that I am a king. To this end was I born, and for this
cause came I into the world, that I should bear witness unto the truth.
Every one that is of the truth heareth my voice. Pilate saith unto him,
What is truth? And when he had said this, he went out again unto
the Jews, and saith unto them, I find in him no fault at all.

John 18:37-38 (KJV)
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Chapter 1

Introduction

The subject of this dissertation is the estimation of unknowns that are related

to some measurements by a linear model that is subject to uncertainty. This in-

troduction will examine the mathematical preliminaries, the uncertainty to be

considered, and the solution techniques proposed. The mathematical preliminar-

ies needed to discuss the problems examined in this dissertation are presented

in Section 1.1. A brief look at why uncertainty exists in all models is exam-

ined in Section 1.2. A simple example, which demonstrates the need to consider

uncertainty, is provided in Section 1.3. Finally, the five methods proposed are

introduced in Section 1.4.

1.1 Mathematical Preliminaries

The space of real numbers is denoted, R, and the corresponding n dimensional

space of real numbers is denoted by the n-tuple of real numbers, R
n. The space of

real valued matrices with m rows and n columns is denoted, R
m×n. Similarly, the

space of complex numbers is denoted, C, and the corresponding n dimensional
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space of complex numbers is denoted by the n-tuple of complex numbers, C
n.

The space of complex valued matrices with m rows and n columns is denoted,

C
m×n. Since the extension from real to complex numbers is straightforward, this

dissertation will describe the problems in terms of real numbers.

Consider the set of linear equations, Ax = b, where A ∈ R
m×n and b ∈ R

m are

given. The goal is to calculate the value of x ∈ R
n. If the equation is exact and

A is not singular, the solution can be readily found by a variety of techniques,

such as taking the QR factorization of A.

Ax = b

QRx = b

Rx = QT b

The last equation can be solved for x by back-substitution, since R is upper

triangular. Given errors in modeling, estimation, and numeric representation the

equality rarely holds. The least squares technique directly uses techniques like

the QR factorization, by considering all the errors to be present in b. A more

realistic appraisal of the system, considers errors in both A and b. Numerous

methods exist for describing the errors in A and b, such as

1. bounding the norms of the errors in A and b,

2. constraining the errors in A and b to some structure,

3. partitioning A, b, and their corresponding errors, then placing bounds on

the norms of each partition of the errors.

Combinations of the methods to describe the errors are also considered by some

techniques. The description of the errors is one of the two fundamental ways a
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technique is specified for the linear model Ax ≈ b. The other fundamental way of

describing a method is to specify the cost function used to select the best value

for x.

Least squares considers the cost function, minx ‖Ax− b‖. Total least squares

minimizes the errors in A and b (say EA and Eb) subject to the resulting system

being consistent, thus

min

∥

∥

∥

∥

EA Eb

∥

∥

∥

∥

F

s.t.

(A+ EA)x = b+ Eb.

Other techniques consider directly minimizing the norm of (A+EA)x− (b+Eb)

subject to some description of the errors as described above. For specialized

situations other cost functions and error descriptions are considered, such as

rational cost functions. Chapter 2 presents an overview of the current techniques

in estimation, and how they relate to the techniques proposed.

1.2 Uncertain Models

Mathematical models of real world systems are used to quantify system pa-

rameters and simulate system behavior. This dissertation examines the problem

of uncertainty in a model that is to be used to perform estimation or identification.

Uncertainty is unavoidable, and to some extent, everyone who does estimation or

identification must consider the effects of it. Lennart Ljung discusses this basic

principle in [93], when he speaks of the fiction of a true system. Ljung says,

The real-life actual system is an object of a different kind than our
mathematical models. In a sense, there is an impenetrable but trans-
parent screen between our world of mathematical descriptions and the
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real world. We can look through this window and compare certain
aspects of the physical system with its mathematical description, but
we can never establish any exact connection between them. The ques-
tion of nature’s susceptibility to mathematical description has some
deep philosophical aspects, and in practical terms we have to take a
more pragmatic view of models. Our acceptance of models should
thus be guided by “usefulness” rather than “truth.”

Ljung is noting that there is not an exact model of a real-life actual system but

useful models exist. The challenge lies in defining what is meant by usefulness,

and determining how to obtain a solution from the model, which of necessity

contains uncertainty. Usefulness is dependent on the problem and goals. A

necessary result of this challenge is that different models are needed, and no

one technique will be best in every situation. This dissertation proposes five

new techniques that are useful in solving ill-conditioned systems with special

conditions on the errors.

1.3 A Simple Example

It is reasonable to ask how much can uncertainty affect a real system. Con-

sider, for example the simple system described by

Ax = b,

with

A =







0.11765 0.12909

−0.24957 −0.26919







b =







−0.074888

0.154728






.
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For this exact system the solution is given by

x =







0.34

−0.89






.

This is a nice system with reasonable condition number, but if A matrix is

rounded to two decimal places,

A =







0.12 0.13

−0.25 −0.27






,

the new solution is

x =







1.0505

−1.5457






.

The best that can be said about this is that the signs of the solution are correct.

This illustrates that even innocent looking systems can exhibit bad behavior in

normal situations. What can be done? Consider the normal equations which

describe the least squares solution,

ATAx = AT b.

The difficulty exists in the ATA term. The condition number of this term can be

much worse than that of A, which causes problems when it is inverted to find the

solution. A standard way of dealing with this is to use a regularized solution, in

which a diagonal matrix is added to the ATA term to make the inversion easier

and more accurate. For example, the general form of the regularized solution,

x(ψ) =
(

ATA+ ψI
)−1

AT b, (1.1)

with ψ = 10−7 yields a solution of

x
(

10−7
)

=







0.21515

−0.77273






.
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This is closer to the true solution, but can the selection of the regularization

parameter be automated? Examining the one parameter family given in Equa-

tion 1.1 to find the one closest to the true system would be ideal, but that requires

knowing the answer a priori. Note also that frequently the exact solution is not

as important as the residual, which needs to be taken into account.

1.4 Proposed Formulations

Five formulations are proposed in this dissertation, four are extensions of ear-

lier works, and one is a new direction. One current technique that is extended

is referred to as robust least squares in [62], bounded data uncertainties in [24],

and for neutrality shall be referred to as the min max technique (since both a

minimization and maximization is performed on the cost function). The other

current technique that is extended is referred to as a bounded errors-in-variables

model in [25], and will be referred to as the min min technique (as two minimiza-

tions are performed on the cost function) here to be more specific and consistent

with the min max problem above. The five formulations are:

1. Multiple (block) column partitioned min max (multi-col min max)

2. Multiple (block) row partitioned min max (multi-row min max)

3. General (block) partitioned min max (general min max)

4. Degenerate min min

5. Min max backward error

The first problem is the multiple (block) column partitioning case for the min

max, which is handled in Chapter 3. In this problem A and EA are considered to

6



be partitioned into block columns (Aj and EA,j), and the norm of each partition

of the error, EA, is assigned a bound. The problem can be thought of as an order

updating problem if partitioned into two blocks. For multiple block columns, this

method is useful in tracking multiple targets on radar arrays, or working with

inverse problems such as those in seismology. The problem, for p block partitions,

is given as

min
x

max

‖Ej‖2 ≤ ηj

‖Eb‖2 ≤ ηb

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

[

A1 + E1 · · · Ap + Ep

]













x1

...

xp













− (b+ Eb)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(1.2)

where j = 1, 2, . . . , p. First, key simplifications from the original min max prob-

lem are shown to be no longer true, thus demonstrating the increased difficulty

of the problem. Second, it will be shown that this problem can be expressed

as an identical problem in which the maximization has already been done. A

quadratically convergent algorithm is presented for finding the solution using the

new formulation. The new formulation is then used to show the form of the

solution, which allows the problem to be reduced to finding the zeros of a p di-

mensional secular equation. Several lemmas to characterize important properties

of the problem are developed, and the existence and uniqueness of the solution

is proven. A numerical example is given to show the performance.

The second problem is the multiple (block) row partitioning case for the min

max, which is handled in Chapter 4. This is similar to the multiple column

case above, with the obvious distinction that A and EA have been partitioned

into block rows (Ai and EA,i) rather than block columns. The bounds are thus

placed on the norms of the block row partitions of EA. The problem, for q block

7



partitions, is given as

min
x

max

‖Ei‖2 ≤ ηi

‖Eb,i‖2 ≤ ηb,i

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













A1 + E1

...

Aq + Eq













[x] −













b1 + Eb,1
...

bq + Eb,q













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(1.3)

where i = 1, 2, . . . , q. The maximization is performed to obtain an equivalent

formulation and this is used to show the form of solution when the solution is at

a differentiable point. The secular equation is designed for finding the regression

parameter. The non-differentiable points are discussed and techniques for telling

when the solution is at a non-differentiable point are covered. An algorithm

showing how to implement the solution is presented and conclusions are drawn.

The third problem is the general (block) partitioning case for the min max,

which is handled in Chapter 5. This problem combines the row and column

partitioning as special sub-cases. In this problem both the columns and rows of

A and EA are partitioned into blocks (Ai,j and Ei,j), and the norm of each Ei,j

are assigned distinct bounds. The problem is

min
x

max

‖Ei,j‖2 ≤ ηi,j

‖Eb,i‖2 ≤ ηb,i

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













A1,1 + E1,1 . . . A1,p + E1,p

...
. . .

...

Aq,1 + Eq,1 . . . Aq,p + Eq,p

























x1

...

xp













−













b1 + Eb,1
...

bq + Eb,q













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(1.4)

where i = 1, 2, . . . , q and j = 1, 2, . . . , p. It allows perturbation bounds on indi-

vidual blocks of the min max problem, which is particularly useful if the matrix,

A comes from different sources, or has modeling errors that are non-uniform.

Note that this case will not exactly handle structure but can approximate it. If

the structure is the main goal, the structured LMI technique discussed in Sec-

tion 2.10 is the best choice, as it can handle structure exactly. The maximization
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has been performed, the form of solution for differentiable points has been found,

and the secular equation to calculate the regression parameter is provided. The

differentiable points can be handled similarly to the row case, and the basic al-

gorithm presented there holds for the general block case. A fixed point method

for finding the solution is presented as an alternative, which performs well in

practice. Results of many numerical runs on random matrices are presented to

demonstrate the behavior of the method.

The fourth problem, covered in Chapter 6, is the degenerate version of the

min min problem presented in [25]. The degenerate version is the more difficult

and more general extension of that paper’s problem. This problem has been

completely solved and has been published by SIMAX as [26]. The problem is

min
x∈Rn

min
‖E‖≤η

‖(A+ EA)x− b‖ (1.5)

with

η‖x‖ ≥ ‖Ax− b‖.

The assumption in this problem is that the errors can be used to improve the

estimate, similar to the total least squares (TLS) problem (the norm of the x that

minimizes the cost function is larger in general than the corresponding norm of

the least squares solution). This problem can also actually yield a robust solution,

which is impossible for other algorithms like TLS to do. It is even possible for

the degenerate min min problem to coincide with the min max solution. This

property is very encouraging given the usual trade-off between accuracy and

robustness. This problem in essence picks the accurate solution, but should the

conditions warrant it will pick a robust one. The solution method is shown to be

of compatible complexity to the least squares problem (n3 algorithm), and the

data requirements are only one scalar (perturbation bound for A) larger.
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The final formulation, covered in Chapter 7, is the most promising. The

min max backward error problem, or backward error for short, seeks to correct

for numerical conditioning. The backward error technique can yield increased

accuracy or increased robustness as the degenerate min min problem can, but it

does so on a more sophisticated criterion. The problem is thus stated

min
x

max
‖E‖≤η

‖(A+ EA)x− b‖
‖A‖‖x‖ + ‖b‖ .

In experimental runs, the backward error problem has consistently yielded the

best results. The data requirements are the same as the degenerate min min

problem, but the added superiority is bought at the cost of a non-convex cost

function. The backward error technique is broken down into four related prob-

lems, three of which are solved completely, the final problem is solved but not

completely characterized.
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Chapter 2

Current Formulations

The regression problem has a long history, and many methods have been pro-

posed to handle it. Linear regression models and techniques, in particular, have

been studied for hundreds of years. Over the course of the last fifty years, meth-

ods have been introduced to address a variety of problems encountered, even, in

some cases including uncertainty. A proper understanding of the formulations

proposed in this dissertation requires a good familiarity of the material that has

gone before. This chapter will examine some of the major techniques and formu-

lations currently in use. Section 2.1 covers an overview of least squares, the most

well known and used regression technique. Section 2.2 provides an overview of

total least squares. Section 2.3 contains an overview of weighted least squares.

Section 2.4 is an overview of constrained least squares, which encompasses a wide

variety of problem formulations. Section 2.5 covers an overview of Ridge Regres-

sion, another method, which can fit under both constrained least squares and

Tikhonov, but is worth discussing separately. Section 2.6 contains an overview

of Tikhonov, another general technique with a variety of sub-techniques. Sec-

tion 2.7 provides an overview of the min max problem, which is the basis of

11



the multi-column min max criterion of Chapter 3, the multi-row min max crite-

rion of Chapter 4, and the general block min max criterion of Chapter 5. Sec-

tion 2.8, compares the min max problem to a suggested form of the Tikhonov

regulator that has a closed form solution. Section 2.9 covers an overview of the

non-degenerate min min problem, which is the basis of the degenerate min min

problem discussed in Chapter 6. Section 2.10 contains an overview of the Lin-

ear Matrix Inequality (LMI) techniques of robust estimation, which is one of the

most flexible techniques available.

2.1 Least Squares

Least squares assumes that the matrix, A is known exactly (EA = 0), and

thus all errors occur in the observations, b, only. It is sometimes also referred to

as Errors-in-Observations, due to the assumption of the errors occurring only in

b. Least squares has been studied heavily since Gauss introduced it to calculate

orbits of objects in the solar system [56]. Numerous other works have covered

solution methods [8, 89] and solved cases such as special structure [30, 32], sparse

matrices [36, 57], and numerical issues [10, 28, 118]. The least squares formulation

solves the problem of Ax ≈ b by minimizing the error of the estimates in the

Euclidean sense. The problem can be stated as

min
x

‖Ax− b‖2. (2.1)

This is the least squares criterion, and it works well in most situations. The

least squares problem has a simple solution, namely xLS = A†b, where A† is the

pseudo-inverse of A. The solution is the same for a deterministic assumption,

as for an assumption that additive zero mean gaussian noise is present in the

measurements, b. The solution can be thought of as the projection of b into the
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Figure 2.1. Geometric Interpretation of Least Squares Solution

range of A, as seen in Figure 2.1. The cost criterion is appealing to physical

intuition, since it requires the solution to account for all of the measurements the

system could have produced. The solution only requires the basic data (system

matrix and measurements), and the complexity of the solution is the standard of

comparison. It is easy see why the least squares criterion is popular, but it is not

without its problems. The choice of independent variables, which will be shown

below, and scaling problems, which are outlined in [99], are few of the well known

problems with least squares.

Consider the problem of calibrating a gas thermometer. Gas thermometers

are based on Charles’ law, which states that the volume of a fixed mass of gas

at a fixed pressure is proportional to its temperature. A simple gas thermometer

can be made by trapping some gas with a mercury plug in a capillary tube that

is open on only one end [98]. The volume is thus proportional to the height of the

plug. The equation of the thermometer is thus hc1 = T , where h is the height of

the plug, c1 is the unknown value, and T is the absolute temperature. The gas

thermometer is placed in a stirred liquid bath with a known thermometer. The

13



bath is heated and height and temperature measurements are taken at various

times. The least squares solution yields ĉ1 = h†T , but this minimizes only the

error in the measured temperature, T , from the predicted temperature, hh†T .

Alternately the relation h = c2T could have been used, with c2 = 1
c1

. The

least squares solution, ĉ2 = T †h, thus minimizes the error between the measured

height, h, and the predicted height TT †h. A problem arises with the least squares

method in that generally ĉ1 6= 1
ĉ2

. This can be seen easily in Figure 2.2. The

slope of the line designated temperature errors, is ĉ1, while the slope of the line

designated height errors is 1
ĉ2

. The line designated theoretical is the “true” system

from which the estimates were generated. It is easy to see that the slopes are not

the same, and thus ĉ1 6= 1
ĉ2

. The least squares solution does not even perfectly

handle the case where the system matrix is “known”, which gives cause to be

concerned as to how it will perform when there are perturbations to the system

matrix.

2.2 Total Least Squares

One method to deal with the problem mentioned in the last section is to

change the criterion from measuring either the error in the height or the error in

the temperature, to measuring the sum of the squares of both. This gives rise

to the total least squares criterion. The total least squares criterion has been

examined in detail elsewhere, see for instance [67, 82]. The total least squares

criterion is known to improve the accuracy of a particular problem at the cost

of robustness. This can be seen by looking at the least squares and total least

squares problems geometrically. The least squares problem assumes that the

error occurs only in b and thus it projects b into R(A), see Figure 2.1. The total
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Figure 2.3. Geometric Interpretation of Total Least Squares Solution

least squares problem assumes the error occurs in both A and b and thus it finds

the closest Â and b̂ to the original problem such that b̂ ∈ R(Â), as is stated in

[82]. See Figure 2.3 for an geometrical understanding of total least squares. One

disadvantage with this is that there is no way to limit how much Â is changed, and

thus the solution could be for a very different problem than what was originally

posed. A key disadvantage though, is that the total least squares problem picks

the most optimistic Â and b̂ possible from a potentially large set of matrices.

Such optimism is not realistic and results in the lack of robustness noted.

A key assumption of the total least squares problem is thus that both A and b

have errors, so the true system is Â and b̂ with b̂ ∈ R(Â). The problem is then to

find Â and b̂ and solve Âx = b̂. Another key assumption is that the perturbations

in A and b are independent, which is not true for structured matrices so common

in estimation and identification problems. The cost function has good physical

correspondence, in that the errors are taken as the distance both A and b must be

perturbed to get a consistent model, rather than what least squares does, which

is to consider it to be the distance b must be perturbed to get a consistent model.

16



It is inherently more satisfactory to account for errors on both sides, rather than

to try and lump all the errors into one side of the equation. The solution has

a closed form, so it is trivially tractable. The data requirements are the same

as the least squares problem, which is ideal. Finally the solution complexity is

on the same order as the least squares problem (n3). All in all, the total least

squares problem is seen to be very useful, but it still has drawbacks.

2.3 Weighted Least Squares

Weighted least squares is a general technique which seeks to account for the

relative importance or accuracy of a row in the equation Ax−b by multiplying by

a weighting matrix, which is usually diagonal. Both row and column weighting

can be done [89, 138], though only the more common case of row weighting

will be considered. Weighted least squares provides a simple way of controlling

the influence of a row, although it unfortunately suffers from ill conditioning.

Some major uses of weighted least squares are iterative improvement of a least

squares solution [4, 5, 7, 13, 70], electrical networks, and finite elements [140].

The weighted least squares problem can be stated as

min
x

∥

∥

∥W
−1

2 (Ax− b)
∥

∥

∥

2

,

with solution

ATW−1Ax = ATW−1b

x =
(

ATW−1A
)−1

ATW−1b.

The main source of ill conditioning is the matrix W , which is by its very nature

designed to have a large spread in its Eigenvalues. Vavasis [148] claims that

this ill condition causes usual techniques for least squares type problems to yield
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highly inaccurate answers. Given the ill conditioning, it is reasonable to ask if x

ever can become infinite due to W . Both Stewart [139] and Todd [144] were able

to establish independently that for all positive-definite real diagonal matrices, W ,

the following supremums are finite:

1. sup
{

‖(ATW−1A)−1ATW−1‖
}

2. sup
{

‖A(ATW−1A)−1ATW−1‖
}

Since the supremums are finite, x must be finite. Another question to answer is

if a stable method for solution exists. No method has been shown to be stable

using the usual backward error analysis technique, but [81] shows one exists if

stability is defined as

‖xTrue − xEst‖ ≤ ε · f(A) · ‖b‖,

where ε is machine precision and f(A) is some function of A that does not depend

on W . It is important to note again that a special definition of stability is needed

for this problem, due to the conditioning problem in W . The basic solution of

[81] can then be expressed as

1 QR factor (with pivoting) ATW
−1

2 :

ATW
−1

2 = Q1R1P
2 Reduced QR factor (without pivoting) RT

1 :
RT

1 = Q2,1R2,1

3 Solve by back substitution for z:

R2,1z = QT
2,1PW

−1

2 b
4 Multiply:

x = Q1z

The first QR factorization is to provide stabilization. The second QR factor-

ization is to solve the least squares problem. The net effect is to factor ATW
−1

2

into Q1R
T
2,1Q

T
2,1P , which is essentially a complete orthogonal decomposition [68].
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Alternately, the solution can be stated in terms of the equilibrium system






W A

AT 0













y

x






=







b

0






,

and then found by any method desired, such as the QR factorization. While

this has not been shown to be stable, the alternate formulation shows that the

weighted least squares problem is essentially a special case of the generalized least

squares problem [68, 111, 112, 113, 86, 3].

Finally, the weights can be difficult to select if they do not arise naturally.

For instance, in simple DC electrical networks the weights can be considered as

resistances, and the A matrix defines the adjacencies, b gives the voltage sources,

and x is the desired node voltages. Such cases naturally give rise to the weights.

What happens when this does not happen? The engineer is left trying to apply

heuristics to select a weighting matrix. Given the drawbacks, weighted least

squares will not be considered further.

2.4 Constrained Least Squares

Often constraints naturally arise in problems. A fitting function could have

prescribed values, a physical system could have limits on its operation, or a

solution in a particular set could be desired. Probably the most basic constrained

problem is the least squares Quadratic Inequality problem described in [68]. The

problem can be stated as

min
x

‖Ax− b‖ subject to ‖Bx− d‖ ≤ α.

Often d = 0 and B is nonsingular, though this is not required. The problem

can be solved by the method of Lagrange multipliers, which has the nice bonus
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of having connections to Tikhonov’s method, which is dealt with in Section 2.6.

The problem becomes

min
x,λ

‖Ax− b‖2 + λ(‖Bx− d‖2 − α2).

Taking derivative and setting equal to zero the solution is

x = (ATA+ λBTB)−1(AT b+ λBTd) (2.2)

g(λ) = ‖B(ATA+ λBTB)−1(AT b+ λBTd) − d‖2 − α2 = 0. (2.3)

Equation 2.2 gives the one parameter family of solutions for the problem. When

the value of the Lagrange multiplier, λ, is known the unique solution is specified.

Equation 2.3 is called the secular equation in [68] and this designation will be

used throughout the dissertation. The purpose of Equation 2.3 is to find the

value of the Lagrange multiplier, λ. The multiplier is found by any root finding

method desired, though typically Newton’s method or bisection is used. The

general procedure of finding a solution used in this dissertation follows this basic

strategy.

A particular case of the least squares quadratic inequality, minimization over

a sphere, is of particular importance and has been studied extensively, see [6, 40,

41, 42, 43, 52, 55, 68, 108, 130, 138]. The minimization of a least squares problem

over a sphere has strong connections to robustness, and is strongly connected to

the Ridge Regression and Cross-validation problems, which will be discussed in

Section 2.5. The basic problem is

min
‖x‖≤α

‖Ax− b‖.

Following the procedure outlined above, the solution is found to be

x =











A†b if ‖A†b‖ ≤ α

(ATA+ λI)−1AT b else
.
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This special case covers the solution being confined to a particular set, and thus

forces the solution to stay bounded. Since the solution is always bounded to a

reasonable size it prevents one problem associated with lack of robustness, namely

solutions being unstable and growing without bound. A major problem with this

is how to know a priori the size of the true ‖x‖. An error on the guess of the size

of x can cause a reduction in the signal strength (as ‖x‖ is forced to be smaller

than the guess). Another problem is that λ can in general be quite large, but

experience shows that a small value of λ is more desirable as large values tend to

remove fine details (usually carried in the singular vectors associated with smaller

singular values) first. The solution obtained from large values of λ tend to bear

little resemblance to the true solution in all but the major details. This is a key

area for this dissertation, how to get a good value for the regression parameter,

λ so it neither becomes unstable nor loses data.

2.5 Ridge Regression

The Ridge Regression problem is an important special case of constrained

least squares. Ridge Regression can also be considered a special case of Tikhonov

regularization, which is covered in Section 2.6. Golub and Van Loan [68] describe

the RR problem as

min
x

‖Ax− b‖2 + λ‖x‖2 (2.4)

with the criterion for picking λ > 0 such as ‖x(λ)‖ ≤ α, i.e. minimization over a

sphere as discussed in Section 2.4.

Other techniques for selecting the ridge parameter exist, such as the gener-

alized cross-validation function [65, 44]. The cross-validation function seeks to
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reduce the dependence of the solution on any one experiment, and thus increases

the robustness of the problem, as seen in [68]. The cost function for the cross-

validation problem is given by

C(λ) =
1

m

m
∑

k=1

wk







b̄k −
∑r

j=1 ukj b̄j

(

σ2
j

σ2
j +λ

)

1 −∑r
j=1 u

2
kj

(

σ2
j

σ2
j +λ

)







2

with

• wk a weight on the importance of the kth row (or experiment),

• the SVD of A given by UΣV T ,

• ujk is the j, kth element of U ,

• σj is the jth diagonal element of the diagonal matrix Σ,

• and b̄ = UT b.

Details on the minimization of this cost function are discussed in [65]. The case

of the Ridge Regression problem with the cross-validation function used to select

λ is often called the cross-validation problem. No matter how the value of λ

is selected, the expression for x(λ) is given by x(λ) = (ATA + λI)−1AT b. It

can be easily seen that each component of the RR solution is smaller than the

corresponding component of the LS problem, and thus the robustness is gained

at the cost of signal strength (or information content).

2.6 Tikhonov

The Tikhonov problem can be expressed as

min
x

‖Ax− b‖2 + λ‖Lx‖2. (2.5)
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Note L can be indefinite. Two parameters can be chosen by the designer to

select the desired solution. The first parameter is L, which is used to specify

conditions on x. For instance, a solution with a small norm could be desired,

which would correspond to picking L to be the identity matrix. Alternately, a

solution with a small derivative could be desired, which corresponds to picking L

to be the discrete approximation of the derivative operator. Similar to weighted

least squares, weights could be placed on particular portions of x to limit their

sizes.

The second parameter is λ. Rather than chose λ directly, as is done for L,

a requirement for λ in terms of the rest of the problem is usually chosen. For

instance, the problem of minimizing a solution on a sphere used ‖x(λ)‖ ≤ α.

What requirement should be used becomes the central discussion of Tikhonov

regularization.

• In [80], it was shown that a non-zero λ produces smaller error on average.

• The discrepancy principle [103] assumes the true system has been corrupted

by noise and uses the standard deviation of the noise, to find λ.

• The L-curve [75] assumes the system is corrupted by noise but does not

require as much information on the noise properties as the discrepancy

principle.

• Bounded variations for piecewise continuous functions with at most count-

ably many discontinuities, are handled in [105].

• Generalized cross-validation [65], mentioned earlier tries to minimize the

dependence on any one trial.

• Residual and singular value plots have also been suggested [123] to pick λ.
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• Minimizing the lengths of confidence intervals [119] has been done.

• Even parameter choices for iterative solution methods exist [84].

• Most interesting though are the methods that attempt to minimize the

distance to the true solution, such as [45, 58, 74, 121, 107].

In particular, consider the most recent method as covered in [107]. Let the

SVD of A be UΣV T and define β = UT b. The Tikhonov solution to Ax ≈ b, with

L = I is

xtik = V (ΣTΣ + λI)−1ΣTβ

=
n
∑

i=1

σiβi
σ2
i + λ

vi.

The true system with noise ε can be expressed as

xtrue = V Σ†(β − ε)

=
n
∑

i=1

βi − εi
σi

vi.

Minimizing the distance between these two values gives the condition for λ. To

compute the function exactly requires the knowledge of ε, which is not known. An

approximation can be made if the system satisfies the discrete Picard condition

(the data values βi − εi goes to zero faster than the singular values) and βi is a

true value plus noise. With these assumptions and the standard deviation, s, of

the noise, the root of the function

n
∑

i=1

β2
i λ

(σ2
i + λ)3

−
k−1
∑

i=1

s2

(σ2
i + λ)2

−
n
∑

i=k

β2
i

(σ2
i + λ)2

gives the value of λ. While the value obtained is an approximation, O’Leary

[107] shows that the resulting x value, xtik(λ) is close to the true (using the not

approximated value of λtrue) value xtik(λtrue), and that in particular

‖xtik(λtrue) − xtik(λ)‖
‖xtik(λtrue)‖

≤ |λtrue − λ|
σ2
n + λ

.

24



Additionally, as the standard deviation of the noise, s, goes to zero, xtik(λ) goes

to xtrue. A nice result. An alternate method of choosing λ is presented at the

same time using

xalt =
n
∑

i=1

βi
σi + λ

vi.

The choice was suggested for Hermitian positive definite matrices [53], convolu-

tion problems with reordering [39], and some additional cases [76, 31]. The al-

ternate method proceeds similarly with a small alteration in the function, whose

root must be found. The fact that two methods are suggested, indicates that no

one best method exists. Both perform well however, and demonstrate robustness,

which was a major goal.

Tikhonov regularization, works by damping out the terms that correspond to

the smaller singular values, see for example [64]. This can be thought of geomet-

rically as finding a worse model within some bounded region from the original

model and solving the LS problem on this new model. Tikhonov regularization

generates robust solutions, but the wealth of techniques to select λ shows that

there is no obvious best technique. A drawback to Tikhonov regularization is thus

also one of its strengths, namely the wide variety of techniques to pick λ. The

criterion for picking λ is really dependent on the solution desired, for instance,

the choice of the solution lying in a ball is usually done to fulfill a heuristic

requirement for boundedness. In the end this method usually ends up being

more based on the skill and experience of the engineer who sets up the problem.

This is exactly how the problem is treated in [64, 107]. The damping of terms

corresponding to smaller singular values, essentially means that data and thus

accuracy will be lost. Most of the accuracy loss is due to the “waterbed effect”,

in that accuracy and robustness are competing goals, so advances in one area

causes losses in another. Such competing goals thus are not so much a problem
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but rather a design decision based on the problem requirements. The assump-

tions are another matter. By adding an implicit heuristic element, the problem

de facto includes the “gut feel” of the designer. While this may seem appealing, it

is not rigorous, and does not allow for confidence in the final result. A good guess

will give a good result, a bad one a bad result, but there is no way of assessing

the guesses. The desire for a more philosophically pleasing and mathematically

rigorous method for posing robust problems led to the development of the min

max problem.

2.7 Min Max

The min max problem was proposed and solved separately in [24] by secular

equation techniques and in [62] by Linear Matrix Inequality techniques. This

section will concentrate on the secular equation formulation. The LMI techniques

are discussed in Section 2.10

Simply stated the min max problem seeks to find the worst model in a

bounded region, and then solve the problem based on this worst case scenario.

Mathematically it is written as

min
x

max

‖EA‖ ≤ η

‖Eb‖ ≤ ηb

‖(A+ EA)x− (b+ Eb)‖. (2.6)

This problem can be shown to be equivalent to solving a problem with similar

form to the Tikhonov problem, see [24]. Equation 2.6 can be interpreted geomet-

rically by Figure 2.4. The maximization forms the hyperspheres around A and

b. The cone around A is formed by varying the size of x. The solution, x, and

the residual, R, are found by connecting the furthest points on the hyperspheres.
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Figure 2.4. Geometric Interpretation of Min Max Solution

The maximization restricts the problem to the lower line of the cone. The mini-

mization selects the point on the lower cone such that the line segment from the

furthest point on the hypersphere around b to the lower cone is perpendicular to

the lower cone. The norm used in [24] is the 2-norm, though [155] extends it to

other norms. The min max problem becomes

min
x

(‖Ax− b‖ + η‖x‖ + ηb), (2.7)

which differs from the typical Tikhonov problem in that the norms are not

squared. As opposed to the Tikhonov problem, the term η now has a physical

intuition also, that being the amount of uncertainty in the matrix. Computing

the min max solution takes longer than computing the solution to a Tikhonov

problem if a simple choice of regression parameter is chosen for the Tikhonov

problem, so it is logical to ask why one would want to spend the extra opera-

tions to do so. The simple answer is that the two problems can give arbitrary

differences, which we will examine in Section 2.8.

In the form of Equation 2.7 it is easy to see that the problem is continuous
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but non-smooth, since it is non-differentiable whenever x = 0 or when Ax = b.

The solution to Equation 2.7 and thus Equation 2.6, is summarized in Table 2.1.

For Table 2.1, let the SVD of A be given by

A =

[

U1U2

]







Σ

0






V T .

Partition the vector UT b into

[

U1U2

]T

b =







b1

b2






,

and introduce the secular equation

g(ψ) = bT1 (Σ2 − η2I)(Σ2 + ψI)−2b1 −
η2

ψ2
‖b2‖2,

which has a unique positive root, denoted ψ̄ under the conditions noted in Ta-

ble 2.1. Finally define

τ1 =
‖Σ−1b1‖
‖Σ−2b1‖

and τ2 =
‖AT b‖
‖b‖ .

The solution is thus given below. Notice that the least squares solution, A†b, is

the min max solution under special conditions. In one case a scaled family of the

least squares solution solves the problem. In general though the solution is given

by finding the unique root of the secular equation, g(ψ) in the positive quadrant.

When η is large the solution is zero.

2.8 Comparison of Min Max and Tikhonov

At this point, it is reasonable to ask if there is a similar, but simpler way

to solve the problem, which exhibits the desired behavior of min max that can

be solved instead of the min max methodology of [24, 155, 62]. One candidate
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b ∈ R(A) b 6∈ R(A)

η ≥ τ2 0 0

τ1 < η < τ2 x = (ATA+ ψ̄I)−1AT b x = (ATA+ ψ̄I)−1AT b

η ≤ τ1 x = A†b x = (ATA+ ψ̄I)−1AT b

η = τ1 = τ2 x = βA†b with 0 ≤ β ≤ 1 x = (ATA+ ψ̄I)−1AT b

Table 2.1. Min Max Solution

solution that has been suggested is Tikhonov regulation. It has a large body of

literature, such as [64, 107], and a closed form solution. Start by noting that a

reasonable choice for the parameter λ in the Tikhonov problem is to chose it to

be equal to the square of the uncertainty, since all the other terms are squared

and this will account for the size of the uncertainty. In this case the model has a

closed form solution which is given by

x̂ =
(

ATA+ η2I
)−1

AT b. (2.8)

Note that this is clearly a regularized estimator, with the regularization parameter

given by the bound in the error. Note also that for the min max problem that if

Ax 6= b and x 6= 0 then the min max problem also has a solution with a similar

form given by

x̂ =
(

ATA+ αI
)−1

AT b (2.9)

α = η
‖Ax− b‖

‖x‖ . (2.10)

The min max problem is also a regularized solution, with the regularization pa-

rameter given by α. Since α is dependent on unknown values it must be calcu-
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lated, which is usually done by a secular equation. The logical question is, “Why

not use the Tikhonov cost function, which has the closed form solution?” To

answer this it must be seen if the Tikhonov problem’s regularization parameter

can be arbitrarily larger or smaller. If the Tikhonov problem’s parameter can

be arbitrarily larger, then the solution can be over regularized and thus valuable

information can be lost. If the Tikhonov parameter can be arbitrarily smaller,

then the solution can be under regularized and thus the solution might not be

robust. Thus to compare the two, examine the ratio of the min max problem’s

regularization parameter, α, to the Tikhonov problem’s regularization parameter,

η2. Doing so, obtain

α

η2
=

‖Axmm − b‖
η ‖xmm‖

. (2.11)

2.8.1 Over-Regularization

First, see if the Tikhonov problem can be over regularized, which is the more

dangerous problem. This corresponds to the ratio being arbitrarily small. Note

that ‖Axmm − b‖ ≤ ‖b‖ at the solution, by noting the cost at the solution must

be less than the cost at the point x = 0. Thus,

α

η2
≤ ‖b‖

η ‖xmm‖
. (2.12)

It is clearly possible to pick A and b such that η‖xmm‖ � ‖b‖. For example

consider the following simple system,

A =







0.2

0






b =







5

1






η = 0.1. (2.13)

For this simple system the min max problem has a solution of xmm = 22.11 while

the modified problem has a solution of xT = 20. We note that for this problem
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the Tikhonov regularization parameter is twice as large as the min max problem.

Clearly the over-regularization has also yielded a loss of information that is not

warranted by the problem. We note that while this simple example does not

show an arbitrarily large ratio difference, since it is used only as a numerical

motivation. To see the arbitrary difference consider the following for δ � 1,

A =







δ

0






b =







1
δ

δ






η =

δ

2
. (2.14)

For this system note that the least squares (LS) solution is given by xLS = 1
δ2

,

and the min max system is xmm = 1
δ2
− 1

δ
√

3
. Note that since δ � 1, the min max

estimate is extremely close to the LS solution. The Tikhonov problem solution

is given by xT = 4
5δ2

, which is easily seen to be arbitrarily far from the desired

solution, since for δ � 1 the two candidate solutions differ by almost 20% of

an arbitrarily large number. Moreover, the ratio of regularization parameters is

approximately given by the arbitrarily small number,

α

η2
≈ 4√

3
δ2. (2.15)

2.8.2 Under-Regularization

The second area to be considered is if the Tikhonov problem can be under-

regularized. This corresponds to the ratio of α over η2 being arbitrarily large.

Note that ‖Axmm − b‖ ≥ ‖PA⊥b‖, thus

α

η2
≥ ‖PA⊥b‖

η ‖xmm‖
. (2.16)

It is clearly possible to pick A and b such that ‖xmm‖ � ‖PA⊥b‖. For example

consider the following simple system,

A =







1

0






b =







1

1






η = 1. (2.17)

31



Note that since the perturbation is as large as the norm of the A matrix, xmm = 0,

which corresponds to α → ∞. This is intuitively pleasing, as it confirms the

belief that no valid information exists for a system with uncertainty as large as

the system. Note also that xLS = 1. Now the Tikhonov problem has the solution

xT = 1
2
. Not only is this clearly too optimistic an answer, it is also unrealistic.

The ratio is infinite and thus arbitrarily large, as was desired to be shown. Thus

while the Tikhonov problem has nice properties for calculation, its estimator can

be arbitrarily different than the min max problem. Additionally, the Tikhonov

problem does not correspond to physical intuition as can be seen in the last

example above. The min max problem can thus not be altered to an apparently

similar problem and solved for that system.

2.9 Non-Degenerate Min Min

The non-degenerate min min problem was presented in [25] for the case of the

2-norm and extended to other norms in [155]. The essential idea is to assume,

similar to total least squares, that the actual system A + EA and b + Eb is such

that b + Eb is as close to being in the subspace defined by A + EA as possible.

The residual is then minimized over all choices x. The problem is thus expressed

as

min
x

min

‖E‖ ≤ η

‖Eb‖ ≤ ηb

‖(A+ EA)x− (b+ Eb)‖. (2.18)

The geometric view is very similar to the min max problem and is provided in

Figure 2.5. The cone around A and the ball around b are the same as before

(i.e.: all possible values for the problem). The min min problem is thus to find
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Figure 2.5. Geometric Interpretation of Min Min Solution

the smallest distance from the ball to the cone, which is shown in the figure.

Note that it is possible for the ball and cone to have points in common, this is

the degenerate case, and is covered in Chapter 6. This section will cover the

non-degenerate condition. Two main issues are:

1. find a computable condition for checking degeneracy,

2. find a secular equation and region to find the solution.

First, find a computable condition for degeneracy. For the problem to be

non-degenerate the residual must be greater than the possible perturbation. In

equation form this is

η‖x‖ < ‖Ax− b‖. (2.19)

This equation depends on the solution, x, so an equation with only A, b, and η

is desired. By squaring the degeneracy condition, Equation 2.19, the condition

becomes

xT (ATA− η2I)x− 2xTAT b+ bT b > 0. (2.20)
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For this to hold for all x, the minimum value of the function must be greater

than zero. The function must have a finite minimum, and that minimum must

be positive. To have a finite minimum, the following must hold

ATA− η2I > 0,

or defining the minimum singular value of A to be σmin,

σmin > η. (2.21)

Noting that in practice η > 0 (η = 0 is least squares), this requires that A is

full rank, which is assumed from now on. Provided Equation 2.21 holds, the

minimum value of Equation 2.20 is

bT
[

I − A(ATA− η2I)−1AT
]

b > 0. (2.22)

The problem is non-degenerate if A is full rank, and both Equation 2.21 and

Equation 2.22 hold.

The computable condition is needed to see if the non-degenerate case applies

(if it doesn’t the non-degenerate case of Chapter 6 holds) and is useful in the proof.

The proof of the solution is too lengthy to present here, readers are referred to

[25] for a full treatment. Assume the problem is non-degenerate and let the SVD

of A be

A =

[

U1 U2

]







Σ

0






V T ,

with smallest singular value σn and corresponding left singular vector un. Define







b1

b2






=

[

U1 U2

]T

b.
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Then for the secular equation,

g(ψ) = bT1 (Σ2 − η2I)(Σ2 − ψI)−2b1 −
η2

ψ2
‖b2‖2,

find the unique root of g(ψ) in the interval (η2, σ2
n) and if it exists call it ψ̂,

otherwise let ψ̂ = σ2
n. If ψ̂ < σ2

n then the solution is

x = (ATA− ψ̂I)−1AT b,

else there are two solutions

x = V







(Σ̄2 − σ2
nI)

−1Σ̄b̄1

± σn√
σ2

n−η2

√

−ḡ(σ2
n)







with

ḡ(ψ) = g(ψ) − (uTnb)
2 σ2

n − η2

(σ2
n − ψ)2

Σ =







Σ̄ 0

0 σn







b1 =







b̄1

b1,n






=







b̄1

0






.

The work in this dissertation completes the analysis of this problem by solving

the degenerate case, which turns out to be the more general situation.

2.10 LMI Techniques

Of all the techniques presented the Linear Matrix Inequality (LMI) techniques

are the most flexible. Most of the techniques both currently used and those in this

dissertation, can be solved using LMI techniques. The Backward Error method
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is an example of a problem that does not fit into the LMI framework, due to

its rational cost function. The principle concern of this section is to consider

the LMI techniques that are similar to what is covered in this dissertation. In

[17, 18, 60, 62, 90, 94, 95], the LMI methodology for solving the min max problem

with and without structure were covered. This section will cover two principle

areas of [62], that being the structured and unstructured case.

The unstructured perturbations are identical to the min max case. The prob-

lem is defined as

min
x

max
‖EEb‖F≤1

‖(A+ EA)x− (b+ Eb)‖.

Note that the bound is 1 since the problem can always be normalized to this by

dividing A and b by any other bound thus yielding a problem of the form above.

The problem can be reformulated as a Second-Order Cone Programming (SOCP)

problem of the form

minλ

s.t.

‖Ax− b‖ ≤ λ− τ
∥

∥

∥

∥

∥

∥

∥







x

1







∥

∥

∥

∥

∥

∥

∥

≤ τ
.

Define ψ to be (λ−τ)
τ

. The solution can then be shown to be

x =











(ATA+ ψI)−1AT b if ψ > 0

A†b else

with λ and τ are the unique optimal points for the system. The parameter ψ is

the same as was found in the min max problem by secular equation techniques.

At this point it is reasonable to ask why further work should be done. The

basic reason is speed. Each iteration of a SOCP is basically O((m + n)n2) and
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[62] asserts that the number of iterations is almost constant and independent of

the problem size, resulting in a reasonably sized constant multiplying the n3. In

contrast, solving a secular equation can be done in iterations that are n2 and

then the overall solution takes n3 but has a smaller constant since it mostly

comes from the calculation of the SVD (the “light” version of the SVD can be

used further saving time). In [62], it is noted that both have the same order of

complexity, which is true, but order is not the only determiner, the constant that

is ignored when reporting order can greatly influence practical speed. The speed

advantage of secular techniques is noted in [62], thus secular equation techniques

have a slight advantage over SOCP. In [94] it is asserted that the secular equation

technique is simpler and that LMI techniques only have advantage over secular

techniques on robust regression problems when additional constraints need to

be applied. Noting that SOCP problems can be solved faster than SDP (semi-

definite programming) problems, the use of secular equation techniques becomes

more apparent. On a different line, developing algorithms to solve problems in

different ways is a valuable goal in and of itself, that yields benefits in many ar-

eas from theoretical understanding to programming implementations. The nice

features of the LMI techniques thus do not rule out the other solution tech-

niques, rather they complement each other and serve to give a more complete

understanding.

The second area to cover is the structured perturbations problem. The struc-

tured perturbations can approximate the multi-column, multi-row, and general

min max problems developed in this dissertation and some cases not expressible

in one of the proposed techniques. Note that the structured case can approxi-

mate but not directly solve the cases covered in this dissertation. The structured
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perturbations are of the form

E(δ1, . . . , δp) =

p
∑

k=1

δkEk

Eb(δ1, . . . , δp) =

p
∑

k=1

δkEb,k

where p is the number of basic perturbations, and Ek is a fixed basic perturbation

on A and Eb,k is a fixed basic perturbation on b. The problem with trying to

directly solve the multi-column case (for instance) is that the basic perturbations

would need to be,

E1 =
Ax− b

‖Ax− b‖

[

xT1 0 . . . 0

]

‖x1‖
...

Ep =
Ax− b

‖Ax− b‖

[

0 . . . 0 xTp

]

‖xp‖
.

This requires Ek to be dependent on x and thus the LMI to solve the problem

that is presented, is no longer linear. The multiple column case is used in [62]

as a motivation for the linear-fractional case, which is shown to be NP-hard in

the general case and for which an upper bound for the worst case residual was

obtained. As special cases, the multiple column, multiple row, and general block

perturbation cases are not NP-hard, and allow for the results in this dissertation.

The three cases could be approximated with the structured problem (as opposed

to the linear-fractional) by examining a series of problems with the values of Ek

based off the previous problem’s solution, starting with say x = A†b, though it

is not obvious if this would converge. Optionally the problem could be approxi-

mated by some other column (row, or general also) structure, though it will not

necessarily generate the same one found in this dissertation. Undoubtedly an

LMI formulation can be found to solve the same problem, the key point is that
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the structured formulation as outlined in [62] will not. The formulation in [62]

does permit important structures, such as Toeplitz, that cannot be handled in

the formulations of this dissertation. Each formulation is useful and has a place,

the needs of each individual problem under consideration determine which to use.

Returning to the structured problem, first define the following:

M =

[

E1x− Eb,1 . . . Epx− Eb,p

]

F = MTM

g = MT (Ax− b)

h = ‖Ax− b‖.

The problem can be written as

min
x

max
‖δ‖≤1







1

δ







T 





h gT

g F













1

δ






.

The problem can then be solved by the SDP,

minλ

s.t.













λ− τ 0 (Ax− b)T

0 τI MT

Ax− b M I













≥ 0.

The SDP formulation, while not as efficient as a SOCP formulation, is still poly-

nomial time, and can be solved by interior point algorithms. The variety of

structures that can be handled or approximated by the structured technique in

[62] is tremendous and covers most of the cases of interest. Problems still exist

which cannot be directly handled, or which could be solved more efficiently by

specialized solvers, such as are covered in this dissertation.
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2.11 Simple Comparative Example

The previous discussion includes three general groups of problem formula-

tions that can be used in estimation. The following provides a feel for how these

problems operate on a simple example. Consider a simple one dimensional “sky-

line” image that has been blurred. A “skyline” image is a one dimensional image

that looks like a city skyline when graphed, and thus is the most basic image

processing example. “Skyline” images involve sharp corners, and it is of key im-

portance to accurately locate these corner transitions. Blurring occurs often in

images, for example atmospheric conditions, dust or imperfections in the optics

can cause a blurred image. Blurring is usually modelled as a gaussian blur, which

is a smoothing filter. The gaussian blur causes greater distortion on the corners,

which is exactly where we do not want it. The component of a gaussian blur with

standard deviation, σ, in position, (i,j), is given by

Gi,j = e−( i−j
σ )

2

.

Going on the presumption that the exact blur that was applied is not known (σ

unknown) the exact system cannot be recovered. While the original system can-

not be perfectly extracted, some improvement on the blurred image is desirable.

The blur is “known” to be small compared to the information so some improve-

ment should be possible. The least squares solution fails completely, yielding a

result that is about three orders of magnitude off in the scale and is oscillating

badly, see Figure 2.6. Notice that the total least squares solution is better than

the least squares solution (only off by an order of magnitude and the oscillations

are slower), but still not acceptable. The Tikhonov solution works well due to its

increased robustness. All of the methods of this dissertation can be seen to yield

very good solutions to the problem.
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Figure 2.6. Skyline Problem
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Chapter 3

Multi-Column Min Max

Criterion

In Chapter 2 it was seen that the unstructured and unpartitioned min max

problem, and the structured and unpartitioned min max problem have both been

solved. In the next three chapters the unstructured and partitioned min max will

be examined. The easiest case is the column partitioning problem, which will be

examined in this chapter. This can arise if a new (block) column is added to A

corresponding to an increase in the order of the filter. The new block column

will not necessarily have the same uncertainty as the original block, thus parti-

tioning is needed so different errors may be assigned to each block. Alternately,

the column partitioning case could be used to model a series of geophones in a

seismology problem that have different uncertainties due to geometry or surface

geology conditions. Column partitioning also describes signal separation with

different uncertainties associated with each signal. The column partitioning case

also could be dealing with various polynomials in a polynomial fitting problem. In

short, many problems satisfy the basic conditions of the multi-column problem.
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A simplified case of this, where one of the columns was unperturbed is considered

in [24]. In this section the general problem of partitioned and perturbed columns

will be solved.

The chapter is divided as follows. In Section 3.1, the fundamental difference

between the unstructured non-partitioned case and the unstructured column par-

titioned case is examined. The difference between the structured non-partitioned

case (LMI) and the unstructured partitioned column case was already covered in

Section 2.10. Section 3.2, shows how to perform the maximization and obtain an

alternate formulation. Section 3.3 covers the quadratically convergent method of

Overton, that solves the sum of Euclidean norms problem. The potential benefit

of reducing the problem order from n, the number of columns, to p, the number of

column partitions, motivates continuing. Therefore, the form of the solution at a

differentiable point is shown in Section 3.4. The secular equation is developed in

Section 3.5. Finally a numerical example is provided to demonstrate the results.

3.1 Column Dependence

Given the similarity of the problem structure to the non-partitioned case,

some have concluded that the solution conditions should be the same. In par-

ticular, the non-partitioned problem has two simple conditions on x that do not

carry into the partitioned case,

1. the solution, x, is non-zero if and only if ‖AT b‖ > η‖b‖,

2. the solution, x, has a smaller norm than the least squares solution.

43



3.1.1 When x Is Zero

First consider the simple relation that the solution x is non-zero if and only

if ‖AT b‖ > η‖b‖. This is not true for the partitioned case, which can be seen by

considering the following

A1 =













1

1

0













A2 =













0

1

0













b =













1

0

1













.

It is readily apparent that AT
2 b = 0 and thus from the original problem, x2 = 0

for all η2. Now consider η1 = η2 = 1
4
, and consider the cost for x2 = 0 and x1 6= 0.

J(x1, x2 = 0) = ‖A1x1 − b‖ +
|x1|
4

=
√

(1 − x1)2 + x2
1 + 1 +

|x1|
4

=
√

2(x2
1 − x1 + 1) +

|x1|
4

The minimum can be found by taking the derivative of J(x1, x2 = 0) and setting

it equal to zero.

0 =
∂J(x1, x2 = 0)

∂x1

=
2x1 − 1

√

2(x2
1 − x1 + 1)

+
sgn(x1)

4

= 8x1 − 4 + sgn(x1)
√

2(x2
1 − x1 + 1)

To simplify take the term with the square root to the other side and square both

sides. Note that this will introduce a fictitious root into the equation, which will

need to be removed from the solution.

−sgn(x1)
√

2(x2
1 − x1 + 1) = 8x1 − 4

2x2
1 + 2x1 − 2 = 64x2

1 − 64x1 + 16

0 = 62x2
1 − 62x1 + 14
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The desired root is x1 = 1
2
−
√

3
124

. Thus the minimum cost for x2 = 0 is

J

(

1

2
−
√

3

124
, 0

)

=

√

√

√

√

√2





(

1

2
−
√

3

124

)2

− 1

2
+

√

3

124
+ 1



+
1

8
− 1

4

√

3

124

= (3.875)

√

3

31
+

1

8

≈ 1.330.

Now consider the case when x2 6= 0. Note that when x2 6= 0, it must be that

x1 6= 0 because if not, it is easily verified that J(x1 = 0, x2 6= 0) > J(x1 = 0, x2 =

0). To start, the expression for the cost is given by

J(x1, x2 6= 0) = ‖A1x1 + A2x2 − b‖ +
|x1| + |x2|

4

=
√

(1 − x1)2 + (x1 + x2)2 + 1 +
|x1| + |x2|

4
.

A few things are readily apparent from looking at the square root term in the cost

function. The first squared term in the square root is (1− x1), which shows that

the optimal x1 is greater than zero and by considering the last term in the cost

it can be concluded the optimal x1 must lie between zero and one. The second

squared term in the square root is (x1 + x2), which shows that the optimal x2

must be less than zero, and by considering the last term in the cost the conclusion

is that the optimal x2 must lie between zero and −x1. These relations can be

used to simplify the derivatives about to be taken. Since both x1 and x2 are not

zero, take the derivative of the cost with respect to each variable in turn and set

the result equal to zero,

0 =
∂J(x1, x2 6= 0)

∂x1

=
2x1 − 1 + x2

√

(1 − x1)2 + (x1 + x2)2 + 1
+

sgn(x1)

4

= 8x1 − 4 + 4x2 + sgn(x1)
√

(1 − x1)2 + (x1 + x2)2 + 1

0 = 8x1 − 4 + 4x2 +
√

(1 − x1)2 + (x1 + x2)2 + 1, (3.1)
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and

0 =
∂J(x1, x2 6= 0)

∂x2

=
x1 + x2

√

(1 − x1)2 + (x1 + x2)2 + 1
+

sgn(x2)

4

= 4x1 + 4x2 + sgn(x2)
√

(1 − x1)2 + (x1 + x2)2 + 1

0 = 4x1 + 4x2 −
√

(1 − x1)2 + (x1 + x2)2 + 1. (3.2)

Now use Equation 3.1 and Equation 3.2 to obtain

0 = 12x1 − 4 + 8x2

= 3x1 − 1 + 2x2

x1 =
1 − 2x2

3
.

Substituting the equation for x1 into Equation 3.2, obtain

0 = 4

(

1 − 2x2

3

)

+ 4x2 −

√

(

1 −
(

1 − 2x2

3

))2

+

((

1 − 2x2

3

)

+ x2

)2

+ 1

=
4

3
(x2 + 1) −

√

(

2

3
(x2 + 1)

)2

+

(

1

3
(x2 + 1)

)2

+ 1

=
4

3
(x2 + 1) −

√

5

9
(x2 + 1)2 + 1.

Now take the square root to the other side and square both sides. Note that this

will create an extra root, but one is positive and the other negative. Since it is

already known that the negative root is the correct one, this does not add any

difficulty. Thus,

4

3
(x2 + 1) =

√

5

9
(x2 + 1)2 + 1

16

9
(x2 + 1)2 =

5

9
(x2 + 1)2 + 1

11

9
(x2 + 1)2 = 1

x2 =
3√
11

− 1.
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The solution is negative, which fits our requirement. From this obtain the value

for x1,

x1 =
1 − 2

(

3√
11

− 1
)

3

= 1 − 2√
11
.

Observe that x1 is positive and that |x1| > |x2|. Now substitute this into the cost

function to obtain,

J

(

1 − 2√
11
,

3√
11

− 1

)

=

√

(

2√
11

)2

+

(

1√
11

)2

+ 1 +
2 − 5√

11

4

=

√

5

11
+ 1 +

2 − 5√
11

4

=
4√
11

+
2 − 5√

11

4

=
11

4
√

11
+

1

2

=

√
11

4
+

1

2

≈ 1.329.

Thus, the cost for x2 6= 0 is less than the cost for x2 = 0, so while in the original

problem it would have been predicted that x2 = 0 this is not the case.

3.1.2 Size of ‖x‖

The second relation to consider is that the size of the multi-column partitioned

min max solution, xΨ, should be smaller than the least squares solution, xLS, since

both have the same numerator and the denominator of xΨ is larger. This is not

always the case. To demonstrate this, consider a simple problem.

Let A and b be the matrices defined below with each column of A a separate
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partition.

A =



















1 0 0.1

1 −1 1

0 0 0.1

0 0 0



















b =



















1

0

0

10



















The least squares solution is given by

xLS =

[

1 1 0

]T

.

Now consider the case when η1 = 2,η2 = 0, and η3 = 0. The solution, xΨ is given

by

xΨ =

[

0 5 5

]T

.

It is trivial to see that ‖xLS‖ < ‖xΨ‖, and thus the idea is disproved. The question

remains then as to what can be said about the size of xΨ and thus where it lies.

The following lemma is not tight in its bound but it does provide a good starting

point for the analysis.

Lemma 3.1 For a matrix A, a vector b, and scalars ηi, the solution to the multi-

column partitioned min max problem, xΨ is contained within a ball, centered on

the origin with radius
σ2
1
‖xLS‖
σ2

n
, where σ1 is the largest singular value of A, σn is

the smallest singular value of A, and xLS = A†b. This can be expressed simply as

‖xΨ‖ ≤ σ2
1

σ2
n

‖xLS‖.

Proof:
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xΨ = (ATA+ Ψ)−1AT b

‖xΨ‖ = ‖(ATA+ Ψ)−1AT b‖

‖xΨ‖ = ‖(ATA+ Ψ)−1ATA(ATA)−1AT b‖

‖xΨ‖ = ‖(ATA+ Ψ)−1‖‖ATA‖‖(ATA)−1AT b‖

‖xΨ‖ =
1

σmin(ATA+ Ψ)
σ2

1‖xLS‖

‖xΨ‖ ≤ 1

σ2
n

σ2
1‖xLS‖

‖xΨ‖ =
σ2

1

σ2
n

‖xLS‖

♦ SDG ♦

Other such bounds exist and can be used to tighten the starting condition. A key

point of developing this lemma is that bounds exist on the size of the estimate,

and can be calculated a priori. Such bounds could be used to start methods like

the ellipsoidal algorithm. A tighter bound, that has connections to the original

problem is:

Lemma 3.2 For a matrix A, a vector b, and scalars ηi, the solution to the multi-

column partitioned min max problem, xΨ is contained within a ball, centered on

the origin with radius σ1‖PAb‖
σ2

n
, where σ1 is the largest singular value of A, σn is

the smallest singular value of A, and PA is the projection onto the range of A.

This can be expressed simply as

‖xΨ‖ ≤ σ1

σ2
n

‖PAb‖.

Proof:

49



xΨ = (ATA+ Ψ)−1AT b

‖xΨ‖ = ‖(ATA+ Ψ)−1AT b‖

‖xΨ‖ = ‖(ATA+ Ψ)−1ATPAb‖

‖xΨ‖ = ‖(ATA+ Ψ)−1‖‖AT‖‖PAb‖

‖xΨ‖ =
1

σmin(ATA+ Ψ)
σ1‖PAb‖

‖xΨ‖ ≤ 1

σ2
n

σ1‖PAb‖

‖xΨ‖ =
σ1

σ2
n

‖PAb‖

♦ SDG ♦

3.2 An Equivalent Problem

It has been shown how this problem is different and what should not be done,

but the algebra used to find the solution to the simple problem in Section 3.1

is hardly practical for general problems. This section will begin the solution of

the column partitioning case, by finding an alternate cost function that is more

amenable to solution.

Given a system matrix A ∈ R
m×n with m ≥ n and b ∈ R

m be a given vector.

An estimate of a vector of parameters, x ∈ R
n, is desired, given that the system

is linearly related by

b = Ax+ ν.

The vector ν ∈ R
m denotes measurement noise in the system. The matrix, A, can

be partitioned into

[

A1 · · · Ap

]

where Ai ∈ R
m×ni and n =

∑p
i=1 (ni), with a
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corresponding partitioning of x into

[

xT1 · · · xTp

]T

with xi ∈ R
ni . In addition,

the true A matrix is not exactly known and is represented by

[

A1 · · · Ap

]

+
[

EA1
· · · EAp

]

and only an upper bound on EAi
is known,

‖EA1
‖2 ≤ η1

...

‖EAp
‖2 ≤ ηp.

Similarly the true b vector is also not exactly known so that it is in reality b+Eb

and only an upper bound on Eb is known,

‖Eb‖2 ≤ ηb.

The problem can thus be stated as a min max problem,

min
x

max

‖EA1
‖2 ≤ η1

...

‖EAp
‖p ≤ η2

‖Eb‖2 ≤ ηb

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













AT1 + ET
A1

...

ATp + ET
Ap













T 











x1

...

xp













− (b+ Eb)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

The cost function involves both a minimization and a maximization. The

maximization will be handled first. Start by obtaining an upper bound on the
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maximization,

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













AT1 + ET
A1

...

ATp + ET
Ap













T 











x1

...

xp













− (b+ Eb)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

























AT1
...

ATp













T 











x1

...

xp













− b













+

(

p
∑

i=1

EAi
xi − Eb

)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ ‖Ax− b‖ +

p
∑

i=1

‖EAi
xi‖ + ‖Eb‖

≤ ‖Ax− b‖ +

p
∑

i=1

ηi ‖xi‖ + ηb.

If there exists perturbations which make the cost function achieve the maxi-

mum, then those are the worst case perturbations and the maximization will be

done. Consider the following perturbations,

Eo
Ai

=
ηi(Ax− b)xTi
‖Ax− b‖ ‖xi‖

Eo
b =

−ηb(Ax− b)

‖Ax− b‖ .

Note that,

∥

∥Eo
Ai

∥

∥ =
ηi
∥

∥(Ax− b)xTi
∥

∥

‖Ax− b‖ ‖xi‖
≤ ηi

‖Eo
b‖ =

ηb ‖(Ax− b)‖
‖Ax− b‖

≤ ηb.
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Substituting this into the norm being maximized,
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













AT1 + ET
A1

...

ATp + ET
Ap













T 











x1

...

xp













− (b+ Eb)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(Ax− b) +

(

p
∑

i=1

ηi(Ax− b) ‖xi‖2

‖Ax− b‖ ‖xi‖
+
ηb(Ax− b)

‖Ax− b‖

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(Ax− b)

(

1 +

p
∑

i=1

ηi ‖xi‖
‖Ax− b‖ +

ηb
‖Ax− b‖

)∥

∥

∥

∥

∥

= ‖Ax− b‖
(

1 +

p
∑

i=1

ηi ‖xi‖
‖Ax− b‖ +

ηb
‖Ax− b‖

)

= ‖Ax− b‖ +

p
∑

i=1

ηi ‖xi‖ + ηb.

Thus, there are perturbations, which achieve the upper bound. Thus the pertur-

bations above are the worst case perturbations and with these worst case per-

turbations, the maximum is achieved. Thus, the cost function can be simplified

to

min
x

(

‖Ax− b‖ +

p
∑

i=1

ηi ‖xi‖ + ηb

)

.

The cost function is clearly convex, as it is the sum of convex functions.

3.3 Quadratically Convergent Method

The cost function is not only convex, but it is also a sum of Euclidean norms.

A large body of literature exists for solving the sum of Euclidean norms prob-

lem. The problem dates back to Fermat, who posed a special case of it. Various

methods have been proposed which range from a sequence of linear least squares

problems [158, 87, 37, 38, 150], successive over-relaxation [129], hyperbolic ap-

proximation procedure [46], subgradients [96, 29]. All of these have, at best,
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linear convergence, however there is a quadratically convergent method proposed

by Michael Overton in [110]. Note that Overton’s method is similar to [20].

Overton’s method uses an active set and considers the projected objective

function which is locally continuously differentiable. The basic idea of Overton’s

method is to use a relevant set of basis vectors to calculate the solution. An

active set is then created in which the basis vectors that have solution compo-

nents that are not near zero are kept. The basis vectors not in the active set

are not differentiable and are thus temporarily inactive. The cost function is

projected into the active set and a new solution is calculated. The new solution

could cause members of the active set to become inactive or inactive members

to become active. The process is continued until the solution converges, which

Overton proved will happen quadratically. Interestingly, Overton notes that poor

condition numbers actually increase the rate of convergence of his method. The

actual numerical techniques of the algorithm are not relevant to this dissertation,

as the reason for considering Overton’s method is to survey the field and show

that the problem is solvable in quadratic time.

A quadratically convergent method with good properties exists, so why look

further? One major reason is that method operates on the size of the original

problem (m), while a secular equation solution will operate on a smaller problem

(p, with p� m usually).

3.4 Form of Solution for Multiple Columns

The solution could be at either a differentiable point or a non-differentiable

point. The non-differentiable points are located at ‖xi‖ 6= 0 ∀i ∈ {1, · · · , p}

and ‖Ax− b‖ 6= 0. This section will consider the case when the solution is at
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a differentiable point. A necessary condition for a minimum at a differentiable

point is obtained by taking the gradient and setting it equal to zero. Before

taking the gradient, consider an n× n identity matrix that has been partitioned

into columns like A. Define the ith column of the partitioned identity matrix as

Ii, and note that Ii ∈ R
n×ni .

0 =
AT (Ax̂− b)

‖Ax̂− b‖ +

p
∑

i=1

ηi
‖x̂i‖

Iix̂i

= AT (Ax̂− b) +

p
∑

i=1

ηi ‖Ax̂− b‖
‖x̂i‖

Iix̂i. (3.3)

Now, define the following constants,

ψ1 =
η1 ‖Ax̂− b‖

‖x̂1‖
> 0

...

ψp =
ηp ‖Ax̂− b‖

‖x̂p‖
> 0.

Using these definitions in Equation 3.3 obtain,

0 = AT (Ax̂− b) +

p
∑

i=1

ψiIix̂i

= ATAx̂− AT b+













ψ1I · · · 0

...
. . .

...

0 · · · ψpI













x̂.

For simplicity make the following notation,

Ψ =













ψ1I · · · 0

...
. . .

...

0 · · · ψpI













.

Thus the equations become, after taking AT b to the other side,

AT b =
(

ATA+ Ψ
)

x̂.
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Note that ATA is positive semi-definite and Ψ is positive definite, so that the

matrix multiplying x̂ is invertible. Since,
(

ATA+ Ψ
)

is invertible, x̂ can be

solved for,

x̂ =
(

ATA+ Ψ
)−1

AT b

x̂1 = IT1
(

ATA+ Ψ
)−1

AT b

...

x̂p = ITp
(

ATA+ Ψ
)−1

AT b.

The following calculations are independent of notation, so it will be solved for x̂1

and note that the solution for x̂i will follow directly. At this point, consider the

inverse needed to calculate x̂. In particular, use a block inverse form from [88].







E B

C D







−1

=







F −FBD−1

−D−1CF D−1 +D−1CFBD−1
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Where F = (E −BD−1C)
−1

. The blocks are defined as follows,

H = [A2 · · ·Ap]

Ψ1 =













ψ2I · · · 0

...
. . .

...

0 · · · ψpI













E = AT1A1 + ψ1I

B = AT1

[

A2 · · · Ap

]

= AT1H

C = BT

= HTA1

D =



















AT2A2 + ψ2I AT2A3 · · · AT2Ap

AT3A2
. . . . . .

...

...
. . . . . . ATp−1Ap

ATpA2 · · · ATpAp−1 ATpAp + ψpI



















= HTH + Ψ1.

Now using this form on the desired inverse and obtain,

(

ATA+ Ψ
)−1

=







F −FAT1HD−1

−D−1HTA1F D−1 +D−1HTA1FA
T
1HD

−1







F =
(

AT1A1 + ψ1I − AT1HD
−1HTA1

)−1

=
(

ψ1I − AT1
(

I −HD−1HT )A1)
−1

x̂1 = ET
1

(

ATA+ Ψ
)−1

AT b

= FAT1 b− FAT1HD
−1HT b

= FAT1
(

I −HD−1HT
)

b.
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Now note that
(

I −HD−1HT
)

is in the form of the Sherman-Morrison-Woodbury

formula, which is also known as the matrix inversion lemma [88].

(

I −H
(

HTH + Ψ1

)−1
HT
)

=
(

I +HΨ−1
1 HT

)−1

Additionally, F is also in the form of the Sherman-Morrison-Woodbury formula

by using this result,

(

E −BD−1C
)−1

=
(

AT1A1 + ψ1 − AT1HD
−1HTA1I

)−1

=
(

AT1
(

I +HD−1HT
)−1

A1 + ψ1I
)−1

=
(

AT1
(

I +HΨ−1
1 HT

)−1
A1 + ψ1I

)−1

=
1

ψ1

(

I − 1

ψ1

AT1

(

I +
1

ψ1

A1A
T
1 +HΨ−1

1 HT

)−1

A1

)

=
1

ψ1



I − 1

ψ1

AT1

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

A1



 .

Now consider x̂1 in light of this,

x̂1 =
1

ψ1



I − 1

ψ1

AT1

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

A1



AT1

(

I +

p
∑

i=2

1

ψi
AiA

T
i

)−1

b

=
1

ψ1

AT1

(

I − 1

ψ1

(

I +
1

ψ1

A1A
T
1 + · · · + 1

ψp
ApA

T
p

)−1

A1A
T
1

)

(

I +

p
∑

i=2

1

ψi
AiA

T
i

)−1

b

=
1

ψ1

AT1

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1(

I +

p
∑

i=1

1

ψi
AiA

T
i − 1

ψ1

A1A
T
1

)

(

I +

p
∑

i=2

1

ψi
AiA

T
i

)−1

b

=
1

ψ1

AT1

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

b.
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Thus, in general the form of x̂i is

x̂i =
1

ψi
ATi

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

b

=
1

ψi
ATi
(

I + AΨ−1AT
)−1

b.

Given these simplifications it is easier to express Ax̂− b,

Ax̂− b =

p
∑

i=1

Aix̂i − b

=

(

p
∑

i=1

1

ψi
AiA

T
i

)(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

b− b

= −
(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

b

= −
(

I + AΨ−1AT
)−1

b.

3.5 General Column Form Secular Equation

The secular equations for this problem are now developed. First, square the

definition of ψi.

ψ2
i ‖x̂i‖2 = η2

i ‖Ax̂− b‖2

Then using the expressions derived for x̂i and Ax̂−b, define the secular equations,

Gi (∀i ∈ 1, . . . , p), to be

Gi (ψ1, · · · , ψp) = ψ2
i ‖x̂i‖2 − η2

i ‖Ax̂− b‖2

= bT
(

I + AΨ−1AT
)−1 (

AiA
T
i − η2

i I
) (

I + AΨ−1AT
)−1

b.

For simplicity, make the following definitions, and note that the definition of F

is positive definite for all positive values of ψi.

F =
(

I + AΨ−1AT
)−1

Ni =
(

AiA
T
i − η2

i I
)
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The secular equations become

Gi(ψ) = bTFNiFb. (3.4)

Note that the secular equations (Gi(ψ),i = 1, 2, · · · , p) have no singularities in the

first quadrant and since the equations are rational expressions of ψi the functions

are C1 in the first quadrant. All that remains is to show the existence and

uniqueness of the solution.

3.5.1 Uniqueness

First, the uniqueness of the solution will be shown. To do this, it will be

shown that the cost function is strictly convex and thus any solution to the

original problem is unique. Since the secular equations only have a root when

the original problem has a solution, this will show that any solution to the secular

equation is unique. To show the original problem is strictly convex in the region

of interest for the problem, consider the Hessian of the cost, H,

H =
1

‖Ax− b‖

(

ATA− AT (Ax− b)(Ax− b)TA

‖Ax− b‖2
+ Ψ − diag

(

ψi
xix

T
i

‖xi‖

))

=
1

‖Ax− b‖
(

ATP⊥
Ax−bA+ Ψdiag(P⊥

xi
)
)

,

where P is a projection matrix and its subscript specifies the space it projects

onto. In order for the Hessian to be positive semi-definite there must be a column

of A, say Aik , that is in the ith partition and a corresponding element of x called

xik for which both

1. P⊥
Ax−bAik = 0,

2. ψie
T
ik
P⊥
xi
eik = 0,
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where eik is a vector that is zero everywhere except the component in the ithk

position, which is 1. In order for item 1 to hold, Aik must be in the direction of

the residual, which means that b ∈ R(A). By assuming the standard condition

that b /∈ R(A), the first term is positive and thus the Hessian is positive definite.

Note that if b ∈ R(A), then the secular equation has its root at ψi = 0 for all

i = 1, 2, . . .. This makes the solution to the multi-column problem the same as

the least squares problem, and since b ∈ R(A) by assumption, this means the

residual is zero. A zero residual makes the space perpendicular to the residual to

be the identity matrix, so item 1 remains positive. The only remaining possibility

is for Aik = 0, which means that the corresponding component of x, xik , is zero.

Since xik = 0 this makes eTikP
⊥
xi
eik = 1 and thus ψie

T
ik
P⊥
xi
eik = ψi. For ψi to be

zero, the solution must be the least squares solution, thus b ∈ R(A). The only

way for the Hessian to be positive semi-definite is for both b ∈ R(A) and Aik = 0.

Excluding this situation yields the desired uniqueness condition.

3.5.2 Existence

Two things must be shown for our general form of the secular equation. First,

it must be shown that as ψi → 0 that Gi < 0. Second, it must be shown that as

ψi → ∞ that Gi > 0. These two conditions will guarantee a solution in the first

quadrant.

Lemma 3.3 (Negative Side Lemma)

lim
ψi→0

Gi = lim
ψi→0

bTFNiFb < 0

Proof:
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For notational simplicity define the following

A/i =

[

A1 · · · Ai−1 Ai+1 · · · Ap

]

Ψ/i = diag(ψ1I, · · · , ψi−1I, ψi+1I, · · · , ψpI)

F/i =
(

I + A/iΨ
−1
/i A

T
/i

)−1

= M/iM
T
/i

Ãi = MT
/iAi

b̃ = MT
/ib.

Use the matrix inversion lemma to get an expression for F as ψi → 0 in terms of

these definitions,

lim
ψi→0

F = lim
ψi→0

(

F−1
/i +

1

ψi
AiA

T
i

)−1

= lim
ψi→0

F/i − F/iAi
(

ψiI + ATi F/iAi
)−1

ATi F/i

= M/i

(

I − Ãi

(

ψiI + ÃTi Ãi

)−1

ÃTi

)

MT
/i

= M/i

(

I − ÃiÃ
+
i

)

MT
/i.

The last expression contains the projection onto the space perpendicular to the

range of Ãi. Note that this means the limψi→0 F will project anything in the

range of Ai to zero. Use this in the expression for limψi→0Gi,

lim
ψi→0

Gi = bTF/i(AiA
T
i − η2

i I)F/ib

= −η2
i b
TF 2

/ib

≤ 0.

♦ SDG ♦

The secular equations are always negative (or zero) when the corresponding

value of ψ is zero. Now it remains to be shown that as ψi goes to infinity, that

62



Gi ≥ 0 or that the solution can be found at one of the extrema. Before proving

the first part, an intermediary result about F is needed.

Lemma 3.4 (Derivative of F is Positive Lemma)

∂

∂ψi
F ≥ 0

Proof:

∂

∂ψi
F =

∂

∂ψi

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

=
1

ψ2
i

FAiA
T
i F

≥ 0

♦ SDG ♦

This will allow simplification of the argument that follows.

Lemma 3.5 (Positive Side Lemma)

lim
ψi→∞

Gi = lim
ψi→∞

bTFNiFb

> 0

if

ηi ≤
∥

∥ATi b
∥

∥

‖b‖

Proof:
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First examine what happens to F as ψi → ∞,

lim
ψi→∞

F = lim
ψi→∞

(

I +

p
∑

i=1

1

ψi
AiA

T
i

)−1

=

(

I +
∑

i6=i

1

ψi
AiA

T
i

)−1

= F/i.

Note that the singular values of F vary between zero and one. This can be easily

seen as it is the inverse of the identity matrix plus some positive semi-definite

matrices. Also note that since the size of F increases with increasing ψj, only

consider the point where ψj → ∞. This point is selected because it maximizes

the negative term. When all ψ → ∞ it forces F = I, so

lim
ψ→∞

Gi = bTNib

= bT (AiA
T
i − η2

i I)b.

For this to be non-negative it must be that

bTAiA
T
i b ≥ η2

i b
T b.

Rearranging terms yields

η2
i ≤ bTAiA

T
i b

bT b

=

∥

∥ATi b
∥

∥

2

‖b‖2 .

Taking the square root gives the solution

ηi ≤
∥

∥ATi b
∥

∥

‖b‖ .

♦ SDG ♦
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The only thing left is to observe that the problem is strictly convex and

does not have any place it is undefined, thus there is always a solution. Recall

that earlier in the chapter it was shown that the requirement from Positive Side

Lemma does not need to be fulfilled to have a non-zero answer. In that case the

solution was at the extremum defined by the least squares condition for columns

two and three. In other words, in that case the solution did not satisfy the

Positive Side Lemma and thus the solution was at an extremum. The solution is

thus characterized. Any multi-dimensional root finder can be used to calculate

the actual location.

3.6 A Numerical Example

The following problem is based on an example of Dr. Ali Sayed in an unpub-

lished paper entitled “Estimation in the Presence of Multiple Sources of Uncer-

tainties with Applications”. Assume that there are two different signals that need

to be estimated from a series of three simultaneous observations. The relation

between the signals and the observations are known approximately and are the

A matrix. Additionally, assume the first signal is stronger and that the errors

associated with the first signal are smaller.

First consider the case of singular A. This is shown in Figure 3.1. Least

squares can only estimate the stronger signal, but does a reasonable job at it.

The multi-column solution does quite well for the first signal, and gets basic

features and is a reasonable scale for the second. Note that as is typical for a

pessimistic problem, the multi-column min max tends to underestimate the size

of the signal, but this underestimation is better than the alternatives. Total least

squares is shown in Figure 3.2 because it is not even close, notice the order of
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magnitude is off by around 14.

Now consider the case of a near singular A. This is shown in Figure 3.3.

Least squares and total least squares are almost identical for this problem, and

off by a factor of two to seven. The multi-column solution is very good for first

signal and reasonable for the second. Note the multi-column min max does not

change significantly between the two cases. This is a result of the robustness of

the solution. A solution for the min max problem works for nearby problems, so

it tends not to change for small alterations in the problem, even when the change

tends to cause a major change in other methods.

3.7 Summary

The multiple column min max problem has been posed and solved. Several

techniques for solution are presented but the best technique is to use the secular

equation because it is usually a much smaller problem. Overton’s quadratically

convergent method for the sum of Euclidean norms could be used, and can be

faster ifm ≈ p and the problem is ill-conditioned. Overton’s method can converge

faster when the problem is ill-conditioned, but note that for m ≈ p the problem

must be at least nearly square with the partitions being individual columns of A.

The conditions for the secular equation to work better are much more likely and

thus are the advised solution technique.

The multiple column min max problem should be used instead of the regular

min max problem if there is a significant difference in the bounds on some block

columns. If the bounds are similar there is not a significant difference, but there

is a processing cost difference. The usual case when the min max formulation

has significant advantages over the least squares and total least squares is when
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Figure 3.1. Singular Matrix Signal Separation Problem

the model has conditioning problems. Without conditioning problems the stan-

dard techniques give answers, which are reasonably close to the min max, and

sometimes give better answers if the error bounds are over-estimated. When the

conditioning problems exist, however the min max solution can maintain a rea-

sonably good solution into areas where the other techniques are not capable. In

cases where matrix structure is the key goal, and robustness is desired, the LMI

techniques in Section 2.10 should be used. The min max solution has a viable

use, and reasonable calculation time making it a very useful tool to have.
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Figure 3.2. TLS Solution to Singular Matrix Signal Separation Problem
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Chapter 4

Multi-Row Min Max Criterion

The multiple (block) column case has been solved. It is reasonable to ask if

the multiple (block) row case can be solved. That will be the goal of this chapter.

The basic problem can be stated as

Crow = min
x

max

‖Ei‖2 ≤ ηi

‖Eb,i‖2 ≤ ηb,i

1

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













A1 + E1

...

Aq + Eq













[x] −













b1 + Eb,1
...

bq + Eb,q













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

(4.1)

where i = 1, 2, . . . , q and the norm has been squared, and a factor of 1
2

has been

inserted to make later formulas neater.

The flow of the chapter is as follows. In Section 4.1, the maximization of

the perturbations is solved. In Section 4.2 the form of solution is shown. In

Section 4.3 the secular is found and basic properties are shown. In Section 4.4

the non-differentiable points are discussed and a sufficient condition on the ηi is

developed for x = 0. Finally in Section 4.5 the algorithm to solve the problem is

outlined.
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4.1 An Equivalent Formulation

The multiple row case is similar to the multiple column case in many ways.

One way is that it can be reduced to a simpler problem, where the maximization

has already been done. Begin by considering the norm in Equation 4.1

Crow =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













A1 + E1

...

Aq + Eq













[x] −













b1 + Eb,1
...

bq + Eb,q













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

q
∑

i=1

‖(Ai + Ei)x− (bi + Eb,i)‖2

=

q
∑

i=1

‖(Aix− bi) + (Eix− Eb,i)‖2

≤
q
∑

i=1

(‖Aix− bi‖ + ‖Ei‖‖x‖ + ‖Eb,i‖)2 .

And by using the bounds on the perturbations

Crow ≤
q
∑

i=1

(‖Aix− bi‖ + ηi‖x‖ + ηb,i)
2 . (4.2)

Now consider the perturbations

Ei = ηi
(Aix− bi)x

T

‖Aix− bi‖‖x‖

Eb,i = −ηb,i
Aix− bi
‖Aix− bi‖

.
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Note that

‖Ei‖ = ‖ηi
(Aix− bi)x

T

‖Aix− bi‖‖x‖
‖

= ηi
‖(Aix− bi)x

T‖
‖Aix− bi‖‖x‖

≤ ηi
‖Aix− bi‖‖xT‖
‖Aix− bi‖‖x‖

≤ ηi

‖Eb,i‖ = ‖ηb,i
Aix− bi
‖Aix− bi‖

‖

= ηb,i
‖Aix− bi‖
‖Aix− bi‖

= ηb,i.

Thus these perturbations meet the bounds. Substituting these bounds in the

norm to be maximized yields

Crow =

q
∑

i=1

‖(Ai + Ei)x− (bi + Eb,i)‖2

=

q
∑

i=1

‖(Aix− bi) + (Eix− Eb,i)‖2

=

q
∑

i=1

∥

∥

∥

∥

(Aix− bi) +

(

ηi
(Aix− bi)x

T

‖Aix− bi‖‖x‖
x+ ηb,i

Aix− bi
‖Aix− bi‖

)∥

∥

∥

∥

2

=

q
∑

i=1

∥

∥

∥

∥

(Aix− bi)

(

1 +
ηi‖x‖

‖Aix− bi‖
+

ηb,i
‖Aix− bi‖

)∥

∥

∥

∥

2

=

q
∑

i=1

(

‖Aix− bi‖
(

1 +
ηi‖x‖

‖Aix− bi‖
+

ηb,i
‖Aix− bi‖

))2

=

q
∑

i=1

(‖Aix− bi‖ + ηi‖x‖ + ηb,i)
2 .

Thus there exists a perturbation which reaches the upper bound in Equation 4.2

and so Equation 4.1 is equivalent to

Crow = min
x

1

2

q
∑

i=1

(‖Aix− bi‖ + ηi‖x‖ + ηb,i)
2 . (4.3)
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This is the cost function that will be used. First note that the norms are con-

vex, thus so is their sum. The square of a convex function is convex, and so

the cost function is convex. While the cost function is convex, it is no longer

the sum of Euclidean norms (due to the square). The quadratically convergent

method of Overton will not work on this form, and no rewriting has been found

to get the equation into the correct form. Bundle methods should work as should

any general convex solver that allows for discontinuities, but a better solution is

desired.

4.2 Form of Solution

The non-differentiable points for the multiple row case are ‖Aix− bi‖ = 0 for

all i = 1, 2, . . . , q and x = 0. The differentiable points will be dealt with in this

section. Take the gradient of Equation 4.3 and set it equal to zero, to get the

necessary conditions for a minimum.

0 =

q
∑

i=1

(‖Aix− bi‖ + ηi‖x‖ + ηb,i)

(

ATi (Aix− bi)

‖Aix− bi‖
+ ηi

x

‖x‖

)

=

q
∑

i=1





(

1 +
ηi‖x‖ + ηb,i
‖Aix− bi‖

)

ATi (Aix− bi) + η2
i

1 +
ηi‖x‖+ηb,i

‖Aix−bi‖
ηi‖x‖

‖Aix−bi‖
x





Make the following definitions:

ζi =
ηi‖x‖

‖Aix− bi‖
δi = 1 + ζi +

ηb,i
‖Aix− bi‖

∆ = diag(δ1I, δ2I, . . . , δqI)

ψ =

q
∑

i=1

η2
i

δi
ζi
.
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Then the gradient expression becomes

0 =

q
∑

i=1

(

δiA
T
i (Aix− bi) + η2

i

δi
ζi
x

)

= AT∆(Ax− b) +

(

q
∑

i=1

η2
i

δi
ζi

)

x

= AT∆(Ax− b) + ψx.

Solving for x yields

x = (AT∆A+ ψI)−1AT∆b.

This can be simplified once more by defining φi = δi
ψ

and Φ = ∆
ψ

yielding

x = (ATΦA+ I)−1ATΦb (4.4)

Φ = diag(φ1I, φ2I, . . . , φqI) (4.5)

φi =
1 + ζi +

ηb,i

‖Aix−bi‖
∑q

j=1 η
2
j

1+ζj+
ηb,j

‖Ajx−bj‖

ζj

(4.6)

ζi =
ηi‖x‖

‖Aix− bi‖
. (4.7)

4.3 Secular Equation

In this section secular equations are obtained for the ζi. When all the ηb,i =

0 this is all that needs to be done. When ηb,i 6= 0 the value of ‖Aix − bi‖

is also needed. In this case two methods are suggested, to handle the added

difficulty. The first way is to use a continuation method, starting with η̂b,i = 0

and progressing to η̂b,i = ηb,i. The second way is to note that ‖Aix− bi‖ = ηi

ζi
‖x‖

and then the only additional information needed is the value of ‖x‖. This is

shown in Appendix C to be bounded by

0 ≤
√

a2
1 + 4a2rls − a1

2a2

≤ ‖x‖ ≤
√

a2
1 + 4a2a0 − a1

2a2
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with

a2 =

q
∑

i=1

η2
i

(

1 +
1

ζi

)2

a1 =

q
∑

i=1

2ηb,iηi

(

1 +
1

ζi

)

a0 =

q
∑

i=1

(

‖bi‖2 + 2ηb,i‖bi‖
)

and rls is the square of the LS residual, i.e. ‖(I −AA†)b‖2. The lower bound for

‖x‖ is the more important one for the estimation of ‖Aix − bi‖, as the greatest

influence of that term is when it is small, since it appears in the denominator.

Returning to the secular equation, note that Equation 4.7 can be rewritten

as

ζ2
i

η2
i

‖Aix− bi‖2 = ‖x‖2.

Define the secular equations to be

gi(ζ1, ζ2, . . . , ζq) =
ζ2
i

η2
i

‖Aix− bi‖2 − ‖x‖2, (4.8)

for i = 1, 2, . . . , q. For ease of writing the norms in the secular equations first use

the Sherman-Morrison-Woodbury formula to rewrite Equation 4.4,

x =
(

ATΦA+ I
)−1

ATΦb

=
(

I − AT
(

AAT + Φ−1
)−1

A
)

ATΦb

= AT
(

I −
(

AAT + Φ−1
)−1

AAT
)

Φb

= AT
(

AAT + Φ−1
)−1 ((

AAT + Φ−1
)

− AAT
)

Φb

= AT
(

AAT + Φ−1
)−1

Φ−1Φb

= AT
(

AAT + Φ−1
)−1

b.
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Using this form the residual can be written as

Ax− b = AAT
(

AAT + Φ−1
)−1

b− b

=
(

AAT −
(

AAT + Φ−1
)) (

AAT + Φ−1
)−1

b

= −Φ−1
(

AAT + Φ−1
)−1

b.

Thus

‖x̂‖2 = bT
(

AAT + Φ−1
)−1

AAT
(

AAT + Φ−1
)−1

b. (4.9)

Row partition an m×m identity matrix compatibly with how A was partitioned

Im×m =













I1

...

Iq













, (4.10)

thus Ai = IiA and

‖Aix− bi‖2 =
1

φ2
i

bT
(

AAT + Φ−1
)−1 ITi Ii

(

AAT + Φ−1
)−1

b. (4.11)

Using all the above, the secular equations can be written as

gi(ζ1, ζ2, . . . , ζq) =
ζ2
i

η2
i

‖Aix− bi‖2 − ‖x‖2 (4.12)

= bT
(

AAT + Φ−1
)−1

(

(

ζi
ηiφi

)2

ITi Ii − AAT

)

(

AAT + Φ−1
)−1

b. (4.13)

Before moving on, a couple of implementation related points will be examined.

First, the equations, gi, can be rewritten so that the method of Steepest Descent

can be used. To see this, define Mi to be the Choleski factor of

(

ζi
ηiφi

)2

ITi Ii − AAT ,
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and let

y =
(

AAT + Φ−1
)−1

b.

The secular equation is thus

gi(ζ1, ζ2, . . . , ζq) = yTMT
i Miy.

Thus when gi = 0, Miy = 0. Using this, note that also MT
i Miy, which means

fi(ζ1, ζ2, . . . , ζq) = yT

(

(

ζi
ηiφi

)2

ITi Ii − AAT

)2

y

is zero, when gi = 0, and fi ≥ 0. The quantity,

F (ζ1, ζ2, . . . , ζq) =

q
∑

i=1

fi(ζ1, ζ2, . . . , ζq),

has its minimum at F = 0 and this minimum occurs only where gi = 0 for all

i = 1, 2, . . . , q. While Steepest Descent is only linear in its convergence, it is useful

in finding a starting point for a faster method, like Newton’s or a quasi-Newton

method.

Second, both Newton’s method and quasi-Newton methods, like Broyden’s

method, require at least an initial calculation of the Jacobian of the gi. This can

be done numerically, but note that by using the Choleski factorization defined

above, the derivative of gi with respect to ζk at the solution is

∂gi
∂ζk

= 2
∂y

∂ζk

T

MT
i Miy + yT

(

2
ζi
ηiφi

2 ∂ζi
∂ζk
ηiφi − ζiηi

∂φi

∂ζk

η2
i φ

2
i

)

ITi Iiy

= yT

(

2
ζi
ηiφi

2 ∂ζi
∂ζk
ηiφi − ζiηi

∂φi

∂ζk

η2
i φ

2
i

)

ITi Iiy,

and ∂ζi
∂ζk

is one if i = k and zero otherwise (i.e. the Kronecker delta). Additionally,

if ηb,j = 0 for all j = 1, 2, . . . , q, the term ∂φi

∂ζk
, is

∂φi
∂ζk

=











ψζ2k+δk
ψ2ζ2

k

i = k

δk
ψ2ζ2

k

i 6= k
.
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Note that these yield that ∂gi

∂ζk
≥ 0. Using these terms, the Jacobian can be

directly calculated.

4.4 Non-Differentiable Points

As has been mentioned, the non-differentiable points for the multiple row case

are x = 0 and ‖Aix− bi‖ = 0 for all i = 1, 2, . . . , q. No simple condition on the

parameters has been found to specify in advance when the solution will be at a

differentiable point or at a non-differentiable point. The cost function is convex,

however, so if a minimum (and thus a solution) exists at a differentiable point

then it is the global minimum. This gives one way of checking if the problem

has a solution at the non-differentiable points, namely does the secular equation

have a root. If the secular equation has a root (by checking for a sign change

between gi(0) and gi(∞)), then the solution is at a differentiable point else it is

at a non-differentiable point. If no solution exists at a differentiable point then

the problem could be perturbed so it has a solution at a differentiable point, and

then the original problem’s solution can be found by a continuation method.

The cases of ‖Aix− bi‖ = 0 are more complicated than the case of ‖x‖ = 0

because Ai could have more columns than rows even when A has more rows than

columns. Also, the fewer rows there are, the more likely bi ∈ R(Ai). Finally

note that Ai could have a non-empty null space even when A is full column rank.

While ‖x‖ = 0 is easier, it is by no means trivial as the analysis below shows.

Denote the global minimum of Crow(x) as x∗. Note that

Crow(x∗) ≤ Crow(0)

=
1

2

q
∑

i=1

(‖bi‖ + ηb,i)
2.
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Now let σi,max be the largest singular value of Ai. It then follows that

‖Aix− bi‖ ≥











‖bi‖ − σi,max‖x‖ ‖x‖ ≤ ‖bi‖
σi,max

0 else.

Now define for i = 1, 2, . . . , q,

Γ1 =

{

i : ‖x‖ ≤ ‖bi‖
σi,max

}

Γ2 =

{

i : ‖x‖ > ‖bi‖
σi,max

}

.

Then in Γ1

‖Aix− bi‖ + ηi‖x‖ + ηb,i ≥ ‖bi‖ − σi,max‖x‖ + ηi‖x‖ + ηb,i

= ‖bi‖ + ηb,i + (ηi − σi,max)‖x‖.

In Γ2

‖Aix− bi‖ + ηi‖x‖ + ηb,i ≥ ηi‖x‖ + ηb,i

> ηi
‖bi‖
σi,max

+ ηb,i

=
ηi

σi,max
‖bi‖ + ηb,i.

Combining these

Crow(x) ≥ 1

2

∑

i∈Γ1

(‖bi‖ + ηb,i + (ηi − σi,max)‖x‖)2 +
1

2

∑

i∈Γ2

(

ηi
σi,max

‖bi‖ + ηb,i

)2

.

Now if ηi ≥ σi,max for all i then

Crow(x) ≥ 1

2

∑

i∈Γ1

(‖bi‖ + ηb,i)
2 +

1

2

∑

i∈Γ2

(‖bi‖ + ηb,i)
2

≥ Crow(0).

Thus Crow(0) ≥ Crow(x∗) ≥ Crow(0) and so x∗ = 0 if ηi ≥ σi,max for all i. The

condition is sufficient but not necessary.
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Practically the best way to see if the solution is at a differentiable point is

to see if the secular equation has a root. If the secular equation has a root the

solution is at a differentiable point. If gi < 0 then ‖Aix − bi‖ = 0, else if gi > 0

then ‖x‖ = 0. These can easily be seen from Equation 4.12. Since ∂gi

∂ζk
≥ 0 this

means that gi > 0 if gi(0, 0, . . . , 0) > 0 and gi < 0 if gi(ζi = ∞, ζk = 0) < 0. These

become the checks that will be used to see if the solution is at a non-differentiable

point.

4.5 Solution Algorithm

Should the reader need to implement the methods of this chapter, this sec-

tion presents pseudo-code for the algorithm. It is assumed that Newton’s or a

quasi-Newton’s method is being used, for more information on the benefits and

implementation of particular methods see [47, 85, 2], or other numerical texts.

An optional Steepest Descent section is suggested to refine the guess before the

algorithm begins. The term y has been calculated to speed the algorithm, as it is

used frequently. Let ∞ be approximated by 1
ε
, i.e.: one over machine precision.

The value tol is a user specified tolerance, which is used to determine when the

calculation is close enough to the actual solution. Note that if ‖Akx − bk‖ = 0,

it is possible for this to not completely specify x. In that case, x can be written

as A†
kbk + (I − AkA

†
k)z and the algorithm can be run to find z on the reduced

problem.

1. if gi(0, 0, . . . , 0) > 0 then ‖Aix− bi‖ = 0

2. else if gi(ζi = ∞, ζk = 0) < 0 then ‖x‖ = 0

3. else differentiable, do below
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4. set ζi = ηi

‖Ai‖ for all i = 1, 2, . . . , q

5. (optional) use Steepest Descent to refine ζi for all i = 1, 2, . . . , q

6. calculate Jacobian;

7. repeat

(a) y =
(

AAT + Φ−1
)−1

b

(b) update ζi for all i = 1, 2, . . . , q

(c) update or calculate new Jacobian

until(gi ≤ tol for all i = 1, 2, . . . , q)

8. x = ATy

4.6 Conclusions

A secular equation has been obtained to find the solution, but no simple

necessary and sufficient condition(s) have been obtained to show beforehand when

the solution is at a differentiable point versus a non-differentiable point. Methods

to handle the difficulties have been suggested and a sufficient condition for when

x = 0 has been shown. Additionally the secular equation can be used to see

if the solution is at a differentiable point or not. While the secular equation

technique works, it does not lend itself to simple condition(s) on Ai, ηi, bi, and

ηb,i. The method is thus usable, though it would be improved by having the

simple conditions. An outline of a general algorithm to solve the problem has

been included for reference.
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Chapter 5

General Block Min Max

Criterion

The final remaining area is to have arbitrary matrix perturbations. As has

been seen there is a lot of similarity in the form of the answers derived which

suggests that there should be a nice expression for generic perturbations. The

general (block) perturbation min max problem can be stated as

min
x

max

‖Ei,j‖2 ≤ ηi,j

‖Eb,i‖2 ≤ ηb,i

1

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













A1,1 + E1,1 . . . A1,p + E1,p

...
. . .

...

Aq,1 + Eq,1 . . . Aq,p + Eq,p

























x1

...

xp













−













b1 + Eb,1
...

bq + Eb,q













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

(5.1)

where i = 1, 2, . . . , q, j = 1, 2, . . . , p and the norm has been squared, and a factor

of 1
2

has been inserted to make later formulas neater.

The flow of the chapter is as follows. In Section 5.1, the maximization of

the perturbations is solved. In Section 5.2 the form of solution is shown. In

Section 5.3 the secular is found and basic properties are shown. An algorithm

is not presented as was done in Chapter 4 due to similarities with what was
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presented there, rather in Section 5.4 an alternative fixed point algorithm is

developed.

5.1 An Alternate Formulation

In all the preceding problems the maximization was performed by finding

an upper bound and a perturbation that caused the cost to reach the upper

bound. The same method will be used here, but as the method is familiar

it will only be covered briefly. For simplicity let a block row be specified by

Ai,∗ = [Ai,1 . . . Ai,p], and let the expression that is being minimized over x and

maximized over the perturbations in Equation 5.1 be denoted by Jgen.

Begin by finding an upper bound for the cost function,

Jgen =
1

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













A1,1 + E1,1 . . . A1,p + E1,p

...
. . .

...

Aq,1 + Eq,1 . . . Aq,p + Eq,p

























x1

...

xp













−













b1 + Eb,1
...

bq + Eb,q













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=
1

2

q
∑

i=1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

[

Ai,1 . . . Ai,p

]













x1

...

xp













− bi +

[

Ei,1 . . . Ei,p

]













x1

...

xp













− Eb,i

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=
1

2

q
∑

i=1

(

‖Ai,∗x− bi‖ +

p
∑

j=1

‖Ei,jxj‖ + ‖Eb,i‖
)2

=
1

2

q
∑

i=1

(

‖Ai,∗x− bi‖ +

p
∑

j=1

ηi,j‖xj‖ + ηb,i

)2

.

Now consider the perturbations

Ēi,j = ηi,j
(Ai,∗x− bi)x

T
j

‖Ai,∗x− bi‖‖xj‖

Ēb,i = −ηb,i
Ai,∗x− bi

‖Ai,∗x− bi‖
,
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and note that

‖Ēi,j‖ = ηi,j

‖Ēb,i‖ = ηb,i.

When these perturbations are put in Jgen, they yield a potential maximization,

J̄gen =
1

2

q
∑

i=1

∥

∥

∥

∥

∥

Ai,∗x− bi +

p
∑

j=1

ηi,j
(Ai,∗x− bi)x

T
j

‖Ai,∗x− bi‖‖xj‖
xj + ηb,i

Ai,∗x− bi
‖Ai,∗x− bi‖

∥

∥

∥

∥

∥

2

=
1

2

q
∑

i=1

∥

∥

∥

∥

∥

(Ai,∗x− bi)

(

1 +

p
∑

j=1

ηi,j‖xj‖
‖Ai,∗x− bi‖

+
ηb,i

‖Ai,∗x− bi‖

)∥

∥

∥

∥

∥

2

=
1

2

q
∑

i=1

(

‖Ai,∗x− bi‖
(

1 +

p
∑

j=1

ηi,j‖xj‖
‖Ai,∗x− bi‖

+
ηb,i

‖Ai,∗x− bi‖

))2

=
1

2

q
∑

i=1

(

‖Ai,∗x− bi‖ +

p
∑

j=1

ηi,j‖xj‖ + ηb,i

)2

.

Thus the perturbations maximize the cost function and thus Equation 5.1 is

equivalent to

Cgen = min
x

1

2

q
∑

i=1

(

‖Ai,∗x− bi‖ +

p
∑

j=1

ηi,j‖xj‖ + ηb,i

)2

. (5.2)

Note that the cost function is convex. As in the block row case, the cost function

is not in a sum of Euclidean norms form, so Overton’s method cannot be used

as written. No method to rewrite this into a form compatible with Overton’s

method has been found, but methods that work directly on convex cost functions

could be used.

5.2 The Form of the Solution

The non-differentiable points for the general block case are ‖Ai,∗x− bi‖ = 0

for all i = 1, 2, . . . , q and x = 0. In this section the differentiable points will be
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dealt with. As with the multiple (block) row min max, the non-differentiable

points can be ruled out by checking if the secular equations, which will be devel-

oped in Section 5.3, have a solution.

Define Li as Li = ‖Ai,∗x− bi‖+
∑p

j=1 ηi,j ‖xj‖+ ηb,i to simplify the notation.

Take the gradient of Equation 5.2 and set it equal to zero, to get the necessary

conditions for a minimum,

0 =

q
∑

i=1

Li













ATi,∗ (Ai,∗x− bi)

‖Ai,∗x− bi‖
+













ηi,1

‖x1‖I 0

. . .

0
ηi,p

‖xp‖I













x













.

Now define

ζi,j =
ηi,j‖xj‖

‖Ai,∗x− bi‖
(5.3)

φi =
Li

‖Ai,∗x− bi‖

= 1 +

p
∑

k=1

+
ηb,i

‖Ai,∗x− bi‖
(5.4)

Φ = diag(φ1I, . . . , phiqI) (5.5)

δi,j =
ηi,jLi
‖xj‖

=
η2
i,jφi

ζi,j
(5.6)

ψj =
ηi,jLi
‖xj‖

(5.7)

Ψ = diag(ψ1I, . . . , psipI). (5.8)

This yields

0 =

q
∑

i=1













φiA
T
i,∗ (Ai,∗x− bi) +













δi,1I 0

. . .

0 δi,pI













x













=

q
∑

i=1

(

ATΦ (Ax− b) + Ψx
)

.
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And the solution has the form

x = (ATΦA+ Ψ)−1ATΦb (5.9)

if it occurs at a differentiable point.

5.3 The Secular Equation

Similar to the row case, the expressions for ζi,j can be used to develop clean

secular equations to find the solution. Note that this will require pq secular

equations to be solved. Alternately, the expressions for φi and ψj can be used.

The second option only requires p + q secular equations, but these equations

require ‖xi‖ and ‖Ai,∗x− bi‖ to be calculated each time and complicated rational

expressions to be used. For these reasons the secular equations in terms of ζi,j

will be used.

Note the solution x in Equation 5.9 can be rewritten using the matrix inversion

lemma,

x = (ATΦA+ Ψ)−1ATΦb

= (Ψ−1 − Ψ−1AT (AΨ−1AT + Φ−1)−1AΨ−1)ATΦb

= Ψ−1AT (I − (AΨ−1AT + Φ−1)−1AΨ−1AT )Φb

= Ψ−1AT (AΨ−1AT + Φ−1)−1Φ−1Φb

= Ψ−1AT (AΨ−1AT + Φ−1)−1b.

This allows a nice expression for xj

xj = ψ−1
j AT∗,j(AΨ−1AT + Φ−1)−1b,

with

AT∗,j = [AT1,j . . . ATq,j],
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i.e. a block column. Thus the square of the norm of xj is given by

‖xj‖ = ψ−2
j bT (AΨ−1AT + Φ−1)−1A∗,jA

T
∗,j(AΨ−1AT + Φ−1)−1b. (5.10)

An expression for Ai,∗x− bi can also be developed,

Ai,∗x− bi = Ai,∗Ψ
−1AT (AΨ−1AT + Φ−1)−1b− bi

= −φ−1
i Ii(AΨ−1AT + Φ−1)−1b,

with Ii defined by Equation 4.10. Thus

‖Ai,∗x− bi‖2 = φ−2
i bT (AΨ−1AT + Φ−1)−1ITi Ii(AΨ−1AT + Φ−1)−1b.

Using this, the expression for ζi,j in Equation 5.3 can be squared and rewritten

to

0 =
ζ2
i,j

η2
i,j

‖Ai,∗x− bi‖2 − ‖xj‖2

= bT (AΨ−1AT + Φ−1)−1

(

ζ2
i,j

η2
i,jφ

2
i

ITi Ii − A∗,jA
T
∗,j

)

(AΨ−1AT + Φ−1)−1b.

Thus define the secular equations to be

gi,j = bT (AΨ−1AT + Φ−1)−1

(

ζ2
i,j

η2
i,jφ

2
i

ITi Ii − A∗,jA
T
∗,j

)

(AΨ−1AT + Φ−1)−1b.

5.4 Fixed Point Method

While a direct calculation method exists, it is worthwhile to examine another

method to solve the problem. The basic equation for the solution is given by

(

ATΦA+ ΨI
)

x = ATΦb

ATΦAx+ Ψx = ATΦb. (5.11)
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Equation 5.11 can be rewritten in one of two forms.

x = Ψ−1ATΦ (b− Ax)

x =
(

ATΦA
)−1 (

(ATΦb− Ψx
)

These forms can easily be rewritten as recursive equation,

xi = Ψ−1ATΦ (b− Axi−1) (5.12)

xi =
(

ATΦA
)−1 (

ATΦb− Ψxi−1

)

(5.13)

Two forms are used because when Ψ is very small, Equation 5.12 can provide

numerical challenges, while at the same time Equation 5.13 behaves nicely. In

most cases we will use Equation 5.12, as often Ψ is not so small as to require the

switch. The resulting method works nicely, and while the convergence appears to

be linear, the constant multiplier is usually small. Ten thousand runs of random

data were tried with matrix dimensions varying from m = 8 and n = 4 to m = 32

and n = 16. Two row and two column partitions were used. The perturbations

for each block were different, and varied from 1% to 20% of the maximum singular

value of the block. The stopping condition used was ‖xi−xi−1‖
‖xi‖ ≤ δ for δ between

10−4 and 10−8. Every case took less than 10 iterations, and the size of A did not

matter. The size independence is comparable to observations noted in [62] for

convergence of the SOCP and SDP solvers used in their LMI problems. The value

of δ was the primary influence of convergence, and for values of δ < 10−12 caused

a virtual infinite loop requiring a maximum iteration condition to terminate.

The value of x appeared to bounce around near the solution, with numerical

difficulties suspected as a primary cause.

This is a fixed point algorithm, and it can be shown under reasonable as-

sumptions that the method will converge for small or large values of ψ. A small
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region where it has not been proven exists, and fixed point methods can be slow

in some cases, but the method performs well in practice.

Lemma 5.1 (Convergence) The fixed point method specified by Equation 5.12

and Equation 5.13 will converge if the starting point is close to the solution and

either

1. ψmin > σ2
maxφmax

2. ψmax < σ2
n

Proof:

First note that both Ψ and Φ are rational functions with no poles in the first

quadrant. Thus if two succeeding values of xi are close then the values of Ψ and

Φ will be approximately the same. The values will be close near the solution.

Given this condition, write, using Equation 5.12

xi − xi−1 = Ψ−1ATΦ (b− Axi−1) − Ψ−1ATΦ (b− Axi−2)

= Ψ−1ATΦA (xi−2 − xi−1) .

Taking norms

‖xi − xi−1‖ =
∥

∥Ψ−1ATΦA (xi−2 − xi−1)
∥

∥

≤
∥

∥Ψ−1ATΦA
∥

∥ ‖xi−1 − xi−2‖

≤ σ2
maxφmax
ψmin

‖xi−1 − xi−2‖ .

The fraction must be less than 1 for convergence, which yields the first alternative

in the lemma. Now consider Equation 5.13

xi − xi−1 =
(

ATΦA
)−1 (

ATΦb− Ψxi−1

)

−
(

ATΦA
)−1 (

(ATΦb− Ψxi−1

)

=
(

ATΦA
)−1

Ψ (xi−2 − xi−1) .
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Taking norms

‖xi − xi−1‖ =
∥

∥

∥

(

ATΦA
)−1

Ψ (xi−2 − xi−1)
∥

∥

∥

≤
∥

∥

∥

(

ATΦA
)−1

Ψ
∥

∥

∥ ‖xi−1 − xi−2‖

≤ ψmax
σ2
max

‖xi−1 − xi−2‖ .

The fraction must be less than 1 for convergence, which yields the second alter-

native in the lemma and completes the proof.

♦ SDG ♦

At each step, values are needed for ψj and φi. The values of ψj and φi for

each iteration can be estimated by using the previous x, the only challenge is

finding the starting values. Some general bounds exist, which establish where

the solutions lie and thus give the starting values.

Lemma 5.2 (General bounds)

q
∑

i=1

η2
i,j ≤ ψj

1 ≤ φi <

√

∑p
k=1 (‖bk‖ + ηbk)

2

‖PA⊥
i,∗
b‖

Proof:

The condition on ψj can be easily seen by noting that it is the sum of non-negative

terms of the form

ψj =

q
∑

i=1

ηi,jLi
‖xj‖

,

with

Li = ‖Ai,∗x− bi‖ +

p
∑

k=1

ηi,k‖xk‖ + ηbi .
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Now let

Li/j = ‖Ai,∗x− bi‖ +
∑

k 6=j
ηi,k‖xk‖ + ηbi ,

then

ψj =

q
∑

i=1

(

ηi,jLi/j
‖xj‖

+
η2
i,j‖xj‖
‖xj‖

)

=

q
∑

i=1

(

ηi,jLi/j
‖xj‖

+ η2
i,j

)

=

q
∑

i=1

ηi,jLi/j
‖xj‖

+

q
∑

i=1

η2
i,j.

A trivial implication of this is that ψj is not zero unless ηi,j = 0 for all i. No

upper bound exists, because if xj → 0 then ψj → ∞.

The lower bound on φi can be seen by noting the terms are all non-negative

Li = ‖Ai,∗x− bi‖ +

p
∑

j=1

ηi,j ‖xj‖ + ηb,i

≥ ‖Ai,∗x− bi‖ .

The result follows from the fact that φi = Li

‖Ai,∗x−bi‖ .

The upper bound on φi can be established as follows. First note the optimal

value of the cost function must be finite and in particular it must cost less than

x = 0:

Cgen =

p
∑

i=1

L2
i

<

p
∑

k=1

(‖bk‖ + ηbk)
2 .

This means L2
i <

∑p
k=1 (‖bk‖ + ηbk)

2 or Li <
√

∑p
k=1 (‖bk‖ + ηbk)

2, since L2
i <

Cgen. The denominator of the bound is found by noting that the smallest the

norm of the residual can be is the norm of bi projected onto the orthogonal

complement of the range of Ai,∗.
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♦ SDG ♦

5.5 Numerical Example

To motivate the nice performance of the general block min max problem,

consider how it handles random ill-conditioned A matrices of size 8 × 4. The

condition number of A was set to be around 100, and the uncertainty bounds

of the A matrix to be small (1% to 20%). A hundred random systems were

produced and the least squares (LS), total least squares (TLS), and general block

min max (GBMM) solutions were calculated. The quality of the solution was

calculated by taking the norm of the difference of the true and estimated x

for each method. The performance of each method was then plotted against

the system number. This test was performed many times with two samples

provided as Figure 5.1 and Figure 5.2. The good performance of GBMM is easily

seen. The LS solution performance is worse by a factor of 2 in most runs (i.e.:

‖xtrue − xLS‖ ≈ 2‖xtrue − xGBMM‖). The TLS solution does not do well, which

is to be expected in an ill-conditioned system with modeling errors. Note the

deliberate choice of the case (ill-conditioned system with modeling errors) that

is best for GBMM, as should the system lack modeling errors or if it has a small

condition number a less conservative method would better fit the problem.
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5.6 Results And Directions for General Parti-

tioning

Two secular equation techniques were presented to find the solution if it is at

a differentiable point. As with the row case, the non-differentiable points have

not been ruled out so the secular equation must be checked, to see if there is a

solution. When the secular equation has a solution, the problem’s solution is at a

differentiable point, else it is at a non-differentiable point. The perturbed problem

can be used to get the solution by a continuation method and the convexity of

the problem. A second method of solution which uses the form of solution to

create a fixed point algorithm was also presented. Finally, a numeric example

was used to demonstrate the benefits of the formulation.
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Figure 5.1. First Comparison of Least Squares to General Block Min Max

94



0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

 | 
x 

- x
TL

S
 |

 Random Ill-Conditioned System

Total Least Squares

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

 | 
x 

- x̂
 |

 Random Ill-Conditioned System

Least Squares       
General Block Minmax

Figure 5.2. Second Comparison of Least Squares to General Block Min Max
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Chapter 6

Degenerate Min Min Criterion

This chapter1 is concerned with the following problem

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖ (6.1)

where A is an m×n real matrix and b is a real n-vector. This problem is a special

case of the errors-in-variables problem, which has been given the formal name of

the degenerate bounded errors-in-variables problem. For ease of reference the

problem is usually called the degenerate min min problem. This problem can be

viewed as a total least squares problem [67, 82] with bounds on the uncertainty

in the coefficient matrix, which will be explained in more detail in Section 6.1.

In this chapter frequent use is made of the terms degenerate and non-degenerate.

Simply put, a degenerate problem is one where multiple solutions exist. The

non-degenerate (unique solution) case of this problem occurs when η is small and

b is in some sense far from the range of A. That η should be small is intuitive,

since for η = 0 the problem reduces to the least squares problem, which is non-

degenerate when A has full column rank. Conversely when η is larger than the

1Most of the material in this chapter originally appeared in [26]. SIAM holds the copyright,
and this chapter appears in compliance with SIAM’s requirements that the material can appear
in later work provided their copyright is stated.
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smallest singular value of A, one would anticipate degeneracy (multiple solutions)

as the perturbed matrix A + E is not guaranteed to be full column rank. The

intuition behind b needing to be far from the range of A for non-degeneracy,

comes from the fact that if b were close enough that multiple perturbations E

existed such that b was in the range of A+E, then multiple solutions (degeneracy)

would exist. In [25] and Section 2.19 the non-degenerate case of this problem was

considered and how to compute its unique solution in O(mn2) flops was shown.

This chapter considers the problem when it is degenerate; that is, when it has

multiple solutions. In particular an O(mn2) algorithm is presented to find the

solution with the minimum Euclidean norm. Note that the degenerate case is

actually the generic case for this problem, and hence is more important than the

non-degenerate case. This can be seen from the simple discussion above, since

the non-degenerate case holds only for certain combinations of b and A when η is

smaller than the smallest singular value of A. This is very restrictive, and hence

the claim.

The basic structure of the chapter is as follows. First the geometric under-

standing of the problem is considered in Section 6.1. Then a brief outline of the

proof is provided in Section 6.2 to make the full proof easier to follow. Section 6.3

provides pseudocode for the solution algorithm. Section 6.4 explains how the min-

imization over E is performed, which then allows Section 6.5 to cover computable

conditions for degeneracy. Next, Section 6.6 shows that the feasibility constraint,

‖Ax− b‖ ≤ η‖x‖, is actually an equality, ‖Ax− b‖ = η‖x‖. Section 6.7 explains

how the secular equation is derived, and then in Section 6.8 the zero of secular

equation which specifies the solution is identified. The majority of the rest of the

chapter is concerned with proving the zero identified in Section 6.8 does indeed

correspond to the solution. The chapter finishes with a summary in Section 6.18
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and an extension of the min min problem to multiple columns with restricted

perturbations in Section 6.19.

6.1 Geometric Understanding

Probably the easiest way to understand the problem at hand is to look at it

geometrically. For ease of drawing consider A and b to be vectors of length 2. Note

that while this is useful for getting a basic understanding, some of the key features

of the problem do not appear in this case. For instance, when A has multiple

columns the problem can be degenerate for small values of η. In such a case

the degenerate min min problem has several advantages over other formulations,

such as total least squares (TLS). One such advantage is the perturbation on A

is much smaller in the degenerate min min problem than in the TLS problem.

In the general min min problem (degenerate or not), A and b are projected

into a plane between the two similar to the TLS problem, but with a bound on

how far A can be perturbed (see Figure 6.1). Note that the cone around A shows

the boundary of possible perturbations to A. In essence, the min min formulation

is solving the problem min ‖[E f ]‖ such that (b+ f) ∈ R(A+E) and ‖E‖ ≤ η.

The problem at hand can thus be thought of as a TLS problem with bounds on

the errors in A.

A better understanding of the degenerate problem can be obtained by con-

sidering one of the ways the problem can become degenerate. The easiest to

visualize, and the only one that can be drawn in two dimensions, is the case

when b lies in the cone of possible perturbations of A. In this case note that any

x̂ such that xl ≤ x̂ ≤ xu is a solution to the problem. The perturbations E(x̂)

change, but each x̂ in the range still solves the problem. The problem is which
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Figure 6.1. Min Min Problem

x̂ should be chosen. The most conservative choice is to pick the smallest one,

which is what shall be done. This choice has a lot to recommend it, but a full

discussion is outside the bounds of this dissertation. In Section 6.4, this basic

insight (picking the smallest solution) is exploited to reformulate the problem

into a unique problem.
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Figure 6.2. Degenerate Min Min Problem

6.2 Proof Outline

The cost function presented is useful for seeing how this problem handles

the uncertainty in the matrix A, but it is not immediately useful in solving the

problem. For instance checking if a problem is degenerate in the original form

of the problem is tedious. The problem must be rewritten in a simpler form,
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and then a computable condition for degeneracy found. The proof begins in

Section 6.4 with the cost function to solve

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖

and the degeneracy condition which was found in [25]

η‖x‖ ≥ ‖Ax− b‖.

Since the non-degenerate case is already solved, the proof proceeds by assuming

the degeneracy condition holds. The first step is to minimize the cost function

over ‖E‖ ≤ η, and find that the optimal cost is zero. Since the problem is

degenerate and the cost function is zero, the solution with the smallest norm is

chosen to obtain the problem

min
‖Ax−b‖≤η‖x‖

‖x‖.

The condition η‖x‖ ≥ ‖Ax− b‖, is not practical for checking for degeneracy

in a problem, as mentioned above, since it requires checking multiple values of

x to hopefully find one that holds and thus showing the problem is degenerate.

The second step is thus to find a computable condition for degeneracy, which is

done in Section 6.5. The proof proceeds by squaring the condition for degeneracy

and using the singular value decomposition (SVD) of A to find the two cases

in which the problem is degenerate. The first case is when η is larger than the

smallest singular value of A. The first case is always degenerate. The second case

is when η is not larger than the smallest singular value of A. The second case is

degenerate only when

bT (I − A(ATA− η2I)−1AT )b ≤ 0.

It still remains to show how to get the solution. Lagrange multiplier tech-

niques are used to find the solution, so the inequality η‖x‖ ≥ ‖Ax − b‖ must
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be reduced to an equality if possible. The third step of the proof is a proof

that the solution, x̂ is actually on the boundary of the inequality, and thus

η‖x̂‖ = ‖Ax̂− b‖. This is covered in Section 6.6.

The fourth step is to use Lagrange multiplier techniques to parameterize the

solution, x̂ = x(α), in terms of a single variable, α, thus reducing the problem

to finding the zeros a secular equation. This is covered in Section 6.7. A secular

equation is a rational expression of one variable, which is constructed so that all

the critical points of the original problem occur at zeros of the secular equation.

The secular equation reduces the n-dimensional search for the solution, x̂, to a

1-dimensional search. The solution to the original problem is denoted as x(αo),

and note that it will occur at one of the 2n zeros of the secular equation. The

zero of the secular equation which corresponds to x(αo) is denoted αo.

The remainder of the chapter is concerned with showing which zero is αo,

and it starts with an assertion of the answer in Section 6.8. The unique zero of

the secular equation in the interval [max(−σ2
n,−η2), ησ1] is αo, where σ1 is the

largest singular value of A and σn is the smallest. This is proven by a process of

elimination.

Lagrange techniques are used (first and second order conditions on the La-

grangian) in Section 6.9 to narrow down the search area. By employing these

techniques, it is found that αo must lie in the interval [max(−σ2
n−1,−η2), ησ1].

This still admits several possibilities, see Figure 6.3. First, there are two critical

points (α = −σ2
n and α = −σ2

n−1) which could be αo. Second, there are two

intervals ((−σ2
n, ησ1) and (−σ2

n−1,−σ2
n)) which could have αo in one of them.

In particular, note that the interval (−σ2
n−1,−σ2

n) can have multiple zeros in

it, so that must also be dealt with. In Section 6.10 the second order condition
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Figure 6.3. Secular Equation

is used to rule out half of the zeros in the second interval. The arguments that

only the rightmost root in the interval (−σ2
n−1,−σ2

n) is a candidate to be αo is

in appendix E. With this dealt with there are only four candidates zeros of g(α)

to handle, which are denoted by α1 through α4. Section 6.11 introduces the four

candidates: α1 ∈ (−σ2
n, ησ1], α2 is the rightmost root in (−σ2

n−1,−σ2
n−1), α3 =

−σ2
n, and α4 = −σ2

n−1. To show that αo is the unique root in [−σ2
n, ησ1], six cases

are examined. Most of the work is involved at this stage, and hence most of the

mathematical difficulties occur here. The basic idea is to eliminate the possibility

that any root except the one that occurs in the interval [max(−σ2
n,−η2), ησ1] can

be αo. Additionally, the existence and uniqueness of the zero must be shown.

With this, established bisection or Newton’s method can be used to find the root

in the algorithm.

It is reasonable to wonder why six cases are needed to prove the assertion
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that αo lies in the interval [max(−σ2
n,−η2), ησ1]. The reason lies in three basic

factors which affect the shape of the secular equation. The first and most obvious

is the size of η. Note for instance that if η < σn then only one of the zeros α1 is a

candidate for αo since an earlier condition (1st order condition on the Lagrangian)

states that αo > −η2. Obviously to consider some of the candidates, such as α4,

it must be assumed that η is large enough to admit the possibility. The cases just

allowed for an organization of the assumptions into convenient groups to handle.

See Figure 6.4. The dotted vertical lines mark where the singular values are,
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Figure 6.4. Six Cases of Proof. (UL) Case 1:η < σn; (UR) Case 2:η = σn; (ML)

Case 3:η > σn, b is orthogonal to the left singular vector of σn, and σn < σn−1;

(MR) Case 4:η > σn, b is orthogonal to the left singular vectors of σn, and σn

has multiplicity k; (LL) Case 5:η > σn, b is not orthogonal to the left singular

vector of σn, and σn < σn−1; (LR) Case 6:η > σn, b is not orthogonal to the left

singular vectors of σn, and σn has multiplicity k.

and the dash-dotted vertical line indicates where −η2 is. Note that in case 1 of

Figure 6.4, it looks like the secular equation becomes flat to the right of α = −0.5
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but it does not. The scale makes the graph hard to read, so an expanded view

of the region is provided in Figure 6.5. Case 1 examines η small (η < σn), case 2
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Figure 6.5. Expanded View of Case 1 Zero

considers the special case of η = σn, and finally cases 3-6 cover when η is large

(η > σn).

When η is large there are more possibilities. The first is that the smallest

singular value might have multiplicity of two or more. This can be exploited to

simplify the problem. In particular, α2 does not exist in this case, and α3 = α4.

The cases where σn < σn−1 are the more difficult ones. The second is that b might

be orthogonal to the left singular vector(s) of A, which correspond to smallest

singular value. This drastically changes the shape of the graph of the secular

equation in the region around α = −σ2
n. See, for instance, the middle left graph

in Figure 6.4. The pole which normally appears at −σ2
n is not present. In fact, the

only time α3 can be αo is when b is orthogonal to the left singular vector(s) of A,

which corresponds to smallest singular value (σn). Similarly the only time α4 can

be αo is when b is orthogonal to the left singular vector(s) of A, which correspond

to the second smallest singular value (σn−1). Note that if the smallest singular

value has multiplicity of at least two, then σn = σn−1. This case is shown on the

middle right graph of Figure 6.4. The last four cases cover all the combinations
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of singular value multiplicity and b vector orthogonality which occurs when η is

large.

6.3 Algorithm

This Section presents pseudo-code for the algorithm. The syntax has been

designed to be Matlab2-like. Three lines deserve particular attention, though.

The first one to appear states ‘solve non-degenerate problem’. In this case the

problem is not degenerate so a call to the code for the non-degenerate case as

outlined in Section 2.9 and fully covered in [25] is used. The next line that could

be confusing starts with ‘pick any Θ’. In this case any unit vector, Θ, will solve

the problem. An additional condition could be placed on the solution, x̂, to select

a specific Θ or to meet special requirements of the specific problem, so it is left

unspecified in the pseudo-code. The final line that requires clarification starts

with α ∈ [max(−σ2
n,−η2), ησ1]. In this case, find the root of g(α) in the specified

range, so any root finder (for instance bisection or Newton’s method) can be used.

[U,Σ, V ] = svd(A);

b1 = UT b;

cond = 0;

if (η < σn) or (η = σn and b1(n) = 0)

if (bT (I − A(ATA− η2I)−1AT )b > 0)

solve non-degenerate problem

else

cond = 1;

end

2Matlab is a registered trademark of The Mathworks, Inc.
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else

if (η = σn)

cond = 1;

else

if (σn < σn−1) and (b1(n) = 0) and (g(−σ2
n) ≥ 0)

Σ̄1 = Σ(1 : n− 1, 1 : n− 1);

b̄1 = b1(1 : n− 1);

x̂ = V







(Σ̄2
1 − σ2

nI)
−1Σ̄1b̄1

±
√

g(−σ2
n)

η2−σ2
n






;

elseif (σn = σn−k+1 < σn−k) and (‖b1(n− k + 1 : n)‖ = 0)

and (g(−σ2
n) ≥ 0)

Σ̄1 = Σ(1 : n− k + 1, 1 : n− k + 1);

b̄1 = b1(1 : n− k + 1);

r =
√

g(−σ2
n

η2−σ2
n
;

Pick any Θ ∈ Rk such that ‖Θ‖ = 1;

x̂ = V







(Σ̄2
1 − σ2

nI)
−1Σ̄1b̄1

rΘ






;

else

cond = 1;

end

end

end

if cond == 1

α ∈ [max(−σ2
n,−η2), ησ1] such that g(α) = 0

x̂ = (ATA+ αI)†AT b;

end
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Where g(α) is given by

g(α) = bT2 b2 + bT1
(

Σ2
1 + αI

)−2 (
α2I − η2Σ2

1

)

b1

and

A =

[

U1 U2

]







Σ1

0






V T

b1 = UT
1 b

b2 = UT
2 b.

6.4 Minimization over E

For the reader’s convenience major milestones will be placed in boxes at the

end of the sections where the milestone occurs. The problem is assumed de-

generate and in particular that there exists an x such that η‖x‖ ≥ ‖Ax − b‖.

An equivalent computable criteria for degeneracy will be provided, however this

formulation is more useful for the present. The goal in this Section is to reduce

the problem to an equivalent formulation that does not involve E. The goal is

accomplished by showing the degenerate problem is equivalent to requiring the

solution to be in the set {x|η‖x‖ ≥ ‖Ax − b‖}. The first step is to show that

the problem requires that the solution be in the set, then show that any x̂ in

the set solves the problem. Note that the method used to get E is related to

the formulation in [151], though the full argument is provided for completeness.

Under the assumption that the problem is degenerate it follows that

min
x

min
‖E‖≤η

‖Ax− b+ Ex‖ = 0,
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since for any x such that η‖x‖ ≥ ‖Ax− b‖, E can be chosen to be

E = −γη (Ax− b)xT

‖Ax− b‖‖x‖ , 0 ≤ γ ≤ 1,

and thus obtain

0 ≤ min
x

min
‖E‖≤η

‖Ax− b+ Ex‖ ≤ ‖Ax− b‖
∣

∣

∣

∣

1 − γ
η‖x‖

‖Ax− b‖

∣

∣

∣

∣

.

Note that for the choice

γ =
‖Ax− b‖
η‖x‖ ≤ 1,

the upper bound is zero. Since there exists an E which makes the minimum zero,

the minimum value of the norm is zero. Therefore only the equation

Ax− b+ Ex = 0 (6.2)

with the constraint ‖E‖ ≤ η, needs considering. This constrained equation is

equivalent to being on the set defined by

‖Ax− b‖ ≤ η‖x‖. (6.3)

To prove this, it is first shown that if the constrained equation (6.2) is met by

any x then that x is in the set (6.3).

Ax− b+ Ex = 0

Ax− b = −Ex

Taking the norm of both sides obtains

‖Ax− b‖ = ‖Ex‖.

It is noted that this implies

‖Ax− b‖ ≤ ‖E‖‖x‖.
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Then using the constraint on the perturbation size, ‖E‖ ≤ η, yields

‖Ax− b‖ ≤ η‖x‖.

And the desired result is obtained. Now it must be shown that if some x is in the

set (6.3) then the constraint Equation 6.2 is met by that x. This is accomplished

by showing that for any x in the set, there exists a perturbation, E0, such that

the constraint equation is satisfied. To do this consider

E0 = −(Ax− b)xT

‖x‖2
.

First note that this perturbation satisfies the constraint on the size of the per-

turbations (‖E‖ ≤ η).

‖E0‖ ≤ ‖Ax− b‖
‖x‖

Since x is on the set ‖Ax− b‖ ≤ η‖x‖, this reduces to

‖E0‖ ≤ η.

Now consider the equation given by Ax− b+ E0x and observe that this is

Ax− b+ E0x = Ax− b− (Ax− b).

Thus trivially this yields Ax− b+ E0 = 0 and the assertion is proven.

By assumption there are multiple solutions which will solve the problem as

stated. Since any will solve the original problem, additional constraints may

be added, which will simplify the solution and ensure the solution meets other

requirements. A reasonable choice is to pick the solution with the minimum

norm. Other nice properties of this choice also recommend it. For instance it

is possible under certain conditions for the min max solution (from [24]) to also

solve the degenerate min min problem. When this occurs the min max solution is
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the solution to the degenerate problem with minimum norm. This is not proven

for reasons of space, but it does provide good motivation for the choice. Using

the choice of the minimum norm solution, the problem can be written as

min
‖Ax−b‖≤η‖x‖

‖x‖.

The degenerate problem can be reformulated as a unique problem by consid-

ering

min
‖Ax−b‖≤η‖x‖

‖x‖.

6.5 Computable Conditions for Degeneracy

The constraint, ‖Ax − b‖ ≤ η‖x‖, defines the set on which the solution lies

and is thus referred to as the feasibility constraint. The feasibility constraint can

be squared and expanded to obtain

xTATAx− 2xTAT b+ bT b ≤ η2xTx. (6.4)

Let A = UΣV T be the SVD of A conformally partitioned as follows

U =

(

U1 U2

)

, Σ =







Σ1

0






,

and define both bi = UT
i b for i = 1, 2, and z = V Tx. These definitions are made

solely to simplify the expressions under consideration, and provide a convenient

shorthand for the rest of the problem. Then inequality (6.4) can be simplified to

obtain

zTΣ2
1z − 2zTΣ1b1 + bT1 b1 + bT2 b2 ≤ η2zT z. (6.5)
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Now assuming that the singular values are in decreasing order partition Σ1 as

follows

Σ1 =







Σ+ 0

0 Σ−






,

where Σ2
+ − η2I ≥ 0 and Σ2

− − η2I < 0. Also conformally partition z and b1

z =







z+

z−






b1 =







b1+

b1−






.

Then inequality (6.5) can be expanded into

0 ≥

zT+(Σ2
+ − η2I)z+ − 2zT+Σ+b1+ + bT1+b1+ +

zT−(Σ2
− − η2I)z− − 2zT−Σ−b1− + bT1−b1− +

bT2 b2.

Now observe that if Σ− is nonempty then the inequality always has at least one

z which makes it true. In other words if ATA−η2I is indefinite then the problem

is always degenerate. On the other hand, if ATA − η2I is positive-semidefinite

then degeneracy depends on the vector b. To get a computable condition for

degeneracy, first note that when x = 0 the constraint is non-negative. Proceed

by minimizing the expression

xT (ATA− η2I)x− 2xTAT b+ bT b

and when η 6= σi obtain

xo = (ATA− η2I)−1AT b.

Now, when ATA−η2I is positive, the constraint is non-positive at this point. By

plugging this back into the expression being minimized, obtain

bT (I − A(ATA− η2I)−1AT )b ≤ 0 (6.6)
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as the required computable condition for the problem to be degenerate when

η < σn.

The problem is degenerate if either

η > σn

or

bT (I − A(ATA− η2I)−1AT )b ≤ 0.

6.6 Solution is on the Boundary

This Section proves that the optimal solution is obtained at the boundary of

the feasible set; that is, at the minimum norm solution the inequality is actually

an equality. Mathematically this means the feasibility constraint, which is given

by the inequality ‖Ax − b‖ ≤ η‖x‖, is actually an equality, ‖Ax − b‖ = η‖x‖.

To prove this, use the shorthand developed in the last Section that given the

SVD of A then bi = UT
i b for i = 1, 2, and z = V Tx. The problem of finding the

solution with the smallest norm to the degenerate problem can now be recast as

minimizing zT z subject to the inequality constraint (6.6).

Now if b = 0, then clearly the minimum norm solution is z = 0 which does

lie on the boundary (‖Σz − 0‖ = 0 = 0 = η‖z‖). So consider the case when

b 6= 0. Denote by f(z) the expression on the left-hand side of the inequality in

Equation (6.6). Then it is clear that f(0) > 0, and therefore z = 0 is not a

feasible point. Now suppose that contrary to the hypothesis that the optimal

solution occurs at an interior point. Denote that optimal solution by z0. Since it

is an interior point, 0 > f(z0). Let γ denote a scalar and consider the function
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f(γz0) as γ varies. Since f(·) is a continuous function it follows that as γ is

decreased from 1 towards 0, the value of f(γz0) must at sometime become equal

to 0. But now there is a contradiction as ‖γz0‖ < ‖z0‖ for 0 < γ < 1. Hence, the

optimal solution must lie on the boundary of the feasible set.

Therefore the requirement becomes

min
‖Ax−b‖=η‖x‖

‖x‖.

Note that the problem is unaffected by squaring, thus to simplify the algebra we

will work with the problem

min
‖Ax−b‖2=η2‖x‖2

‖x‖2.

The problem is equivalently stated as:

min
‖Ax−b‖2=η2‖x‖2

‖x‖2.

6.7 Reduction to Secular Equation

Since the problem has been reduced to an equality constrained minimization

problem, the method of Lagrange multipliers can be used. Letting λ denote the

Lagrange multiplier obtain the following set of equations that characterize the

critical points

x+ λ
(

AT (Ax− b) − η2x
)

= 0

Simplifying, obtain

(ATA+
1 − λη2

λ
I)x = AT b.
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Make the definition (1 − λη2)/λ = α. Then

x = (ATA+ αI)−1AT b.

Plugging this into ‖Ax− b‖2 = η2‖x‖2 and using the SVD of A obtain

bT2 b2 + bT1 Σ4
1(Σ

2
1 + αI)−2b1 − 2bT1 Σ2

1(Σ
2
1 + αI)−1b1 + bT1 b1

= η2bT1 Σ2
1(Σ

2
1 + αI)−2b1.

Simplifying

bT2 b2 + bT1 (Σ2
1 + αI)−2(α2I − η2Σ2

1)b1 = 0.

Since the goal is to find the values of α for which the right hand side of the above

equation is zero, define the function g(α) as

g(α) = bT2 b2 + bT1 (Σ2
1 + αI)−2(α2I − η2Σ2

1)b1

and then study the zeros of this function. The function g(α) is called the “secular

equation”, since it is rational function of one variable. If σi denotes the ith

singular value of A, then the above secular equation has poles at −σ2
i .

This secular equation can have up to 2n real zeros. One of them will be the

minimum norm solution to the problem, x(αo). Note that if α > ησ1 in the

secular equation, then b = 0, which as was stated earlier requires z = 0, and thus

x = 0. Since by assumption b 6= 0, α ≤ ησ1.

The secular equation, g(α) is given by:

g(α) = bT2 b2 + bT1 (Σ2
1 + αI)−2(α2I − η2Σ2

1)b1
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6.8 Main Theorem

In all cases where a degenerate solution exists, the solution is determined by

the unique root of the secular equation in the interval [max(−σ2
n,−η2), ησ1].

The rest of the chapter is devoted to establishing this claim. This is a difficult

task due to the non-convex nature of the problem and the presence of multiple

local minima.

The solution to the problem, x̂, is given by x̂ = x(αo) with αo the unique zero

of

g(α) = bT2 b2 + bT1 (Σ2
1 + αI)−2(α2I − η2Σ2

1)b1

in the interval [max(−σ2
n,−η2), ησ1].

6.9 First and Second Order Conditions

Since the Lagrange multiplier must be non-negative at a local minimum and

λ = 1/(α + η2) conclude that

α ≥ −η2. (6.7)

To narrow down the interesting zeros look at the second order conditions for

a local minimum. The Lagrangian is

L(x, λ) = ‖x‖2 + λ(‖Ax− b‖2 − η2‖x‖2).

The second order condition for a local minimum is that the Hessian of L(x, λ)

with respect to x be positive-semidefinite when restricted to the tangent subspace

of the constraint. Differentiating once

∇xL(x, λ) = 2x+ λ
(

2AT (Ax− b) − 2η2x
)

.
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Differentiating once more

∇2
xL(x, λ) = 2I + λ

(

2ATA− 2η2I
)

,

which on simplifying yields

∇2
xL(x, λ) = 2λ

(

αI + ATA
)

.

The constraint is

c(x) = ‖Ax− b‖2 − η2 ‖x‖2 .

The gradient of the constraint is

∇xc(x) = 2AT (Ax− b) − 2η2x,

which can be simplified by noting that

AT (Ax− b) = −αx

thus

∇xc(x) = −(α + η2)x.

The tangent subspace of the constraint has n−1 dimensions (even when η = σi).

Now construct a basis for this subspace. Using the SVD notation developed in

Section 6.5

V T∇xc(x) = −(α + η2)z.

Similarly change the basis for the Hessian of the Lagrangian

V T∇2
xL(x, λ)V = 2λ

(

Σ2
1 + αI

)

,

Partition z as

z =







z1

z2






,
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where z1 is a scalar. Let

H =







zT2

−z1I






.

Then HT z = 0. Therefore the restricted Hessian is

HTV T∇2
xL(x, λ)V H = 2λ

(

HTΣ2
1H + αHTH

)

.

Note that the second order condition requires that the restricted Hessian be

positive-semidefinite, and Cauchy’s interlacing theorem gives the subsequent re-

quirements on the non-restricted Hessian. Cauchy’s interlacing theorem states

that the smallest eigenvalue for the restricted Hessian must lie between the small-

est and second smallest eigenvalues for the non-restricted Hessian. Thus for a

local minimum the second smallest eigenvalue of the non-restricted Hessian must

be greater than zero. For the condition on the second smallest eigenvalue to be

met α must satisfy the constraint α ≥ −σ2
n−1, where σn−1 is the second smallest

singular value of A.

This raises the question of how many zeros of the secular equation

are larger than max(−η2,−σ2
n−1) and which of them corresponds to the

global minimum. The proof proceeds by systematically eliminating zeros in this

range. There are two critical points (where the secular equation becomes infinite),

which correspond to α = −σ2
n−1 and α = −σ2

n. There also are two intervals to

worry about, namely (−σ2
n, ησ1) and (−σ2

n−1,−σ2
n). In the first interval it will be

shown that there is only one zero, but this is not true for the second interval. In

Section 6.10 the second order condition is used to rule out half of the zeros in the

second interval. Appendix E shows that only the rightmost root in the second

interval is actually a candidate. Four candidates remain, two in the intervals and

two critical points, and six cases are used to prove which one corresponds to the

global minimum.
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αo > max(−η2,−σ2
n−1)

6.10 Squeezing the Second-Order Conditions

The goal of this section is to use the second-order conditions to discard some

zeros in the interval (−σ2
n−1,−σ2

n). Recall that the restricted Hessian is

HTV T∇2
xL(x, λ)V H = 2λ

(

HTΣ2
1H + αHTH

)

.

This can be expanded to obtain

HTV T∇2
xL(x, λ)V H = 2λ

(

σ2
1z2z

T
2 + z2

1Σ
2
2 + αz2z

T
2 + αz2

1I
)

,

where

Σ1 =







σ1 0

0 Σ2






.

Then make the conformal partition

b1 =







b11

b12






,

and use the representation z = (Σ2
1 + αI)−1Σ1b1 to simplify the expansion. Ad-

ditionally, make the definition M = HTV T∇2
xL(x, λ)V H for ease of reading and

thus obtain the simplified expansion

M = 2λ
b211σ

2
1

(σ2
1 + α)2

(Σ2
2 + αI)

(

I +
(σ2

1 + α)3

b211σ
2
1

(Σ2
2 + αI)−2Σ2b12b

T
12Σ2(Σ

2
2 + αI)−1

)

.
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Now compute the determinant,

det(M) =

(

2λb211σ
2
1

(σ2
1 + α)2

)n

det(Σ2
2 + αI)

(

1 +
(σ2

1 + α)3

b211σ
2
1

bT12Σ
2
2(Σ

2
2 + αI)−3b12

)

,

which can be further simplified to obtain

det(M) =

(

2λb211σ
2
1

(σ2
1 + α)2

)n
(σ2

1 + α)3

b211σ
2
1

det(Σ2
2 + αI)

(

bT1 Σ2
1(Σ

2
1 + αI)−3b1

)

. (6.8)

Recall the definition of the secular equation, g(α), given in Section 6.7:

g(α) = bT2 b2 + bT1 (Σ2
1 + αI)−2(α2I − η2Σ2

1)b1.

Then differentiating once obtain

g′(α) = 2(α + η2)bT1 Σ2
1(Σ

2
1 + αI)−3b1. (6.9)

Using this rewrite Equation (6.8) as

det(M) =

(

2λb211σ
2
1

(σ2
1 + α)2

)n
(σ2

1 + α)3

2(α + η2)b211σ
2
1

det(Σ2
2 + αI)g′(α).

Therefore, if a root of the secular equation lies in the interval (−σ2
n−1,−σ2

n) then it

can correspond to a local minimum only if g′(α) is non-positive. This essentially

means that only half of the zeros in the interval correspond to local

minima.

A zero, αk, of g(α) in the interval (−σ2
n−1,−σ2

n) can correspond to a local min-

imum of the Lagrangian (and thus have a chance of being the global minimum

αo) only if

g′(αk) ≤ 0.
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6.11 Four Candidate Zeros

At this point there are several potential candidates for α. First there is the

possibility of a root in the interval [−σ2
n, ησ1] designated α1. The uniqueness and

conditions for existence of α1 will be shown later. Second, there are potentially

many roots in the interval (−σ2
n−1,−σ2

n), but only the rightmost one matters as

will be shown later and it is thus designated α2. Finally, there are two critical

points, α3 = −σ2
n and α4 = −σ2

n−1. The candidates are summarized in table 6.1.

α1 ∈ [−σ2
n, ησ1]

α2 ∈ (−σ2
n−1,−σ2

n)

α3 = −σ2
n

α4 = −σ2
n−1

Table 6.1. Candidate Zeros

The proof involves six cases, which cover special conditions for the problem.

See Table 6.2. While the material is complicated it is very useful to understand

the intricacies of the problem. The first two cases involve small values of η. The

second two cases cover when b is orthogonal to the left singular vector(s) of the

smallest singular value. The last two cases cover when b is not orthogonal to the

left singular vector(s) of the smallest singular value. Now proceed to prove this

and show which candidate root will yield the solution to the problem, x̂.
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Case 1: η < σn

Case 2: η = σn

Case 3: η > σn, b1,n = 0, σn < σn−1

Case 4: η > σn, ‖b1,(n−k+1,n)‖ = 0, σn = σn−k+1

Case 5: η > σn, b1,n 6= 0, σn < σn−1

Case 6: η > σn, ‖b1,n−k+1‖ 6= 0, σn = σn−k+1

Table 6.2. Six Cases of the Proof

6.12 Case 1: η < σn

This is the easiest case to handle. This is because there is only one root in

the interval [−η2, ησ1] and this must correspond to the global minimum, as there

are no other local minima to worry about. The only candidate zero is α1 because

of the first order condition, Equation 6.7. Only the existence and uniqueness of

α1 must be proven.

Since α + η2 ≥ 0 from Equation 6.7, it follows by using Equation 6.9 that

g′(α) is positive in the interval (−η2,∞) when η ≤ σn. Therefore there can be

at most one root in the the interval [−η2, ησ1].

It will now be shown that there is at least one root in the interval [−η2, ησ1].

Simplifying the degeneracy condition in Equation 6.6 by using the SVD of A
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obtain

bT2 b2 − η2bT1 (Σ2
1 − η2I)−1b1 ≤ 0,

which is identical to g(−η2) ≤ 0. Furthermore,

lim
α→ησ1

g(α) > 0.

Therefore there must be a zero of g(α) in the interval [−η2, ησ1].

6.13 Case 2: η = σn

It is claimed that there is a unique root of g(α) in [−σ2
n, ησ1], and this is

the global minimum. Uniqueness is established by the same method as in Sec-

tion 6.12, and thus if a root exists in the interval [−σ2
n, ησ1] it is unique. Only

two candidates, the zero α1 and the critical point α3, are possible because of the

first order condition, Equation 6.7. The claim will be proven in two steps. Before

starting, note that if σn is multiple with multiplicity k then b̃1 = b1,(n−k+1:n) is

the partitioning of b1 corresponding to the multiple singular values of σn.

The first case is when b1,n 6= 0 or ‖b̃1‖ 6= 0. First note that in this case the

candidate zero α3 is not possible. To see this, partition Σ1 as

Σ1 =







Σ̄1 0

0 σn






.

Similarly partition z into z̄ and zn, and b1 into b̄1 and b1,n. Use these to rewrite

the Lagrange condition, (ATA+ αI)x = AT b as







Σ̄2
1 + α3I 0

0 0













z̄

zn






=







Σ̄1b̄1

b1,n
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Since b1,n 6= 0, α3 cannot be αo. The existence of a root in the interval (−σ2
n, ησ1)

follows from the observation that

lim
α→−σ2

n+
g(α) = −∞

lim
α→ησ1

g(α) ≥ 0.

Thus when b1,n 6= 0 or ‖b̃1‖ 6= 0, αo = α1.

The second case is b1,n = 0 when σn < σn−1 or ‖b̃1‖ = 0 when σn is multiple.

In this case note that there is no longer a pole in g(α) at α = −σ2
n. By observing

the degeneracy condition given by Equation 6.6 that the degeneracy in this case is

determined by b so for degeneracy, Equation 6.6 must hold for a smaller problem.

Simplifying the Equation 6.6 using the SVD of A obtain

bT2 b2 − η2bT1 (Σ2
1 − η2I)−1b1 ≤ 0,

which is identical to g(−η2) ≤ 0. Furthermore,

lim
α→ησ1

g(α) ≥ 0.

Therefore there must be a root in the interval [−η2, ησ1], so α1 exists. It will now

be shown when α3 is αo. To satisfy the equation







Σ̄2
1 + α3I 0

0 0













z̄

zn






=







Σ̄1b̄1

0






,

the following must hold

z̄ =
(

Σ̄2
1 + α3I

)−1
Σ̄1b̄1.

The constraint equation can be written in z and simplified to

α3b̄
T
1

(

Σ̄2
1 + α3I

)−1
b̄1 + bT2 b2 = 0.
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Note that this is exactly g(α3) = 0. Thus for α3 to be a candidate it must also

be the unique root in the interval [−η2, ησ1]. The condition for α3 to be αo is

that α1 = α3, and thus we can easily see that in all cases the unique zero which

corresponds to the problem solution, x(αo), is given by α1.

6.14 Case 3: η > σn, b1,n = 0, σn < σn−1

Again it is claimed that there is a unique root in [−σ2
n, ησ1] and this is the

global minimum, which this section proves. Two cases arise when b1,n = 0 by

observing the equation






Σ̄2
1 + αI 0

0 σ2
n + α













z̄

zn






=







Σ̄1b̄1

0






. (6.10)

First, it could be that α = α3 = −σ2
n, which can only happen when b1,n = 0. The

second case is zn = 0. Note that it is still true that

lim
α→ησ1

g(α) ≥ 0.

It is also true that g′(α) > 0 on the interval (−σ2
n−1,∞), thus if a root exists it is

unique. Start by finding the form of the solution x̂ when α = α3 and then show

the conditions for determining which candidate zero yields the global minimum.

When α = −σ2
n the solution is found in two steps. First solve for z̄ from

Equation 6.10. Obtain

z̄ =
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1.

Note that the constraint can be written in z as
∥

∥

∥

∥

∥

∥

∥

Σ1z − b1

b2

∥

∥

∥

∥

∥

∥

∥

2

− η2 ‖z‖2 = 0.
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Now separate zn in the constraint and obtain

b̄T1
(

Σ̄2
1 − σ2

nI
)−2 (

σ4
nI − η2Σ̄2

1

)

b̄1 + bT2 b2 +
(

σ2
n − η2

)

z2
n = 0.

Note that this can be rewritten in terms of g(−σ2
n) as

g
(

−σ2
n

)

+
(

σ2
n − η2

)

z2
n = 0.

Thus see there are two answers (positive and negative squares) for zn. The

answers for zn are given by

z2
n =

g (−σ2
n)

η2 − σ2
n

. (6.11)

Note that for a solution for zn to exist g(−σ2
n) ≥ 0. The solution is then given by

x̂ = V







(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1

±
√

g(−σ2
n)

η2−σ2
n






.

Which of the potential roots is the actual solution still must be shown. This

is broken into two steps. The first is when g(−σ2
n) ≤ 0, and the second is

g(−σ2
n) > 0. If g(−σ2

n) ≤ 0 then trivially a unique root in [−σ2
n, ησ1] exists.

Moreover, no root exists in the interval (−σ2
n−1,−σ2

n) so α2 is not a candidate.

Note that for α4 = −σ2
n−1 to be a candidate, it must be true that b1,n−1 = 0. When

b1,n−1 = 0, g′(α) > 0 on the interval (−σ2
n−2,∞), which means g(−σ2

n−1) < 0. If

it is assumed that α = α4 and proceed similarly to Section 6.14 it is seen that

g(−σ2
n−1) ≥ 0 is required and thus α4 cannot be αo. Note that when g(−σ2

n) < 0,

it is impossible for α = −σ2
n. When g(−σ2

n) = 0, the unique root is α = −σ2
n

and thus the two remaining candidate zeros can easily be seen to coincide. Thus

when g(−σ2
n) ≤ 0, the unique zero is given by α1.

When g(−σ2
n) > 0 no root exists in (−σ2

n, ησ1] so α1 is not αo but as was

seen in Section 6.14 this is the condition for α = α3 = −σ2
n. Note that when

g(−σ2
n) > 0, there can be a root in the interval (−σ2

n−1,−σ2
n), but the slope is
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positive in this interval and by the results of Section 6.10 it cannot be a minimum.

The only remaining question in this case is if α4 = −σ2
n−1 is a candidate when

g(−σ2
n) > 0. Again recall that for −σ2

n−1 to be a candidate, it must be true that

b1,n−1 = 0 and g(−σ2
n−1) ≥ 0. The equation













Σ̃2
1 + αI 0 0

0 σ2
n−1 + α 0

0 0 σ2
n + α

























z̃

zn−1

zn













=













Σ̃1b̃1

0

0













(6.12)

must be satisfied. The following argument shows that −σ2
n−1 is not a candidate

when g(−σ2
n−1) ≥ 0. Note that since b1,n−1 = 0 = b1,n, g

′(α) > 0 on the

interval (−σ2
n−2,∞). Now introduce the parameter γ = ‖b1,n−1‖2 and consider

a continuity argument on γ similar to the continuity argument in Section 6.16.

Since the argument is very similar to the one to be constructed, only a sketch

of the details will be provided here. Note that for γ 6= 0 there is a root in the

interval (−σ2
n−1,−σ2

n) which is not the global minimum. As γ goes to zero, this

root moves to the left, and it reaches −σ2
n−1 when γ = 0, since g(−σ2

n−1) ≥ 0.

The derivative of the cost with respect to γ can be seen to be negative in the

interval (−σ2
n−1,−σ2

n) by the following method. First take the derivative and note

there appears the term dα(γ)/dγ, which is solved for by taking the derivative of

g(α(γ)) = 0 with respect to γ. Substituting back in and simplifying observe

that as γ increases, the cost decreases in the interval (−σ2
n−1,−σ2

n) and thus the

x corresponding to the root which appears in the interval when γ 6= 0 has a

lower cost than the x which corresponds to −σ2
n−1. The root is not a global

minimum however and so neither can be αo at −σ2
n−1. The only possibility when

g(−σ2
n) ≥ 0 is thus αo = −σ2

n.
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6.15 Case 4: η > σn, ‖b1,(n−k+1,n)‖ = 0, σn = σn−k+1

Again the claim is made that there is a unique root in [−σ2
n, ησ1], and this is

the global minimum. For simplicity partition Σ1 as

Σ1 =







Σ̄1 0

0 σnI






,

where Σ̄1 corresponds to the singular values that are strictly greater than σn.

Similarly partition z into z̄ and z̃, and b1 into b̄1 and b̃1. Two cases arise when

b̃1 = 0 by observing the equation






Σ̄2
1 + αI 0

0 (σ2 + α)I













z̄

z̃






=







Σ̄1b̄1

0






. (6.13)

First it could be that α = −σ2
n, which note can only happen when b1,n = 0. The

second case is z̃ = 0. Note that

lim
α→ησ1

g(α) ≥ 0

is still true, and that g′(α) > 0 on the interval (−σ2
n−1,∞), thus if a root exists

it is unique.

When α = −σ2
n, the solution is found in two steps. First solve for z̄ from

Equation 6.13. Obtain

z̄ =
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1.

Note that the constraint can be written in z as
∥

∥

∥

∥

∥

∥

∥

Σ1z − b1

b2

∥

∥

∥

∥

∥

∥

∥

2

− η2 ‖z‖2 = 0.

Now separate z̃ in the constraint and obtain

b̄T1
(

Σ̄2
1 − σ2

nI
)−2 (

σ4
nI − η2Σ̄2

1

)

b̄1b
T
2 b2 +

(

σ2
n − η2

)

z̃T z̃ = 0.
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Similar to what was seen in the last Section, note that the above equation can

be written in terms of g(−σ2
n). Doing so, obtain

g
(

−σ2
n

)

+
(

σ2
n − η2

)

z̃T z̃ = 0.

Note that this defines a hypersphere with radius

r =

√

g (−σ2
n)

η2 − σ2
n

.

To be able to solve for the radius, g(−σ2
n) ≥ 0, and thus this is a condition on the

when α = −σ2
n. Let Θ be any vector with unit Euclidean norm. The solutions

for z̃ are given by

z̃ = rΘ.

The solution is then given by

x̂ = V







(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1

rΘ






.

Note that the second order condition requires that α ≤ −σ2
n and thus the

only candidates are α1 and α3. If g(−σ2
n) ≤ 0 then trivially there is a unique

root in [−σ2
n, ησ1], and it is impossible for α = −σ2

n. If g(−σ2
n) > 0 no root exists

in (−σ2
n, ησ1] but as was seen above this is the condition for α = −σ2

n. When

g(−σ2
n) = 0 the two zeros can easily be seen to coincide.

6.16 Case 5: η > σn, b1,n 6= 0, σn < σn−1

The claim is again made that there is a unique root in (−σ2
n, ησ1] and it is

the global minimum. Note that since b1,n 6= 0, α = −σ2
n cannot be a solution.

128



The existence of a root in the interval [−σ2
n, ησ1] follows from the observation

that

lim
α→−σ2

n+
g(α) = −∞

lim
α→ησ1

g(α) ≥ 0.

Uniqueness is established by the same method as in Section 6.12.

Now proceed to show that of the three candidate roots only the one in the

interval (−σ2
n, ησ1] can be the global minimum. The argument proceeds by con-

tinuation on β = b21,n. Begin by defining

ḡ(α) = bT2 b2 + b̄T1
(

Σ̄2
1 + αI

)−2 (
α2I − η2Σ̄2

1

)

b̄1.

Rewrite the secular equation g(α) in terms of α and β as

g(α, β) = ḡ(α) + β
α2 − η2σ2

n

(σ2
n + α)2

.

Note that when β = 0, g(α, 0) = ḡ(α). Also note that ḡ ′(α, 0) > 0 when α lies in

the interval (max(−σ2
n−1,−η2),∞). Let α1(β) denote the unique root in the inter-

val (−σ2
n, ησ1], and α2(β) denote the rightmost root in the interval (−σ2

n−1,−σ2
n)

of g(α, β). Also let y1(β) denote the stationary point V T x̂ corresponding to α1(β),

and similarly for y2(β) corresponding to α2(β).

When ḡ(−σ2
n) < 0, note that neither α1(β) nor α2(β) converges to −σ2

n as β

goes to zero. As already observed, at β = 0, g′(α, 0) > 0 when α lies in the interval

(max(−σ2
n−1,−η2),∞), and since ḡ(−σ2

n) < 0 this implies that g′(α, 0) > 0 when

α lies in the interval (max(−σ2
n−1,−η2),−σ2

n). Thus y2(β) does not exist at β = 0

and so it must not exist for some open neighborhood around β = 0. For y2(β)

to be a candidate there must exist some value of β, say β2 for which y2(β) first

exists. At the point β2, α2(β2) must be at least a double root, and thus the slope
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of g(α2(β)) must be zero at β2. From Section 6.10, note that α2(β2) cannot be

the αo, so it must be that ‖y2(β2)‖2 ≥ ‖y1(β2)‖2.

Now proceed with the case when ḡ(−σ2
n) ≥ 0, and it will then be shown that

in both cases ‖y2(β)‖2 gets larger as β increases, while ‖y1(β)‖2 decreases. It is

easy to note from the form of g(α) that

lim
β→0+

α1(β) = −σ2
n = lim

β→0+
α2(β)

when ḡ(−σ2
n) ≥ 0. Now proceed to show that

limβ→0+ |y1,i(β)| = |y1,i(0)| = |y2,i(0)| = limβ→0+ |y2,i(β)| , 1 ≤ i ≤ n.

First observe that this is trivially true for i 6= n. Next note that ḡ(α) is continuous

at α = −σ2
n, thus

lim
β→0+

(

y2,n(β)2 − y1,n(β)2
)

= lim
β→0+

(

σ2
n

α2(β)2 − η2σ2
n

α2(β)2 − η2σ2
n

(α(β) + σ2
n)

2 β

− σ2
n

α1(β)2 − η2σ2
n

α1(β)2 − η2σ2
n

(α(β) + σ2
n)

2 β

)

=
1

σ2
n − η2

lim
β→0+

(

α2(β)2 − η2σ2
n

(α2(β) + σ2
n)

2 β + ḡ(α2(β), β)

− α1(β)2 − η2σ2
n

(α1(β) + σ2
n)

2 β − ḡ(α1(β), β)

)

=
1

σ2
n − η2

lim
β→0+

(g(α2(β), β) − g(α1(β), β))

= 0.

Note that this shows that ‖y1(β)‖ and ‖y2(β)‖ are continuous for β ≥ 0, with

‖y1(0)‖ = ‖y2(0)‖.

Now examine the derivative of the cost function, ‖x‖2 with respect to β. Use

this to show that in both cases ‖y1(β)‖ is less than ‖y2(β)‖ for all β ≥ 0. The
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derivative is

d ‖x(α(β))‖2

dβ
=

σ2
n

(σ2
n + α(β))2 − 2

dα(β)

dβ
bT1
(

Σ2
1 + α(β)I

)−3
Σ2

1b1.

The derivative of α(β) with respect to β must be calculated, so take the derivative

of g(α(β)) = 0

0 =
dg(α(β))

dβ

=
α(β)2 − η2σ2

n

(α(β) + σ2
n)

2 + 2
(

α(β) + η2
) dα(β)

dβ

(

bT1
(

Σ2
1 + α(β)I

)−3
Σ2

1b1

)

.

Solving for the derivative of α(β) with respect to β yields

dα(β)

dβ
= − α(β)2 − η2σ2

n

2 (α(β) + η2) (σ2
n + α(β))2

(

bT1 (Σ2
1 + α(β)I)

−3
Σ2

1b1

) .

Substituting this into the derivative of ‖x‖2 with respect to β obtain

d ‖x(α(β))‖2

dβ
=

σ2
n

(σ2
n + α(β))2 +

α(β)2 − η2σ2
n

(α(β) + η2) (σ2
n + α(β))2 .

Simplifying this yields

d ‖x(α(β))‖2

dβ
=

α(β)

(α(β) + η2) (α(β) + σ2
n)
.

Clearly for increasing β it can be seen that α1(β) decreases the cost function

when α1(β) < 0, while α2(β) increases the cost function for all β. When 0 ≤

α1(β) ≤ ησn, dα(β)/dβ ≥ 0 and note that the cost is increasing for both y1(β) and

y2(β). Since the cost is increasing for y1(β) when 0 ≤ α1(β) ≤ ησn, ‖y1(β)‖2 ≤

‖y1(ησn)‖2 on this interval. Additionally, note that for α1(β) in the interval

[ησn, ησ1], dα(β)/dβ ≤ 0 and the cost increases with increasing β. Note that while

these observations are true for [ησn,∞], the interval [ησn, ησ1] is specified because

the root cannot lie in [ησ1,∞]. Observe that it has been shown that ‖y1(β)‖2 ≤

‖y1(ησn)‖2 when α1(β) is in the interval [ησn, ησ1]. Thus the maximum value
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of the cost, when α1(β) is in the interval [ησn, ησ1], occurs at β = ησn. The

maximum rate of change for the cost, whenα1(β) is in the interval [0, ησ1], can

easily be found to be

max
d ‖x(α(β))‖2

dβ
=

ησn
(ησn + η2) (ησn + σ2

n)
.

Simplifying, obtain

max
d ‖x(α(β))‖2

dβ
=

1

(η + σn)
2 .

A similar calculation can be done for the interval (max(−η2,−σ2
n−1),−σ2

n−1) and

thus find that the minimum increase in the cost occurs at β = −ησn and is given

by

min
d ‖x(α(β))‖2

dβ
=

1

(η − σn)
2 .

Now note that the maximum rate of increase for y1(β) is less than the minimum

rate of increase for y2(β), and for β sufficiently small, ‖y1(β)‖ ≤ ‖y2(β)‖. It can

now be easily seen that ‖y1(β)‖ ≤ ‖y2(β)‖ for all β thus α2 cannot be the global

minimum.

Now consider the third candidate zero, namely −σ2
n−1. Note that for it to be

a candidate, b1,n−1 = 0 and g(−σ2
n−1) ≥ 0. Observe that similar to what was seen

in Appendix E, the minimum on the interval (−σ2
n−2,−σ2

n) must occur between

the second to the rightmost and the rightmost roots of the secular equation on

the interval. In Appendix E the only options were the roots themselves, but in

this case there is also the possibility of −σ2
n−1. Note that if −σ2

n−1 is not one

of the two rightmost roots on the interval (−σ2
n−2,−σ2

n) then it cannot be the

global minimum. It is already known that the rightmost root, designated α2 is

not the global minimum, and additionally the second most right root cannot be

the global minimum since the slope of g(α) is not negative at this point.
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Re-introduce the parameter γ = ‖b1,n−1‖2 and consider a continuity argument

on γ similar to the continuity argument presented in Section 6.16. Since the

argument is very similar to the one constructed, it will only be sketched here.

Note that for γ 6= 0 there are multiple roots in the interval (−σ2
n−1,−σ2

n), none

of which is the global minimum. As γ goes to zero all of the roots are made to

move to the left, and all but the rightmost either reaches −σ2
n−1 or becomes

complex valued as γ → 0, since g(−σ2
n−1) ≥ 0. The derivative of the cost

with respect to γ can be seen to be negative in the interval (−σ2
n−1,−σ2

n) by

the following method. First take the derivative and note there appears the term

dα(γ)/dγ, which is solved for by taking the derivative of g(α(γ)) = 0 with respect

to γ. Substituting back in and simplifying it is seen that as γ increases the cost

decreases in the interval (−σ2
n−1,−σ2

n) and thus the x which corresponds to the

root which appears in the interval when γ 6= 0 has a lower cost than the x which

corresponds to −σ2
n−1. That root is not a global minimum however and so neither

can the root at −σ2
n−1. The possibility that −σ2

n−1 is αo is thus excluded, and

the case is finished.

6.17 Case 6: η > σn, ‖b1,n−k+1‖ 6= 0, σn = σn−k+1

Once more it is claimed that there is a unique root, α1, in the interval

(−σ2
n, ησ1] and it is the global minimum.

The existence of a root , α1, in the interval (−σ2
n, ησ1] follows from the obser-

vation that

lim
α→−σ2

n+
g(α) = −∞

lim
α→ησ1

g(α) ≥ 0.
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η < σn and bT (I − A(ATA− η2I)−1AT )b ≤ 0

η = σn, b1,n = 0, and b̄T1 (I − Σ̄2
1(Σ̄1 − η2I)−1)b̄1 ≤ 0

η = σn, b1,n 6= 0

η > σn

Table 6.3. Degeneracy Conditions

Uniqueness is established by the same method as in Section 6.12.

Since ‖b1,n−k+1‖ 6= 0, α = α3 = −σ2
n is not possible. Note that the second

order condition gives the additional requirement that α ≥ −σ2
n. Since α ≥ −σ2

n

then trivially there are no additional roots to worry about. The only candidate

is thus the unique root, α1, in the interval (−σ2
n, ησ1].

6.18 Summary of Results

The problem under consideration is

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖

where A is an m × n real matrix and b is an n-dimensional real column vector.

The assumption is made that the problem is degenerate and in particular that

there exists an x such that η‖x‖ ≥ ‖Ax− b‖. Degeneracy can be easily checked

as outlined in Table 6.3. To obtain a solution to the degenerate problem the
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optimization problem

min
‖Ax−b‖≤η‖x‖

‖x‖

is considered. The SVD of A is given by

A =

[

U1 U2

]







Σ1

0






V T .

And define b1 = UT
1 b, and b2 = UT

2 b. When b1,n = 0 if σn is unique or

‖b1,n−k+1,n‖ = 0 if σn is of multiplicity k, partition Σ1 as

Σ1 =







Σ̄1 0

0 σnI






.

Similarly partition b1 into b̄1 and b1,n = 0. The secular equation is given by

g(α) = bT2 b2 + bT1 (Σ2
1 + αI)−2(α2I − η2Σ2

1)b1.

Given these definitions, the solution to the problem is given in Table 6.4. Note

that to find the unique root of the secular equation, g(α) in the interval specified

can be easily and quickly done by a method such as bisection or Newton’s method.

6.19 Restricted Perturbations

So far, the case in which all the columns of the A matrix are subject to

perturbations has been considered. It may happen in practice, however, that

only selected columns are uncertain, while the remaining columns are known

precisely. This situation can be handled by the approach of this chapter as is

now clarified.

Given A ∈ R
m×n, partition it into block columns,

A =

[

A1 A2

]

,
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Condition Solution

η > σn, σn < σn−1,
b1,n = 0, g(−σ2

n) ≥ 0
x = V

[
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1

±
√

g(−σ2
n)

η2−σ2
n

]

η > σn, σn = σn−k+1,
‖b1,(n−k+1,n)‖ = 0, g(−σ2

n) ≥ 0

x̂ = V

[
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1
rΘ

]

r =
√

g(−σ2
n)

η2−σ2
n

‖Θ‖ = 1

else
x = (ATA+ αI)†AT b
α1 ∈ [max(−σ2

n,−η2), ησ1]
such that g(α1) = 0

Table 6.4. Solution to the Problem

and assume, without loss of generality, that only the columns of A2 are subject

to perturbations while the columns of A1 are known exactly. Then pose the

following problem:

Given A ∈ R
m×n, with m ≥ n and A full rank, b ∈ R

m, and nonnegative real

number η2, determine x̂ such that

min
x̂

min
‖EA2‖≤η2

{∥

∥

∥

∥

[

A1 A2 + EA2

]

x̂− b

∥

∥

∥

∥

}

. (6.14)

Partition x̂ accordingly with A1 and A2, say

x̂ =







x̂1

x̂2







then write

∥

∥

∥

∥

[

A1 A2 + EA2

]

x̂− b

∥

∥

∥

∥

= ‖Ax̂− b+ EA2
x̂2‖ .
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Assuming the fundamental condition for this case, which is

η2‖x̂2‖ ≥ ‖Ax− b‖,

and following the development of Section 6.4 conclude the problem is equivalent

to

min
‖Ax−b‖2=η2

2
‖x2‖2

‖x‖2.

Note that the constraint can be rewritten as

‖Ax− b‖2 + η2
2‖x1‖2 = η2

2‖x2‖2 + η2
2‖x1‖2,

which becomes
∥

∥

∥

∥

∥

∥

∥







A1 A2

η2I 0













x1

x2






−







b

0







∥

∥

∥

∥

∥

∥

∥

2

= η2
2‖x‖2.

Now define the following

Ã =







A1 A2

η2I 0






,

and

b̃ =







b

0






.

The problem thus becomes

min
‖Ãx−b̃‖2=η2

2
‖x‖2

‖x‖2,

which is easily seen to be of the same form as the original problem, though of

slightly larger dimension. This can thus be solved by the method developed in

this chapter.
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Chapter 7

Min Max Backward Error

Criterion

This chapter examines four related problems, which cover special cases of the

min max backward error criterion. The cost functions are rational, and provide a

natural sequence of solutions to examine the problem. First the basic motivation

and formulations of the problems are examined in Section 7.1. The third and

fourth formulations are solved in Section 7.2. A relation to the TLS problem is

then presented in Section 7.3. The second cost function formulation is solved in

Section 7.4. The form of solution, and current results for the first and primary

formulation is presented in Section 7.5.

7.1 Motivation and Formulation

A common way of seeking a good answer in numerical analysis is to find a

method of calculation that minimizes the backward error of the problem. The ba-

sic idea of the backward error analysis technique is to show the solution obtained
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Figure 7.1. Cost function, showing the many singularities and relative minima.

is the exact solution of a nearby problem, by use of floating-point arithmetic

error bounds. A method that does this is said to be a stable one. A method

with a small backward error is not guaranteed accurate answers, but rather that

the method used is a good one in the numerical sense. See [88, 135] for a more

complete treatment. It seems reasonable to ask then what the regression problem

would be for a backward error criterion. The problem is thus stated

min
x

max
‖E‖≤η

‖(A+ E)x− b‖
‖A‖‖x‖ + ‖b‖ .

It is important to note that this cost function is not convex, as most other cost

functions are. This can be seen in Figure 7.1, which shows a region around the

global minimum for a randomly generated matrix with 8 rows and 4 columns.

Note in particular that a number of the minimum are close to the global minimum

in cost (one within 2.5% of the cost). This problem is thus more difficult in
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nature than most, but it holds forth a potential of a numerically superior way

of approaching the problem. To help understand the backward error problem

better it will be considered as part of a family of four related costs functions.

The problems are all rational cost functions and are generated by the presence or

lack of the uncertainty in A (E) and the ‖b‖ on the bottom. The costs functions

are thus

1. minx max‖E‖≤η
‖(A+E)x−b‖
‖A‖‖x‖+‖b‖ ,

2. minx
‖Ax−b‖

‖A‖‖x‖+‖b‖ ,

3. minx max‖E‖≤η
‖(A+E)x−b‖

‖A‖‖x‖ ,

4. minx
‖Ax−b‖
‖A‖‖x‖ .

The three additional problems are thus nominal models in some sense. First,

consider how to handle the maximization of the uncertainty (for problems 1 and

3). Since E appears only in the numerator, the maximization is accomplished by

maximizing the numerator. Similar to what is done in [24], the original problem

is identical to

min
x

‖Ax− b‖ + η‖x‖
‖A‖‖x‖ + ‖b‖

and the third problem is identical to

min
x

‖Ax− b‖ + η‖x‖
‖A‖‖x‖ .

By a little rearranging, the third problem can be written as

min
x

(‖Ax− b‖
‖A‖‖x‖ +

η

‖A‖

)

.

Essentially, problem three and problem four have the same solution! The four

problems are thus
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1. minx
‖Ax−b‖+η‖x‖
‖A‖‖x‖+‖b‖ = minxC1(x),

2. minx
‖Ax−b‖

‖A‖‖x‖+‖b‖ = minxC2(x),

3. minx
‖Ax−b‖+η‖x‖

‖A‖‖x‖ = minxC3(x),

4. minx
‖Ax−b‖
‖A‖‖x‖ = minxC4(x).

The problems will be examined in reverse order (simple to complex).

7.2 Formulations Three and Four

Since the third and fourth cost functions will give the same answer, consider

the simpler model (fourth cost function) to get both. The model is

C̄4(x) =
‖Ax− b‖2

‖A‖2‖x‖2
.

The square of the fourth formula is being used since it has an identical solution

to the non-squared version and it only has a non-differentiable point at x = 0.

Begin by noting that for this function, x = 0 is not a possible answer since the

cost for x = 0 is always more costly than say the least squares solution xLS. The

solution is thus always at a differentiable point. Assume that b /∈ R(A), since if

it is not, the solution is trivially identical to the least squares solution. For all

x 6= 0, the gradient of C̄4(x) with respect to x is

∇xC̄4(x) = 2
AT (Ax− b) − ‖Ax−b‖2

‖x‖2 x

‖A‖2‖x‖2

= 2

(

ATA− ‖Ax−b‖2

‖x‖2 I
)

x− AT b

‖A‖2‖x‖2
.
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The candidate solutions, xopt, are then found by setting ∇xC̄4(x) = 0 and solving

to find

xopt =

(

ATA− ‖Axopt − b‖2

‖xopt‖2
I

)−1

AT b.

Thus consider the parameterized family x(γ) given by

x(γ) =
(

ATA− γI
)−1

AT b.

Define the regression parameter γ such that γopt is given by

γopt =
‖Axopt − b‖2

‖xopt‖2
> 0. (7.1)

An expression to calculate γopt is needed. Rewrite the definition of γopt and

substitute the expression for xopt found above.

γopt‖
(

ATA− γoptI
)−1

AT b‖2 = ‖A
(

ATA− γoptI
)−1

AT b− b‖2.

To simplify the expression above, introduce the singular value decomposition

(SVD) of A as A =

[

U1 U2

] [

Σ 0

]T

V T . Also introduce the notation b1 = UT
1 b

and b2 = UT
2 b. The expression becomes

γopt‖
(

Σ2 − γoptI
)−1

Σb1‖2 =

∥

∥

∥

∥

∥

∥

∥







(Σ2 − γoptI)
−1

Σ2b1 − b1

−b2







∥

∥

∥

∥

∥

∥

∥

2

γoptb
T
1

(

Σ2 − γoptI
)−2

Σ2b1 =

∥

∥

∥

∥

∥

∥

∥







−γopt (Σ2 − γoptI)
−1
b1

−b2







∥

∥

∥

∥

∥

∥

∥

2

γoptb
T
1

(

Σ2 − γoptI
)−2

Σ2b1 = γ2
optb

T
1

(

Σ2 − γoptI
)−2

b1 + bT2 b2

γoptb
T
1

(

Σ2 − γoptI
)−2 (

Σ2 − γoptI
)

b1 − bT2 b2 = 0

γoptb
T
1

(

Σ2 − γoptI
)−1

b1 − bT2 b2 = 0.

Call the expression,

g1(γ) = γbT1
(

Σ2 − γI
)−1

b1 − bT2 b2, (7.2)
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the secular equation in keeping with the literature [24, 25]. Thus the value of

γopt is specified by the roots of the secular equation. To find the root several

questions need to be answered. Does the root exist? Is the root unique? Is there

an interval where the root occurs? Immediately note from the expression for γopt,

Equation 7.1, that it is greater than zero. The basic outline is to find an upper

bound on the size of the γopt, which is a local minimum. When the upper bound

is found, establish uniqueness and finally existence.

Before proceeding further, note a simple relation that can be derived from

x(γ) =
(

ATA− γI
)−1

AT b and will prove useful in our development. Note that

this relation holds for all values of γ.

x(γ) =
(

ATA− γI
)−1

AT b

(

ATA− γI
)

x(γ) = AT b

ATAx(γ) − γx(γ) = AT b

AT (Ax(γ) − b) = γx(γ)

Now proceed with taking the second derivative of the cost,

∇2
xC̄4(x) = 2

ATA− γI − 2x
(

(Ax−b)TA
‖x‖2 − xT ‖Ax−b‖2

‖x‖4

)

‖A‖2‖x‖2

−4

(

ATA− ‖Ax−b‖2

‖x‖2 I
)

x− AT b

‖A‖2‖x‖4
xT

= 2
ATA− γI − 2x

(

γxT

‖x‖2 − xT ‖Ax−b‖2

‖x‖4

)

‖A‖2‖x‖2

−2
∇xC̄4(x)x

T

‖x‖2

= 2
ATA− γI − 2Px

(

γ − ‖Ax−b‖2

‖x‖2

)

‖A‖2‖x‖2

−2
∇xC̄4(x)x

T

‖x‖2
.
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Note that Px is the projection onto x and is given by xxT

‖x‖2 . Since only the slope

at the roots of the secular equation are of concern, that means ∇xC̄4(x) = 0

and γ = ‖Ax−b‖2

‖x‖2 . The second derivative becomes 2(ATA− γI), which is positive

definite for γ < σ2
n, where σn is the smallest singular value of A. This means

0 ≤ γ ≤ σ2
n.

To show uniqueness, take the derivative of the secular equation,

g′1(γ) = bT1
(

Σ2 − γI
)−1

b1 + γbT1
(

Σ2 − γI
)−2

b1

= bT1
(

Σ2 − γI
) (

Σ2 − γI
)−2

b1 + γbT1
(

Σ2 − γI
)−2

b1

= bT1 Σ2
(

Σ2 − γI
)−2

b1

> 0.

The derivative is positive, so the root will be unique. Note that discontinuities

exist, but not in the interval where the solution must lie. All that remains is then

to show existence.

Begin by observing that g1(0) = −bT2 b2 ≤ 0. For simplicity, assume that the

smallest singular value of A is unique, the extension is obvious. Now if the nth

element of b1, denoted b1,n is not zero then limγ→σ2
n
g1(γ) = ∞. If b1,n 6= 0 then

trivially the root exists. If b1,n = 0 then note that

g1(σ
2
n) = σ2

nb̄1
T
(Σ̄2 − γI)−1b̄1 − bT2 b2,

with

b1 =







b̄1

0






Σ =







Σ̄ 0

0 σn






.
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If this number is non-negative, again the root exists. The question remaining is

what happens when the number is negative? In this case look at the gradient of

the cost function






Σ̄2 − γI 0

0 σ2
n − γ













z̄

zn






=







Σ̄b̄1

0







where,







x̄

xn






= v







z̄

zn






.

Since g1(σ
2
n) < 0 and g′1(γ) > 0, there is no root of g1(γ) for γ < σ2

n. The

global minimum root is less than or equal to σ2
n, so γ = σ2

n. This means that

z̄ = (Σ̄2 − σ2
nI)

−1Σ̄b̄1. To find the value of zn , substitute the values of γ and z̄

back into the cost function and find that

C̄4






v







z̄

zn












=
σ2
n

σ2
1

σ4
nb̄1

T (
Σ̄2 − γI

)−2
b̄1 + bT2 b2 + σ2

nz
2
n

σ2
nb̄1

T
Σ̄2
(

Σ̄2 − γI
)−2

b̄1 + σ2
nz

2
n

.

Only three possibilities exist, zn = 0, zn = ±∞, or zn can be anything. For a

rational function of the form

α+ σ2
nz

2
n

β + σ2
nz

2
n

,

the value of zn is given by

zn =























0 β − α > 0

±∞ β − α < 0

∗ β − α = 0.

For this problem β − α = g1(σ
2
n) < 0 and thus zn = ±∞. The entire solution is

thus characterized.
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7.3 Relation to TLS

Two regression problems hold predominance in estimation, least squares and

total least squares. For formulations three and four, the regression parameter,

γ is greater than zero, which is the least squares regression parameter. The

parameter γ also has a relation to the total least squares regression parameter

σn+1.

Start by noting an interesting bound on the size of the total least squares

regression parameter. To see the bound, consider the TLS problem written as







ATA AT b

bTA bT b













xTLS

−1






= σ2

n+1







xTLS

−1






.

The top line specifies the form of the solution as

xTLS =
(

ATA− σ2
n+1I

)−1
AT b.

The bottom line gives the secular equation for the TLS problem. This can be

seen by inserting the form of solution into the bottom line.

bTAxTLS − bT b = −σ2
n+1

bTA
(

ATA− σ2
n+1I

)−1
AT b− bT b = −σ2

n+1.

Recall the SVD of A and the definitions of b1 and b2 that have been used in earlier

sections,

A =

[

U1 U2

]







Σ

0






V T

b1 = UT
1 b

b2 = UT
2 b.
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This yields

bT1 Σ2(Σ2 − σ2
n+1I)

−1b1 − bT1 b1 − bT2 b2 = −σ2
n+1

σ2
n+1b

T
1 (Σ2 − σ2

n+1I)
−1b1 − bT2 b2 = −σ2

n+1

σ2
n+1b

T
1 (Σ2 − σ2

n+1I)
−1b1 + σ2

n+1 = bT2 b2

σ2
n+1

(

bT1 (Σ2 − σ2
n+1I)

−1b1 + 1
)

= bT2 b2. (7.3)

Recalling that σn+1σn it can be seen that

bT1 (Σ2 − σ2
n+1I)

−1b1 > 0,

and thus

bT1 (Σ2 − σ2
n+1I)

−1b1 + 1 > 1.

Finally arrive at the desired upper bound of the TLS parameter,

σ2
n+1 < bT2 b2

Now proceed to see how the regression parameter from Section 7.2 compares

with the TLS parameter, σn+1. To do so we subtract Equation 7.3 from Equa-

tion 7.2 and obtain

γbT1
(

Σ2 − γI
)−1

b1 − σ2
n+1

(

bT1 (Σ2 − σ2
n+1I)

−1b1 + 1
)

= 0

γbT1
(

Σ2 − γI
)−1

b1 − σ2
n+1b

T
1 (Σ2 − σ2

n+1I)
−1b1 = σ2

n+1

bT1

(

γ
(

Σ2 − γI
)−1 − σ2

n+1(Σ
2 − σ2

n+1I)
−1
)

b1 = σ2
n+1

bT1 (Σ2 − γI)−1(Σ2 − σ2
n+1I)

−1
(

γ(Σ2 − σ2
n+1I) − σ2

n+1(Σ
2 − γI)

)

b1 = σ2
n+1.
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Recall that 0 ≤ σn+1 ≤ σn and 0 ≤ γ ≤ σn so

Σ2 − γI ≥ 0

Σ2 − σ2
n+1I ≥ 0.

Thus the following results

γ(Σ2 − σ2
n+1I) − σ2

n+1(Σ
2 − γI) ≥ 0

γΣ2 − γσ2
n+1I − σ2

n+1Σ
2 + γσ2

n+1I ≥ 0

γΣ2 − σ2
n+1Σ

2 ≥ 0

γ − σ2
n+1 ≥ 0.

The final result is

γ ≥ σ2
n+1.

Formulations three and four always deregularize more than TLS. This gives the

even better bounds for γ of

σ2
n+1 ≤ γ ≤ σ2

n.

7.4 Formulation Two

The main difficulty in solving the general problem (problem 1) is the denomi-

nator. In particular the addition of the ‖b‖ in the denominator adds considerable

complexity. It is reasonable to ask why to bother with it, after all a solution

exists without it. The main problem with formulations three and four are that

they are always too optimistic. As x approaches zero from sufficiently close, the
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denominator goes to zero and thus the cost rises. It is never possible for this

regression technique to return x = 0 even though there are times when that is

the best choice from a physical standpoint. The constant addition of ‖b‖ in the

denominator of the cost prevents the cost function from going to infinity as x is

near zero. Formulations one and two are thus more realistic than formulations

three and four. It is important to note that for formulation two, the only time

x = 0 is when A†b = 0, as this is the only way to have ‖Ax− b‖ = ‖A‖‖x‖+ ‖b‖.

In practical terms this will not happen so it will be assumed that A†b 6= 0 for

this section and thus x = 0 is not a candidate. When b = AA†b, the choice of

x = A†b yields a cost of zero, so it is the solution. When b 6= AA†b, the only

non-differentiable point has been ruled out so the solution is at a differentiable

point.

The next step in solving the general problem (formulation) is to consider the

next most difficult problem (formulation two). Formulation two is defined by the

cost function

min
x
C2(x) = min

x

‖Ax− b‖
‖A‖‖x‖ + ‖b‖ .

As with the other problems, take the gradient with respect to x and by rearrang-

ing terms, find that

∇xC2(x) =
AT (Ax− b) − ‖Ax−b‖2‖A‖

‖x‖(‖A‖‖x‖+‖b‖)x

‖Ax− b‖(‖A‖‖x‖ + ‖b‖)

=
AT (Ax− b) − γ2x

‖Ax− b‖(‖A‖‖x‖ + ‖b‖)

with γ2 = ‖Ax−b‖2‖A‖
‖x‖(‖A‖‖x‖+‖b‖) . By setting ∇xC2(x) equal to zero, this yields

x(γ2) = (ATA− γ2I)
−1AT b.
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The Hessian is given by

∇2
xC2(x) =

1

‖Ax− b‖(‖A‖‖x‖ + ‖b‖)
(

ATA− γ2I + γ2
‖b‖xxT

(‖A‖‖x‖ + ‖b‖)‖x‖2

)

.

Denote the singular value decomposition of A as before, with the smallest singular

value of A given by σn. First note that when γ2 ≤ σ2
n then the Hessian is positive

semidefinite.

The Hessian will be positive semidefinite if ATA − γ2I + γ2
‖b‖xxT

(‖A‖‖x‖+‖b‖)‖x‖2

is positive semidefinite. Using the SVD and denoting z = vTx the condition

becomes Σ2 − γ2I + γ2
‖b‖zzT

(‖A‖‖z‖+‖b‖)‖z‖2 must be non-negative. By partitioning z

into z = [z̄T zn]
T and partitioning the remaining matrices similarly, the Hessian

condition can be written as:






Σ̄2 − γI 0

0 σ2
n − γ






+ γ2

‖b‖
(‖A‖‖z‖ + ‖b‖)‖z‖2







z̄

zn













z̄

zn







T

and the form of solution becomes

(Σ2 − γ2I)z = ΣT b1

with b1 = U1b as before. When b1,n = 0 then either zn = 0 or γ2 = σ2
n. If γ2 = σ2

n,

trivially γ2 ≤ σ2
n. But note that if zn = 0 then by the Hessian, γ2 ≤ σ2

n.

b1,n = 0 ⇒ γ2 ≤ σ2
n

7.4.1 Perturbation Analysis

It has already been shown that when b1,n = 0 that γ2 ≤ σ2
n, so it remains to be

shown that this remains true when b1,n 6= 0. Note from perturbation theory (for
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example Section 8.6.1 of [68]) that for the Hessian condition to be non-negative

it must have either γ2 ≤ σ2
n−1 or γ2 ≤ σ2

n
‖A‖‖z‖+‖b‖

‖A‖‖z‖ . In particular if the smallest

singular value is a multiple singular value, so σn = σn−1, then trivially γ2 ≤ σ2
n.

As a final observation, γ2 = σ2
n only when b1,n = 0 so by continuity of γ2, in order

to have γ2 > σ2
n it must first have γ2 = σ2

n when b1,n = 0. It only remains to show

that when b1,n 6= 0 and σn is a unique singular value that γ2 ≤ σ2
n.

This is done by first performing a perturbation analysis on b1,n. When b1,n =

0, γ2 = σ2
n, so when b1,n = δb1,n � 1, γ2 = σ2

n ± δγ2. Note that by continuity

there is always found a small value of δb1,n such that δγ2 � σ2
n−1 − σ2

n. To show

that γ2 < σ2
n it needs to be shown that the cost for γ2 = σ2

n + δγ2 is greater than

the cost for γ2 = σ2
n − δγ2. Proceed by examining the cost function and the first

order condition of the cost function.

Note that for the partitioning

z(γ2) =







z̄

zn







the cost function can be rewritten as

C2 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













Σ̄ 0

0 σn

0 0



















z̄

zn






−













b̄1

b1,n

b2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

‖A‖

∥

∥

∥

∥

∥

∥

∥







z̄

zn







∥

∥

∥

∥

∥

∥

∥

+ ‖b‖

.

The first order condition can likewise be written as






Σ̄2 − γ2I 0

0 σ2
n − γ2













z̄

zn






=







Σ̄ 0

0 σn













b̄1

b1,n






.
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Using the fact that γ2 = σ2
n ± δγ2 it can be seen that ∓δγ2 = σ2

n − γ2. Define

D̄ = Σ̄ − σ2
nI then rewrite the first order condition as







D̄ ∓ δγ2I 0

0 ∓δγ2













z̄

zn






=







Σ̄ 0

0 σn













b̄1

b1,n






.

Since it was noted above that δγ2 � σ2
n−1 − σ2

n and σ2
n−1 − σ2

n is the smallest

element of the diagonal matrix D̄, approximate D̄ ∓ δγ2I by D̄. This results in






D̄ 0

0 ∓δγ2













z̄

zn






=







Σ̄ 0

0 σn













b̄1

b1,n













z̄

zn






=







D̄−1Σ̄b̄1

σnb1,n

∓δγ2






.

From this note that the norm of z will not be affected by the the sign of ∓δγ2,

thus only the numerator of the cost matters. Substituting the result into the cost

function find

C2 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













Σ̄ 0

0 σn

0 0



















z̄

zn






−













b̄1

b1,n

b2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

‖A‖‖z‖ + ‖b‖

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













Σ̄ 0

0 σn

0 0



















D̄−1Σ̄b̄1

σnb1,n

∓δγ2






−













b̄1

b1,n

b2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

‖A‖‖z‖ + ‖b‖

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













(Σ̄ − σ2
nI)

−1Σ̄2b̄1

σ2
nb1,n

∓δγ2

0













−













b̄1

b1,n

b2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

‖A‖‖z‖ + ‖b‖
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C2 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













σ2
n(Σ̄ − σ2

nI)
−1b̄1

σ2
n±δγ2
∓δγ2 b1,n

−b2













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

‖A‖‖z‖ + ‖b‖ .

The only term where the sign of ±δγ2 is significant is the second row of the

numerator. When the sign is positive the second row is clearly larger than when

the sign is negative. Thus the norm of the numerator will be larger when the sign

is positive, so the cost is less when γ2 < σ2
n then when γ2 > σ2

n. This eliminates

the possibility that γ2 lies in the range (σ2
n, σ

2
n−1).

7.4.2 Final Case

There only remains the possible alternative of γ2 = σ2
n−1, which will be dis-

proven now. Consider the first derivative of the cost, with z =

[

z̄T zn−1 zn

]T

.

Partition the other matrices similarly to obtain













Σ̄2 − γ2I 0 0

0 σ2
n−1 − γ2 0

0 0 σ2
n−1 − γ2

























z̄

zn−1

zn













=













Σ̄b̄

σn−1b1,n−1

σnb1,n













.

For γ2 = σ2
n−1 it is required that b1,n−1 = 0 so













Σ̄2σ2
n−1I 0 0

0 0 0

0 0 σ2
n−1 − σ2

n−1

























z̄

zn−1

zn













=













Σ̄b̄

0

σnb1,n













.

It has been shown that if b1,n = 0 then γ2 ≤ σ2
n, so if γ2 = σ2

n−1 then the

determinant of the second derivative of the cost must be positive for all values of

b1,n 6= 0. Consider the second derivative of the cost partitioned as was done for
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the first derivative and with γ2 = σ2
n−1.













Σ̄2 − σ2
n−1I 0 0

0 0 0

0 0 σ2
n − σ2

n−1













+
σ2
n−1‖b‖

(‖A‖‖z‖ + ‖b‖)‖z‖2













z̄

zn−1

zn

























z̄

zn−1

zn













T

The determinant of this is always less than or equal to zero (proof of this is in

Appendix G) in some neighborhood of b1,n = 0, which means that it can never

be the minimum at any point, since in order to be the minimum it must be the

minimum at some point around b1,n = 0. It is thus impossible for γ2 = σ2
n−1.

7.4.3 Final Result

From what has been shown, the solution to problem 2 is given by

x(γ2) = (ATA− γ2I)
−1AT b

where

γ2 ∈ [0, σ2
n].

The value of γ2 can be found as the root of

γ2 −
‖Ax(γ2) − b‖2‖A‖

‖x(γ2)‖(‖A‖‖x(γ2)‖ + ‖b‖)

in the given range. Since the Hessian is strictly positive in this range and for

γ2 = 0 the equation is trivially less than zero, the root is unique in this range.

The root can be found in n2 time by using a root finding method like bisection

or Newton’s method.
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7.5 Formulation One

The ultimate formulation has not been completely solved, but several impor-

tant results exist. First, consider when it is possible for x = 0 to be a candidate.

The cost for x = 0 is 1, so for x = 0 to be the solution it must be true that for

all x 6= 0 that

‖Ax− b‖ + η‖x‖ ≥ ‖A‖‖x‖ + ‖b‖

η‖x‖ ≥ σ1‖x‖ + ‖b‖ − ‖Ax− b‖

η ≥ σ1 +
‖b‖ − ‖Ax− b‖

‖x‖

η ≥ σ1 +
‖b‖ − |‖Ax‖ − ‖b‖|

‖x‖ .

If ‖b‖ > ‖Ax‖ then

η ≥ σ1 +
‖b‖ − (‖b‖ − ‖Ax‖)

‖x‖

η ≥ σ1 +
‖Ax‖
‖x‖

η ≥ 2σ1.

If ‖b‖ ≤ ‖Ax‖ then

η ≥ σ1 +
‖b‖ − (‖Ax‖ − ‖b‖)

‖x‖

η ≥ σ1 +
2‖b‖ − ‖Ax‖

‖x‖

η ≥ σ1 +
‖Ax‖
‖x‖

η ≥ 2σ1.

Thus no matter what, for x = 0 to be the solution, η ≥ 2σ1. The point at which

x = 0 is a candidate solution can be adjusted by changing the term, ‖A‖‖x‖, in

the denominator to α‖x‖ for 0 < α ≤ ‖A‖. This does not alter the analysis but
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does permit practical values of η to yield x = 0. Note that α = 0 is excluded as

this is the min max problem discussed in Section 2.7.

The second result of interest is the form of solution and secular equation(s)

to find it when the solution is not at a singular point. The cost function is

C1(x) =
‖Ax− b‖ + η‖x‖
‖A‖‖x‖ + ‖b‖ .

Taking the gradient and setting it equal to zero yields

x(γ1) = (ATA+ γ1I)
−1AT b,

with

γ1 =
‖Ax− b‖

‖x‖

(

η − ‖Ax− b‖ + η‖x‖
‖A‖‖x‖ + ‖b‖ ‖A‖

)

=
‖Ax− b‖

‖x‖ (η − C1(x)‖A‖) .

Technically this is a solution, and it can be calculated by running down all the

roots of g1(γ1) = γ1 − ‖Ax−b‖
‖x‖ (η − C1(x)‖A‖). Multiplying by the denominator

and then repeatedly squaring the expression and combining terms gives another

expression that does not involve norms to odd powers. By substituting in expres-

sions for ‖Ax− b‖ and ‖x‖, an alternate secular equation which does not require

the calculation of x at each step is found:

g2(γ1) =
(

‖A‖bT (ATA+ γ1I)
−1b
)4 − 2

(

‖A‖‖b‖bT (ATA+ γ1I)
−1b
)2

× bT (ATA+ γ1I)
−1(ATA+ η2I)(ATA+ γ1I)

−1b

+
(

‖b‖2bT (ATA+ γ1I)
−1(ATA− η2I)(ATA+ γ1I)

−1b
)2

= (‖A‖α1(γ1))
4 − 2 (‖A‖‖b‖α1(γ1))

2 α2(γ1) +
(

‖b‖2α3(γ1)
)2
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with

α1(γ1) = bT (ATA+ γ1I)
−1b

α2(γ1) = bT (ATA+ γ1I)
−1(ATA+ η2I)(ATA+ γ1I)

−1b

α3(γ1) = bT (ATA+ γ1I)
−1(ATA− η2I)(ATA+ γ1I)

−1b.

The only disadvantage to g2(γ1) is that it has four times the roots as the original

(three fictitious for each true). In all the trials conducted the desired root for

g1(γ1) was the only one in (∞,−σ2
n] if it existed or −σ2

n] if it did not. In the case

of g2(γ1) the root in (∞,−σ2
n] which was also a root of g1(γ1) was the solution or

−σ2
n was the solution if there were no roots in the interval. Practically this means

that all the roots in the interval had to be run down and the costs compared.

The root that yielded the lowest cost was the “real” one and the solution. While

compelling, this is not a proof so it is listed as incomplete.

7.6 Conclusions

This is arguably the most challenging and interesting problem in the disser-

tation. Four sub-problems are presented and three completely solved. The final

sub-problem has two secular equations derived and thus a solution exists, but

some work remains to narrow which root is actually the desired solution. The

method has much to recommend it, despite this limitation, as can be seen in

Chapter 8 and Chapter 9.
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Chapter 8

System Identification Example

There are a great number of books and articles covering how system identifi-

cation is to be done, for instance see [68, 78, 91, 92, 93, 99, 101, 109, 149, 160].

A basic, linear state-space model will be assumed for the system to be identified,

in which the input and output are subject to white noise. Mathematically the

system can be written as

ẋ = Ax+Bu

y = Cx+Du

The state is x and the input, u, and the output, y have additive white noise. The

goal in system ID is to find the matrices, A, B, C, and D. The subspace iden-

tification problem as outlined in [101] and [92] will be used to find the matrices.

This method has become quite popular due to its numerical properties and its

ability to directly identify a state space model from input-output data. Note that

an infinite number of state space models exist for a given system due to similar-

ity transforms (T−1AT , T−1B, CT , D for a given transform T ). The subspace

identification method begins by forming two Hankel matrices of the input-output
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data,

H1 =







































u[k] u[k + 1] . . . u[k + j − 1]

y[k] y[k + 1] . . . y[k + j − 1]

u[k + 1] u[k + 2] . . . u[k + j]

y[k + 1] y[k + 2] . . . y[k + j]

...
...

...

u[k + i− 1] u[k + i] . . . u[k + i+ j − 2]

y[k + i− 1] y[k + i] . . . y[k + i+ j − 2]







































H2 =







































u[k + i] u[k + i+ 1] . . . u[k + i+ j − 1]

y[k + i] y[k + i+ 1] . . . y[k + i+ j − 1]

u[k + i+ 1] u[k + i+ 2] . . . u[k + i+ j]

y[k + i+ 1] y[k + i+ 2] . . . y[k + i+ j]

...
...

...

u[k + 2i− 1] u[k + 2i] . . . u[k + 2i+ j − 2]

y[k + 2i− 1] y[k + 2i] . . . y[k + 2i+ j − 2]







































.

Note that j � max(pi,mi) where p is the number of inputs and m is the number

of outputs. It can be shown (ref [101]) that any basis for the intersection of the

row space of these two Hankel matrices constitutes a sequence of state vectors

for the system. A simple way of calculating a basis for the state vectors is as

follows. First, take the singular value decomposition (SVD) of the concatenation

of H1 and H2,







H1

H2






= USV T

=







U11 U12

U21 U22













S11 0

0 0






V T
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where the dimensions are

dim(U11) = i(p+m) × (2mi+ n)

dim(U12) = i(p+m) × (2pi− n)

dim(U21) = i(p+m) × (2mi+ n)

dim(U22) = i(p+m) × (2pi− n)

dim(S11) = (2mi+ n) × (2mi+ n).

Then take a SVD of the following product

UT
12U11S11 =

[

Uq U⊥
q

]







Sq 0

0 0













V T
q

V ⊥T
q






.

Thus a valid state vector sequence, say X, is given by

X = UT
q U

T
12H1.

Now write the identification problem as







UT
q U

T
12U(m+ p+ 1 : (i+ 1)(m+ p), :)S

U(mi+ pi+m+ 1 : (i+ 1)(m+ p), :)S







=







A B

C D













UT
q U

T
12U(1 : i(m+ p), :)S

U(mi+ pi+ 1 : mi+ pi+m, :)S






,

where “j:k” specifies all the rows or columns in the range {j, j + 1, . . . , k} (rows

or columns are specified by context of the comma), and “:” means all rows

or columns in the matrix. The notation is taken from Matlab1. This problem

is typically not consistent and thus it is usually solved by posing it as a least

1Matlab is a registered trademark of The Mathworks, Inc.
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squares problem. In this case, the problem is minY ‖FY −G‖ with

F =







UT
q U

T
12U(1 : i(m+ p), :)S

U(mi+ pi+ 1 : mi+ pi+m, :)S







T

G =







UT
q U

T
12U(m+ p+ 1 : (i+ 1)(m+ p), :)S

U(mi+ pi+m+ 1 : (i+ 1)(m+ p), :)S







T

Y =







A B

C D







T

thus yielding a solution of Y T = GTF †T or in our original problem







A B

C D






=







UT
q U

T
12U(m+ p+ 1 : (i+ 1)(m+ p), :)S

U(mi+ pi+m+ 1 : (i+ 1)(m+ p), :)S













UT
q U

T
12U(1 : i(m+ p), :)S

U(mi+ pi+ 1 : mi+ pi+m, :)S







†

.

This works very well for small state dimensions. Note that if the original mea-

surements were subject to noise, then there would be errors in both the matrices,

F and G, that are being worked with. Moreover, Hankel matrices are notoriously

ill-conditioned, so that if the original measurements had small noise in them,

the noise could be greatly amplified particularly for larger state dimension. The

regularization methods that have been discussed can be used to account for this

possibility by recasting the problem either with favorable perturbations (degen-

erate min min problem) or with minimum backward error (for numerical con-

siderations). Total least squares will also be considered as a comparative case.

One other technique is not shown, is the LMI structured robust least squares

technique of [61, 59, 62, 63]. The prime advantage of the LMI technique in this

case is its ability to account for the Hankel structure. The LMI technique is not
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included as the problem required large amounts of memory to run and the only

machine available at the time did not have LMI solvers on it. Given the structure,

it is reasonable to assume that the LMI technique would do well, and should be

considered for future problems as memory is becoming less and less expensive.

8.1 Problem Setup

Subspace identification is typically done on small state dimension problems,

say around six to ten states. This is partially due to the fact that it requires a

great deal of memory to perform the two SVD’s required to set up the regression

problem. A second reason has been alluded to already, that being numerical

difficulties inherent in the regression problem. To demonstrate this, a 65 state

subspace identification problem was set up, as this was the largest problem that

could run on a computer that was accessible at the time (300 MB RAM required).

The system to be identified was chosen to be (for n=65)

A =



























n
3n

1 0 . . . 0

0 n−1
3n

1
. . .

...

...
. . . . . . . . . 0

...
. . . . . . 2

3n
1

0 . . . . . . 0 1
3n



























This state matrix was chosen because it is well known to have numerical problems,

and thus it provided an excellent test case for the problem at hand. A pseudo-

random binary sequence (PRBS) was used as input to the system to be identified,

to guarantee persistency of excitation and since PRBS signals are known to be

good for identification. The condition numbers of the Hankel matrices were

consistently on the order of 1016, amply demonstrating the ill-conditioned nature
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Figure 8.1. Solution Tracking for System ID Problem. The LS output is zero

because C = 0. The remaining methods performed too similarly to distinguish

on the graph.

of the problem. The noise was set at six orders of magnitude less than the signal,

and thus cannot be seen when plotted out on a graph so no graph is included. It is

easy to see that any problems in calculating a solution must be on numerical and

not systems grounds, due to the tremendous signal to noise ratio in the problem.

Several simulation runs were calculated, and the five methods (LS, TLS, TR,

DMM, BE) were each used to fit a system to the output. The results are graphed

in Figures 8.1, 8.2, 8.3, and 8.4. Note that in all cases the output and the output

with noise are too close to distinguish, but are both included to show that noise

is not a factor in the problem.
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Figure 8.2. Solution Tracking for System ID Problem Showing Unstable LS, TLS,

and TR Solutions on Log Scale. The almost flat line is the system output. The

LS solution is almost on top of the y-axis, but can be distinguished.
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Figure 8.3. Step Response for System ID Problem Solutions. The LS output is

zero because C = 0. The remaining methods performed too similarly to distin-

guish on the graph.
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Figure 8.4. Sin Response for System ID Problem Solutions. The LS output is zero

because C = 0. The remaining methods performed too similarly to distinguish

on the graph.
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It can be readily seen that both the proposed regression methods, degenerate

min min (DMM) and backward error (BE) yielded good results, while the current

methods, least squares (LS), total least squares (TLS), and Tikhonov (TR) do

not. The LS solution always selected an unstable system and additionally it

frequently found the state observation matrix, C to be the null matrix, which is

why its output is zero on most of the graphs. Note that in Figure 8.2 the output

of a LS solution that did not have the null matrix for C was graphed. The TLS

solution generated several unstable poles in every run, which is why the graph is

unbounded in Figure 8.2. It is possible to try to clean up the unstable poles by

projecting the unstable poles into the stable region to see how a stabilized system

would do, but this is against the basic goals of this analysis, which is to see how

each method works on its own. A major overall goal of this dissertation is to find

methods which provide good results without resorting to special, ad-hoc measures

to clean up bad results. The interesting one is the Tikhonov solution, which in

theory should be more robust. The Tikhonov solution does not generate good

results because the standard choice of η2 is actually almost machine precision

and thus has almost no effect on the results. A larger value could obviously do

better, as the techniques in this dissertation could be considered as special cases

of Tikhonov, but again this is an ad-hoc measure.

A key interest in system ID is to get a model that behaves like the actual

system and Figure 8.1 shows how well the DMM and BE track the output used

in the system ID problem. For comparison purposes, compare how well the two

methods do at tracking the step response of the actual system, Figure 8.3, and the

actual system’s response to a sine wave, Figure 8.4. Note that the two methods

produce essentially identical results even though the regression parameters are not

the same. This is because while the parameters are different (the BE parameter
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is roughly four times the size of the DMM parameter) the parameters are both

very small. For all ten runs, the parameters were between zero and 0.001. The

parameters were small enough not to really effect the solution accuracy much,

but still large enough to keep the numerical errors from destroying the solution.
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Chapter 9

Image Processing Example

The second example is a simple two-dimensional image processing applica-

tion. A small picture with the grey-scale words, ‘HELLO WORLD’ of early

programming fame, has been blurred. The image is 20x35 and the blur is done

by multiplying each column of the image by a Gaussian blur matrix of size 20.

The component of a Gaussian blur, G, with standard deviation, σ, in position,

(i,j), is given by

Gi,j = e−( i−j
σ )

2

.

The true blur is not known exactly but is corrupted by noise. The blur is not so

strong that some of the features cannot be seen, and in particular one can see that

there is writing but the specifics are hard to make out. See the first two images

in Figure 9.1. The image does not look that bad and the actual matrix is known

to within 3%, meaning the ratio of the norms of the perturbation to the matrix is

under 3%. The perturbation is small and the matrix is small, two key aspects of

an ‘easy to solve’ problem. The condition is on the order of 1000, which is large

but not unreasonable. The two most popular techniques, least squares (LS) and
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Actual Image Blurred Image

Least Squares Solution Tikhonov Solution

Degenerate Min Min Solution Min Max Solution

Min Max Backward Error Solution Total Least Squares Solution

Figure 9.1. Hello World Problem
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total least squares (TLS), both fail badly in recovering the text. It is interesting

to note that both recover the border acceptably though. It is important to keep

in mind that just because a technique fails in one area it does not necessarily fail

everywhere.

All of the remaining techniques do a good enough job on the text to allow it

to be figured out. The worst is the degenerate min min but interestingly it does

the best job on recovering the middle prong on the ‘E’ in hello. The remaining

techniques do arguably similar jobs. The backward error (BE) and min max (or

BDU - bounded data uncertainty) estimators do a little better job on getting

edge distinction, but because of this there is a slight degradation in the quality

of the border which is not as sharp as these techniques would like. The Tikhonov

regulator does the best job on the border, and a fairly good job on the text. Note

that some fading is apparent on the end and corners of the letters but all in all

the quality is good.

A key aspect of all of these regression techniques is selection of the regression

parameter. In the suggested techniques, this is done semi-automatically. Semi-

automatically because the error bound on the matrix must still be supplied, and

it is not guaranteed to be known accurately. This becomes critical as the selection

of the regression parameter is mostly influenced by this error bound. Select an

error that is too large and data losses can result, select one too small and there will

not be enough regulation or deregulation to improve the regression. The ‘HELLO

WORLD’ picture will be used as an example of selecting an error bound and as

a basis for comparing how the methods look next to each other.

First consider setting the error for all methods to be the 2-norm of the per-

turbation matrix, i.e.: assume A = ATrue + E and select η = ‖E‖2. The results

can be seen in Figure 9.2. Note that this is the error bound used in the original
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Actual Image Blurred Image

Least Squares Solution Tikhonov Solution

Degenerate Min Min Solution Min Max Solution

Min Max Backward Error Solution Total Least Squares Solution

Figure 9.2. Hello World with η = ‖EA‖2
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Actual Image Blurred Image

Least Squares Solution Tikhonov Solution

Degenerate Min Min Solution Min Max Solution

Min Max Backward Error Solution Total Least Squares Solution

Figure 9.3. Hello World with η = ‖E‖F

method with the exception of the BE estimator, which is too optimistic and fails

similar to the LS and TLS techniques. This underscores the comment about

the techniques being semi-automatic, as in this case the technique which usually

performs best does not with a bad choice of error bound.

Next consider the error bound that gives the best indicator of the effects of the

unknown matrix perturbation, the Frobenius norm. Since the Frobenius norm

takes into account all of the energy in the perturbation (all singular values), it

gives a good feel for what a perturbation matrix can do. The results can be seen

in Figure 9.3. Notice that the BE technique does well, but the others, which
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Actual Image Blurred Image

Least Squares Solution Tikhonov Solution

Degenerate Min Min Solution Min Max Solution

Min Max Backward Error Solution Total Least Squares Solution

Figure 9.4. Hello World with η = 2‖E‖F

are more conservative have varying degrees of success. It is interesting to note

that the BDU (min max) technique does surprisingly well given that it is more

conservative by design than the degenerate min min technique. The degenerate

min min technique can become conservative under the right circumstances and

that is what is seen here.

It is reasonable to consider error bounds in the range of

{‖E‖2

n
, n‖E‖2

}

.

The range was picked as a slightly larger interval than that which is necessary
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Actual Image Blurred Image

Least Squares Solution Tikhonov Solution

Degenerate Min Min Solution Min Max Solution

Min Max Backward Error Solution Total Least Squares Solution

Figure 9.5. Hello World with η = n
2
‖E‖2

to contain all the norms of the perturbation matrix. The range was increased

to allow for uncertainty in the bound. In this case, the upper level was too

conservative. A slightly larger scaling of the Frobenius norm, namely twice it,

was picked for the next point to evaluate. It can be seen that the BE technique

continues to improve while the others continue to get worse. By this point only

the BDU still produces output from which letters can be recognized.

As a final point, half the upper limit was chosen. Improvement can still

be seen in the BE technique, while the others are so conservative that they are
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useless. It takes until nearly the upper limit until the BE technique gives as bad a

result as the others generate by this half the upper limit. The BE technique ends

up giving reasonable answers for a longer region, but again it must be noted that

fine tuning of the perturbation error bound is very helpful even for self-tuning

systems.
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Chapter 10

Conclusion

All models contain uncertainty, and thus it should always be considered when

working with estimation and identification problems. When conditioning is good

and uncertainty is small, the standard techniques perform well and it is reasonable

to examine techniques which can improve the solution, such as total least squares

or min min solvers. When a system becomes ill-conditioned or the uncertainty

is large a robust solver is needed, such as Tikhonov techniques, min max tech-

niques, constrained problems, or Ridge Regression. Contemporary techniques

were discussed in Chapter 2.

Five problems were formulated in this dissertation.

1. Three problems were unstructured, partitioned min max problems. The

unstructured, block column partitioned min max problem was solved in

Chapter 3. The unstructured, block row partitioned min max problem

was solved in Chapter 4. The unstructured, general block partitioned min

max problem was solved in Chapter 5. In each case the form of solution

and the secular equation was provided to find the solution when it is at a
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differentiable point. Non-differentiable points were discussed as were other

techniques to reach the solution.

2. One problem was the degenerate case of the min min problem. This solution

was totally solved and characterized. An algorithm for solving the problem

was presented, and a first step to the partitioned case was presented.

3. The final problem was the min max Backward Error problem. This was bro-

ken into four sub-problems, three of which were completely solved and one

of which has a solution but would benefit from additional characterization.

Two examples were covered to examine the usefulness of the formulations

presented. One example was from system identification and one example from

image processing. The performance advantages of the methods presented in this

dissertation were discussed.

10.1 Future Directions

While much has been done, several areas deserve further attention. The areas

for further investigation are:

1. Prove which zero of the backward error secular equation is the optimal one,

and develop an algorithm for finding it, for the remaining sub-problem.

2. Test the secular equation based algorithm for the multi-column partitioning

of the min max problem against the quadratically convergent method to

determine more precisely when to use each.

3. Find secular equation techniques for the structured min max problem and

compare it to the LMI technique.
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4. Find a LMI formulation for the partitioned cases and compare it to the

secular equation techniques.

5. Solve the partitioned cases of the degenerate and non-degenerate min min

problems.
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Appendix A

Existence and Form of Slope

Lemma A.1 (Existence and Form of the Slope) Let b /∈ R{A}. The fol-

lowing limits exist for i ∈ {1, 2, . . . , p}:

lim
xi→0+

∂J (x1, x2, . . . , xp)

∂xi
=

ATi
(

A/ix/i − b
)

∥

∥A/ix/i − b
∥

∥

+ ηi (A.1)

and

lim
xi→0−

∂J (x1, x2, . . . , xp)

∂xi
=

ATi
(

A/ix/i − b
)

∥

∥A/ix/i − b
∥

∥

− ηi. (A.2)

Note that A/i denotes the A matrix with the ith column removed (similar for x/i).

Proof:

Note first that the cost function J is defined by

J (x1, x2, . . . , xp) = ‖Ax− b‖ +

p
∑

j=1

ηj ‖xj‖ .

It is thus obvious that the only points at which the derivative with respect to xi

will not exist are {x|Ax− b = 0} which cannot happen given that b /∈ R{A} and
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xi = 0. Thus trivially the limits exist. Now consider the cost function given that

xi > 0,

J (x1, x2, . . . , xp|xi > 0) = ‖Ax− b‖ +
∑

j 6=i
ηj ‖xj‖ + ηixi.

The derivative with respect to xi is given by

∂J (x1, x2, . . . , xp|xi > 0)

∂xi
=

∂ ‖Ax− b‖
∂xi

+
∂
∑

j 6=i ηj ‖xj‖
∂xi

+
∂ηixi
∂xi

=
ATi (Ax− b)

‖Ax− b‖ + ηi.

Now take the limit as xi → 0+,

lim
xi→0+

∂J (x1, x2, . . . , xp|xi > 0)

∂xi
= lim

xi→0+

(

ATi (Ax− b)

‖Ax− b‖ + ηi

)

= lim
xi→0+

(

ATi (Ax− b)

‖Ax− b‖

)

+ ηi

= lim
xi→0+

(

ATi
(

A/ix/i − b
)

∥

∥A/ix/i − b+ Aixi
∥

∥

)

+ lim
xi→0+

(

ATi Aixi
∥

∥A/ix/i − b+ Aixi
∥

∥

)

+ ηi

=
ATi
(

A/ix/i − b
)

∥

∥A/ix/i − b
∥

∥

+ ηi.

The last line is easily seen by noting that

lim
xi→0+

xi = 0

lim
xi→0+

∥

∥A/ix/i − b+ Aixi
∥

∥ =
∥

∥A/ix/i − b
∥

∥ ,

and then referencing a book on Analysis, with regard to quotients of limits, such

as [122] page 49, Theorem 3.3. Now consider the cost function given that xi < 0

J (x1, x2, . . . , xp|xi > 0) = ‖Ax− b‖ +
∑

j 6=i
ηj ‖xj‖ − ηixi.
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The derivative with respect to xi is given by

∂J (x1, x2, . . . , xp|xi > 0)

∂xi
=

∂ ‖Ax− b‖
∂xi

+
∂
∑

j 6=i ηj ‖xj‖
∂xi

− ∂ηixi
∂xi

=
ATi (Ax− b)

‖Ax− b‖ − ηi.

Now take the limit as xi → 0−,

lim
xi→0−

∂J (x1, x2, . . . , xp|xi < 0)

∂xi
= lim

xi→0−

(

ATi (Ax− b)

‖Ax− b‖ − ηi

)

= lim
xi→0−

(

ATi (Ax− b)

‖Ax− b‖

)

− ηi

= lim
xi→0−

(

ATi
(

A/ix/i − b
)

∥

∥A/ix/i − b+ Aixi
∥

∥

)

+ lim
xi→0−

(

ATi Aixi
∥

∥A/ix/i − b+ Aixi
∥

∥

)

− ηi

=
ATi
(

A/ix/i − b
)

∥

∥A/ix/i − b
∥

∥

− ηi.

The last line is easily seen by noting that

lim
xi→0−

xi = 0

lim
xi→0−

∥

∥A/ix/i − b+ Aixi
∥

∥ =
∥

∥A/ix/i − b
∥

∥

and again referencing a book on Analysis with regard to quotients of limits, such

as has been noted can be found in [122] page 49, Theorem 3.3. Thus the lemma

is proved.

♦ SDG ♦
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Appendix B

Sign of xi in Multi-Column Min

Max

Lemma B.1 (Sign of xi in Multi-Column Min Max) Let b /∈ R{A} and

let x∗j/i denote the optimal solution for xj given that xi = 0 and xk = x∗k for all

k /∈ {j, i}. Then one and only one of the following must hold.

1.

lim
xi→0+

∂J
(

x∗{j|j 6=i}, xi

)

∂xi
< 0 (B.1)

Thus, the solution lies in the half plane defined by xi > 0.

2.

lim
xi→0−

∂J
(

x∗{j|j 6=i}, xi

)

∂xi
> 0 (B.2)

Thus, the solution lies in the half plane defined by xi < 0.

3. The solution lies on the hyperplane defined by xi = 0 and moreover is given

by x∗j/i and xi = 0.
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Proof:

Begin by noting that the cost function on the hyperplane xi = 0 is at a minimum

if xj = x∗j/i for all j /∈ {i}. This is easily observed because x∗j/i is defined as the

solution to the reduced order problem of

min
xj

(

∥

∥A/ix/i − b
∥

∥+
∑

j 6=i
ηj ‖xj‖

)

.

Thus by definition it is the point of minimum cost on the hyperplane xi = 0. If

the cost is smaller for the general problem, say at some xi > 0, than the minimum

cost on the hyperplane xi = 0, then the minimum for the general problem must

be on the same side of the hyperplane (in this case xi > 0.). To prove this, assume

that the minimum for the general problem is on the other side of the hyperplane

xi = 0. Without loss of generalization, let x∗i < 0, but assume that there exists

a xoi > 0 such that J(xoj , x
o
i ) < J(x∗j/i, xi = 0). Let x∗j be the optimal value for

xj when xi = x∗i . Now after all that work the proof is simple. Consider the line

between (xoj , x
o
i ) and (x∗j , x

∗
i ) defined by

{(xj(α), xi(α))|

xj(α) =
(

αxoj + (1 − α) x∗j
)

, xi(α) = (αxoi + (1 − α) x∗i ) , 0 ≤ α ≤ 1
}

.

Since the cost function is convex, for all α between zero and one

J (xj(α), xi(α)) ≤ αJ
(

xoj , x
o
i

)

+ (1 − α)J
(

x∗j , x
∗
i

)

< αJ
(

xoj , x
o
i

)

+ (1 − α)J
(

xoj , x
o
i

)

= J
(

xoj , x
o
i

)

< J
(

x∗j/i, xi = 0
)

≤ J

(

x∗j

( −x∗i
xoi − x∗i

)

, xi

( −x∗i
xoi − x∗i

)

= 0

)

.
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Note that the last line is true since α =
−x∗i

(xo
i −x∗i )

is the value of α for which

xi(α) = 0, and thus this is the point on the line at which the line intersects

the hyperplane xi = 0. Since the optimal cost on the hyperplane is given by

J
(

x∗j/i, xi = 0
)

, the cost at this point must be greater than or equal to the

minimum. Note however, that the last line creates a contradiction, for it says that

the cost function is not convex. Thus the minimum cost of the general problem

must be on the same side as any point found to be less than the minimum cost

on the hyperplane xi = 0. Now to use this fact note that if

lim
xi→0+

∂J
(

x∗{j|j 6=i}, xi

)

∂xi
< 0.

Then, there exists a point (x∗j/i, xi > 0) such that J(x∗j/i, xi > 0) < J(x∗j/i, xi = 0).

Thus from the fact shown above, the optimal xi must also be greater than zero.

This is simply case (1). Similarly, if

lim
xi→0−

∂J
(

x∗{j|j 6=i}, xi

)

∂xi
> 0.

Then, there exists a point (x∗j/i, xi < 0) such that J(x∗j/i, xi < 0) < J(x∗j/i, xi = 0).

Thus from the fact shown above, the optimal xi must also be less than zero. This

is simply case (2), and moreover note that both conditions on the limits in case

(1) and case (2) cannot hold at the same time, since it would violate convexity

by having a saddle point at (x∗j/i, xi = 0). This simply points out that case (1)

and case (2) are mutually exclusive.

Note that trivially, if the minimum cost for the general problem does not

happen when xi > 0 or xi < 0 then trivially it must happen on the hyperplane

xi = 0, and the minimum cost on that hyperplane is then the solution to the

general problem. Clearly this indicates that if the solution is on the hyperplane

it is located at (x∗j/i, xi = 0). This is simply case (3), which has been noted

cannot happen if either case (1) or case (2)happens.
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Thus either case (1), case (2), or case (3) can happen, and the cases are

mutually exclusive. It still must shown that if the optimal xi > 0 then the limit

in case (1) must hold. Analogously it must be shown that if the optimal xi < 0

then the limit in case (2) must hold.

Let the optimal xi > 0 but assume that the condition on the derivative in

case (1) does not hold, thus

lim
xi→0+

∂J
(

x∗{j|j 6=i}, xi

)

∂xi
≥ 0.

Note that since the minimum cost on the hyperplane is given by the point

(x∗j/i, xi = 0), the slope is non-negative as x∗j/i increases (or at least the limit

of the slope from above). Also the slope is non-positive as x∗
j/i decreases (or at

least the limit of the slope from below). Denote the point (x∗
j/i, xi = 0) by x̄∗.

Since the global minimum is not in the hyperplane xi = 0, then the cost

function must decrease in some direction off of the hyperplane, which will be

denoted as u. From Analysis, for example see [122, pps. 215 – 219], that the

directional derivative can be expressed as

lim
t→0

J (x̄∗ + tu) − J (x̄∗ + tu)

t
= (∇J) (x̄∗) u̇

= (DuJ) (x̄∗)

=

p
∑

k=1

(Dxk
J) (x̄∗)uk.

Extend this to consider the case of left and right derivatives by taking the limit

from one side only. For example the right derivative is

lim
t→0+

J (x̄∗ + tu) − J (x̄∗ + tu)

t
=

p
∑

k=1

(

lim
xk→x̄∗

k

∂J (x̄∗)

∂xk

)

|uk|.

Note that as long as there are no discontinuities in some neighborhood of x̄∗ to

one side of the hyperplane xi = 0, then for the cost function to decrease off the
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the point x̄∗, case (1) must hold. Since this is against the assumption, there must

be a discontinuity in every neighborhood. This can only happen if one of the

components xk 6=i = 0. From what has already been shown the minimum on the

hyperplane xk 6=i = 0 must be on the hyperplane xi = 0 or on the same side of

the hyperplane xi = 0 as the global minimum, so that convexity is not violated.

Since the assumption does not allow for the slope of the cost function to decrease

in the hyperplane xk 6=i = 0 as the hyperplane xi = 0 is moved off, the minimum

must occur on the two (or more) hyperplanes.

Now consider the quadrant where the solution lies. Without loss of generality

assume that the quadrant in which the solution lies is such that xj > 0 for all j.

The cost function in this quadrant is then identical to the function

‖Ax− b‖ +

p
∑

j=1

ηjxj. (B.3)

Note that since by assumption b /∈ R(A) this new cost function is C∞. From the

analysis results above, trivially

‖Ax− b‖ +
∑p

j=1 ηjxj

∂xi6=k
< 0. (B.4)

Further note that

∂J(xj 6=k > 0, xk > 0)

∂xi6=k
=
∂J(xj 6=k > 0, xk < 0)

∂xi6=k
. (B.5)

Thus

∂J(xj 6=k > 0, xk = 0)

∂xi6=k
=
∂‖Ax− b‖ +

∑p
j=1 ηjxj

∂xi6=k
. (B.6)

Which then contradicts the assumption that the limit in case (1) does not hold.

The argument follows directly for case (2) and the proof is complete.

♦ SDG ♦
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Appendix C

Bounds on ‖x‖ in Multiple Row

Min Max

This appendix develops bounds on the size of ‖x‖ for the multiple (block)

row partitioned min max formulation. The cost function is

C =

q
∑

i=1

(‖Aix− bi‖ + ηi‖x‖ + ηb,i)
2 .

Use the fact that at the solution ‖Aix− bi‖ = ηi

ζi
‖x‖ to see that

C =

q
∑

i=1

(

ηi
ζi
‖x‖ + ηi‖x‖ + ηb,i

)2

=

q
∑

i=1

(

ηi

(

1 +
1

ζi

)

‖x‖ + ηb,i

)2

=

q
∑

i=1

(

η2
i

(

1 +
1

ζi

)2

‖x‖2 + 2ηb,iηi

(

1 +
1

ζi

)

‖x‖ + η2
b,i

)

.

Now note that at x = 0 the cost is
∑q

i=1(‖bi‖ + ηb,i)
2, so the optimal cost must

be less than or equal to this, so

q
∑

i=1

(‖bi‖ + ηb,i)
2 ≥

q
∑

i=1

(

η2
i

(

1 +
1

ζi

)2

‖x‖2 + 2ηb,iηi

(

1 +
1

ζi

)

‖x‖ + η2
b,i

)

.
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Define

a2 =

q
∑

i=1

η2
i

(

1 +
1

ζi

)2

a1 =

q
∑

i=1

2ηb,iηi

(

1 +
1

ζi

)

a0 =

q
∑

i=1

(

‖bi‖2 + 2ηb,i‖bi‖
)

.

Which simplifies the cost requirement to 0 ≥ a2‖x‖2 + a1‖x‖ − a0. Using the

quadratic formula and noting that since a1 ≥ 0 the parabola is concave up and

the value of ‖x‖ must be between the two roots. Additionally, ‖x‖ ≥ 0, which

replaces the negative root with 0, thus

0 ≤ ‖x‖ ≤
√

a2
1 + 4a2a0 − a1

2a2

.

To find the lower bound note that by dropping the ηi‖x‖ terms and noting

that for positive terms the sum of the squares is less than the square of the sum

and then using this to minimize, yields

C ≥
q
∑

i=1

(‖Aix− bi‖ + ηb,i)
2

> ‖Ax− b‖2 +

q
∑

i=1

(ηb,i)
2

≥ ‖(I − AA†)b‖2 +

q
∑

i=1

(ηb,i)
2

with A† the pseudo-inverse of A. Thus

‖(I − AA†)b‖2

q
∑

i=1

(ηb,i)
2

≤
q
∑

i=1

(

η2
i

(

1 +
1

ζi

)2

‖x‖2 + 2ηb,iηi

(

1 +
1

ζi

)

‖x‖ + η2
b,i

)

.

A similar parabola results, namely a2‖x‖2 + a1‖x‖ − ‖(I − AA†)b‖2 ≥ 0. Again
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only the positive root is needed because ‖x‖ ≥ 0 which gives the lower bound of

0 ≤
√

a2
1 + 4a2rls − a1

2a2

≤ ‖x‖.
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Appendix D

Piecewise Convexity of ‖x(α)‖

This appendix deals only with the degenerate min-min problem. In particular,

it shows that ‖x(α)‖2 is strictly convex in the interval (−σ2
n−1,−σ2

n), which is a

key step in showing that only the zero closest to −σ2
n can correspond to a potential

candidate for the global minimum.

Start by noting

‖x(α)‖2 = bT1 Σ2
1(Σ

2
1 + αI)−2b1.

Differentiating once with respect to α yields

d

dα
‖x(α)‖2 = −2bT1 Σ2

1(Σ
2
1 + αI)−3b1.

Differentiating once more gives

d2

dα2
‖x(α)‖2 = 6bT1 Σ2

1(Σ
2
1 + αI)−4b1,

which shows that ‖x(α)‖2 is strictly convex on the interval (−σ2
n−1,−σ2

n) and

hence that it has a unique minimum on that interval.
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Appendix E

Rightmost Root

This appendix deals only with the degenerate min-min problem. In particular,

this appendix proves that of all the roots in the interval (−σ2
n−1,−σ2

n) only the

right-most one can possibly correspond to the global minimum.

Let α0, . . . , αl denote the zeros of the secular equation g(α) in the interval

(−σ2
n−1,−σ2

n), in increasing order; that is

−σ2
n−1 < α0 < α1 < · · · < αl < −σ2

n.

From the result in Section 6.10 it is known that only the roots corresponding

to negative slopes of the secular equation can correspond to local minima. Since

lim
α→−σ2

n−
g(α) = −∞,

it follows that

g′(αl) < 0 and g′(αl−1) > 0.

(The degenerate multiple root cases are ignored for now as the argument can be

extended to them by continuity.)
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Now there are two possibilities. Either ‖x(αl)‖ ≤ ‖x(αl−1)‖ or not. The

first case implies that ‖x(αi+1)‖ < ‖x(αi)‖ due to the convexity of ‖x(α)‖ on

(−σ2
n−1,−σ2

n).

For the second case, ‖x(αl−1)‖ < ‖x(αl)‖. It must be shown that this implies

‖x(αl−1)‖ < ‖x(α)‖ for −σ2
n−1 < α < −αl−1, and that this is not the global

minimum. Toward this end take the derivative of x(α) with respect to α and get

dx(α)

dα
= −

(

ATA+ αI
)−1

x(α).

It has already been shown that ‖x(α)‖ is convex on this interval, and thus it

suffices to find if the derivative of ‖x(α)‖2 with respect to α is negative at αl−1,

which shows that x(α) is then decreasing. Note that the derivative of ‖x(α)‖2 is

obtained by premultiplying the derivative of x(α) by x(α)T . To do the analysis

use the SVD of A and thus have

d‖x(α)‖2

dα
= −bT1 Σ2

1

(

Σ2
1 + αI

)−3
b1.

Note that the matrix in parenthesis is indefinite and thus it must be determined

if the expression is negative or not at α = αl−1. To do this consider another

function whose derivative has already been examined. Consider the constraint

function, ‖Ax− b‖2 − η2‖x‖2, and since at α = αl−1 the infeasible region is being

entered as α increases, the derivative of the constraint must be positive. This

condition can be expressed as

2(αl−1 + η2)bT1 Σ2
1

(

Σ2
1 + αI

)−3
b1 > 0.

We note that 2(αl−1 + η2) > 0 thus the condition is

bT1 Σ2
1

(

Σ2
1 + αI

)−3
b1 > 0.

This trivially gives

d‖x(α)‖2

dα
< 0,
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and thus x(α) must be decreasing at α = αl−1 for increasing α. Applying con-

vexity to this result gives ‖x(αl−1)‖ < ‖x(α)‖ for −σ2
n−1 < α < −αl−1, and thus

the minimum feasible value for x(α) on −σ2
n−1 < α < −σ2

n is x(αl−1).

Now since x(αl−1) does not correspond to a local minimum it follows that

there is a neighborhood of x(αl−1) of the constraint surface such that in this

neighborhood ‖x‖ < ‖x(αl−1)‖. Thus since x(αl−1) does not correspond to a

local minimum, it can be discarded from further consideration, since it is not

the global minimum. Either way only the rightmost in the interval (−σ2
n−1,−σ2

n)

remains as a candidate.
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Appendix F

Symmetry of AT (Ax− b)xT

First recall that the expression for x(ψ) is given by

x = (ATA+ ψI)−1AT b

= AT (AAT + ψI)−1b

and the expression for Ax(ψ) − b is given by

Ax(ψ) − b = AAT (AAT + ψI)−1b− b

= −ψ(AAT + ψI)−1b.

Now note that

AT (Ax(ψ) − b) = −ψAT (AAT + ψI)−1b

= −ψx(ψ),

thus

AT (Ax(ψ) − b)x(ψ)T = −ψAT (AAT + ψI)−1bx(ψ)T

= −ψx(ψ)x(ψ)T .

Trivially, the matrix is symmetric.
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Appendix G

Determinant of Second

Derivative Is Negative

Begin by recalling what the second derivative is for case 2 of the Backward

Error.













Σ̄2 − σ2
n−1I 0 0

0 0 0

0 0 σ2
n − σ2

n−1













+
σ2
n−1‖b‖

(‖A‖‖z‖ + ‖b‖)‖z‖2













z̄

zn−1

zn

























z̄

zn−1

zn













T

Since the first matrix is singular, re-write this slightly for convenience later.













Σ̄2 − σ2
n−1I 0 0

0 δ 0

0 0 σ2
n − σ2

n−1













+
σ2
n−1‖b‖

(‖A‖‖z‖ + ‖b‖)‖z‖2













z̄

zn−1

zn

























z̄

zn−1

zn













T

−1

δ













0

δ

0

























0

δ

0













T
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Notice that these equations are the same. Define the following

A = −‖z‖2(‖A‖‖z‖ + ‖b‖)
σ2
n−1‖b‖

B = zT

C = z

D =













Σ̄2 − σ2
n−1I 0 0

0 δ 0

0 0 σ2
n − σ2

n−1













.

Now take the determinant.

det(∇2C2) = det













(D − CA−1B) − 1

δ













0

δ

0

























0

δ

0













T











= det









































δ

[

0 δ 0

]













0

δ

0

























D − CA−1B





















































Use Pascal’s expansion on the first row (or first column as it is symmetric), and

denote the location of the δ in

[

0 δ 0

]

as the pth place (note that the first zero
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is a vector of zeros not a scalar).

det(∇2C2) = δ det
(

D − CA−1B
)

+ (−1)pδ

det

























0 δ 0

Σ̄ − σ2
n−1I 0 0

0 0 σ2
n − σ2

n−1













− A−1













0

z̄

zn

























0

z̄

zn













T











= δ det
(

D − CA−1B
)

+ (−1)p(−1)p−1δ

det

























δ 0 0

0 Σ̄ − σ2
n−1I 0

0 0 σ2
n − σ2

n−1













− A−1













0

z̄

zn

























0

z̄

zn













T











= δ det
(

D − CA−1B
)

−δ det

























δ 0 0

0 Σ̄ − σ2
n−1I 0

0 0 σ2
n − σ2

n−1













− A−1













0

z̄

zn

























0

z̄

zn













T











Now use Pascal’s expansion on the first row (or first column as it is symmetric)

one more time and note there are two terms to be solved for.

det(∇2C2) = δ det
(

D − CA−1B
)

−δ2 det













Σ̄ − σ2
n−1I 0

0 σ2
n − σ2

n−1






− A−1







z̄

zn













z̄

zn







T





= δ (Term1) − δ2 (Term2) (G.1)

G.1 Term 1

The basic idea here is to rewrite Term 1 using properties of the determinant

and then show that no matter what the matrix Σ is there exists a b that will

make this term negative. Only one b is needed for the perturbation analysis,
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and it turns out a “bad” b always exists that has small b1,n. For the following

development, note that A is a scalar thus det(A) = A.

Term1 = det
(

D − CA−1B
)

= det













A B

C D












/ det(A)

=
det(D)

A
det
(

A−BD−1C
)

=
det(D)

A

(

A−BD−1C
)

Note that D is a non-singular diagonal matrix with only 1 negative term, so its

determinant is negative. The term A is also negative, so the fraction is positive.

All that must be shown is that the second part is negative. Before doing this,

note that from the first order condition on the cost the following holds

z2
n =

(

σnb1,n
σ2
n − σ2

n−1

)2

.

Now

(

A−BD−1C
)

= −‖z‖2 (‖A‖‖z‖ + ‖b‖)
‖b‖σ2

n−1

−
(

z̄T
(

Σ̄2 − σ2
n−1I

)

z̄ +
z2
n−1

δ
+

z2
n

σ2
n − σ2

n−1

)

.
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Substitute in the value of z2
n found above to obtain

(

A−BD−1C
)

= −‖z‖2 (‖A‖‖z‖ + ‖b‖)
‖b‖σ2

n−1

−
(

z̄T
(

Σ̄2 − σ2
n−1I

)

z̄ +
z2
n−1

δ
+

(σnb1,n)
2

(σ2
n − σ2

n−1)
3

)

= −
(‖z‖2 (‖A‖‖z‖ + ‖b‖)

‖b‖σ2
n−1

+ z̄T
(

Σ̄2 − σ2
n−1I

)

z̄ +
z2
n−1

δ

)

− (σnb1,n)
2

(σ2
n − σ2

n−1)
3

= −
(‖z‖2 (‖A‖‖z‖ + ‖b‖)

‖b‖σ2
n−1

+ z̄T
(

Σ̄2 − σ2
n−1I

)

z̄ +
z2
n−1

δ

)

+
(σnb1,n)

2

(σ2
n−1 − σ2

n)
3

= −α1 + βb21,n

with

α1 =
‖z‖2 (‖A‖‖z‖ + ‖b‖)

‖b‖σ2
n−1

+ z̄T
(

Σ̄2 − σ2
n−1I

)

z̄ +
z2
n−1

δ

β =
(σn)

2

(σ2
n−1 − σ2

n)
3
.

Now when b1,n <
√

α1

β
, Term 1 will be negative. Consider in particular,

b1,n =

√

α1

2β

so that

b21,n =
α1

2β
.
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Thus,

Term1 =
det(D)

A

(

A−BD−1C
)

=
det(D)

A

(

−α1 + βb1,n)
2
)

=
det(D)

A

(

−α1 + β
α1

2β

)

=
det(D)

A

(

−α1 +
α1

2

)

= −α1

2

det(D)

A
.

G.2 Term 2

Now look at Term 2,

Term2 = det













D̄ 0

0 dn






− A−1







z̄

zn













z̄

zn







T





=

det

























A z̄T zn

z̄T D̄ 0

zn 0 dn

























A

=

det













D̄ 0

0 dn













A
det (A− z̄T D̄−1z̄ − z2

n

dn
).

Notice that the first term is similar to the first term of the last section. The two

are related by

det (D)

A
= δ

det













D̄ 0

0 dn













A
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or

1

δ

det (D)

A
=

det













D̄ 0

0 dn













A
.

Since the two terms are related by δ, which is positive, they must have the same

sign. This means the first term is positive. The second term is the determinant

of a scalar. The expression for zn must be the same, and the same value of b1,n

will be used, as they are going to be used in the same equation. Keeping all this

in mind,

A− z̄T D̄−1z̄ − z2
n

dn
= −α +

z2
n−1

δ
+ βb21,n

= −α +
z2
n−1

δ
+ β

α

2β

= −α +
z2
n−1

δ
+
α

2

=
z2
n−1

δ
− α

2
.

The second term is thus given by

Term2 =
1

δ

det (D)

A

(

z2
n−1

δ
− α

2

)

.
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G.3 Putting It All Together

Take the results of the last two sections and substitute them into Equa-

tion G.1.

det(∇2C2) = δ (Term1) − δ2 (Term2)

= δ

(

−α1

2

det(D)

A

)

− δ2

(

1

δ

det (D)

A

(

z2
n−1

δ
− α

2

))

= δ

(

−α1

2

det(D)

A

)

− δ

(

det (D)

A

(

z2
n−1

δ
− α

2

))

= δ
det(D)

A

(

−α1

2
−
(

z2
n−1

δ
+
α

2

))

= −δdet(D)

A

z2
n−1

δ

From the last line it is easy to see that second derivative is negative except when

zn−1 = 0 when it is zero. In all cases the second derivative is not positive for

values of b1,n <
√

α1

β
.
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[44] L. Eldèn. A Note on the Computation of the Generalized Cross-Validation

Function for Ill-Conditioned Least Squares Problems. BIT, 24:467–472,

1985.

[45] H. W. Engl and H. Gfrerer. A Posteriori Parameter Choice for General

Regulariztion Methods for Solving Linear Ill-posed Problems. Appl. Numer.

Math., 4:395–417, 1988.

[46] J.W. Eyster, J.A. White, and W.W. Wierwille. On Solving Multifacility

Location Problems Using a Hyperboloid Approximation Procedure. AIIE

Transactions, 5:1–6, 1973.

[47] J. D. Faires and R. L. Burden. Numerical Methods. PWS-Kent, Boston,

1993.

[48] M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the Presence of

Mixed Parabetric Uncertainty and Unmodeled Dynamics. ITAC, 36:25–38,

1991.

[49] R. D. Fierro and J. R. Bunch. Colinearity and Total Least Squares. SIMAX,

15:1167–1181, 1994.

[50] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary. Regularization

by Truncated Total Least Squares. SISC, 18:1223–1241, 1997.

[51] A. Forsgren and G. Sporre. On Weighted Linear Least-Squares Problems

Related to Interior Methods for Convex Quadratic Programming. SIMAX,

23:42–56, 2001.

209



[52] G. E. Forsythe and G. H. Golub. On the Stationary Values of a Second-

Degree Polynomial on the Unit Sphere. SIAM J. App. Math., 14:1050–1068,

1965.

[53] J. N. Franklin. Minimum Principles for Ill-posed Problems. SIAM J. Math.

Anal., 9:638–650, 1978.

[54] M. Furuya, H. Ohmori, and A. Sano. Optimization of Weighting Constant

for Regularization in Least Squares System Identification. Grans. Inst Elec.

Inform. Comm. Eng. A, J72A:1012–1015, 1989.

[55] W. Gander. Least Squares with a Quadratic Constraint. Numer. Math.,

36:291–307, 1981.

[56] C. F. Gauss and G. W. Stewart. Theory of the Combination of Observations

Least Subject to Errors. SIAM, Philadelphia, PA, 1995.

[57] J. A. George and M. T. Heath. Solution of Sparse Linear Least Squares

Problems Using Givens Rotations. Lin. Alg. and Its Applic., 34:69–83,

1980.

[58] H. Gfrerer. An A Posteriori Parameter Choice for Ordinary and Iterated

Tikhonov Regularization of Ill-Posed Problems Leading to Optimal Con-

vergence Rates. Math. Comp., 49:507–522, 1987.

[59] L. El Ghaoui. and G. Calafiore. Worst-case Prediction Under Structured

Uncertainty. In Proc. Amer. Control Conf., pages 3402–3406, San Diego,

CA, 1999.

[60] L. El Ghaoui and G. Galafiore. Robust Filtering for Discrete-Time Systems

with Bounded Noise and Parametric Uncertainty. ITAC, 46:1084–1089,

2001.

210



[61] L. El Ghaoui and H. Lebret. Robust Least Squares and Applications. In

Proceedings of the 35th Conference on Decision and Control, 1996.

[62] L. El Ghaoui. and H. Lebret. Robust Solutions to Least-Squares Problems

with Uncertain Data. SIMAX, 18(4):1035–1064, 1997.

[63] L. El Ghaoui. and H. Lebret. Robust Solutions to Least-Squares Problems

with Uncertain Data. In S. Van Huffel, editor, Recent Advances in Total

Least Squares Techniques and Errors-in-Variables Modeling, pages 161–170.

SIAM, Philadelphia, PA, 1997.

[64] G. H. Golub, P. C. Hansen, and D. P. O’Leary. Tikhonov Regularization

and Total Least Squares. SIMAX, 30(1):185–194, 1999.

[65] G. H. Golub, M. Heath, and G. Wahba. Generalized Cross-Validation as a

Method for Chosing a Good Ridge Parameter. Technometrics, 21:215–223,

1979.

[66] G. H. Golub and C. F. Van Loan. Total Least Squares. In T. Gasser and

M. Rosenblatt, editors, Smoothing Techniques for Curve Estimation, pages

69–76, New York, 1979. Springer-Verlag.

[67] G. H. Golub and C. F. Van Loan. An Analysis of the Total Least Squares

Problem. SIMAX, 17:883–893, 1980.

[68] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, Baltimore, Md, 1996.

[69] G. H. Golub and U. von Matt. Quadratically Constrained Least Squares

and Quadratic Problems. Numer. Math., 59:561–580, 1991.

211



[70] G. H. Golub and J. H. Wilkinson. Note on Iterative Refinement of Least

Squares Solutions. Numerical Math., 9:139–148, 1966.

[71] Ming Gu. Backward Perturbation Bounds for Linear Least Squares Pro-

lems. SIMAX, 20:363–372, 1998.

[72] M. L. Hambaba. The Robust Generalized Least-squares Estimator. Signal

Processing, 26:359–368, 1992.

[73] M. Hanke and P. C. Hansen. Regularization Methods for Large-scale Prob-

lems. Surveys on Mathematics for Industry, 3:253–315, 1993.

[74] M. Hanke and T. Raus. A General Heuristic for Choosing the Regulariza-

tion Parameter in Ill-Posed Problems. SIAM J. Sci. Comput., 7:956–972,

1996.

[75] P. C. Hansen. Analysis of Discrete Ill-posed Problems by Means of the

L-curve. Siam Review, 34:561–580, 1992.

[76] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM,

Philadelphia, PA, 1998.

[77] K. H. Haskell and R. J. Hanson. Selected Algorithms for the Linearly

Constrained Least Squares Problem: A User’s Guide. Technical Report

SAND78-1290, Sandia National Laboratories, Albuquerque, NM., 1979.

[78] S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ,

1991.

[79] D. J. Higham and N. J. Higham. Backward Error and Condition of Struc-

tured Linear Systems. SIMAX, 13:162–175, 1992.

212



[80] A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for

Nonorthogonal Problems. Technometrics, 12:55–67, 1970.

[81] P. D. Hough and S. A. Vavasis. Complete Orthogonal Decomposition For

Weighted Least Squares. SIMAX, 18:369–392, 1997.

[82] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: Com-

putational Aspects and Analysis. SIAM, Philadelphia, PA, 1991.

[83] B. R. Hunt. The Application of Constrained Least-squares Estimation to

Image Restoration by Digital Computer. IEEE Trans. Comput., C-22:805–

812, 1973.

[84] M. E. Kilmer and D. P. O’Leary. Choosing Regularization Parameters in

Iterative Methods for Ill-posed Problems. SIMAX, 22:1204–1221, 2001.

[85] D. Kincaid and W. Cheney. Numerical Analysis, Second Ed. Brooks/Cole,

Boston, 1996.

[86] S. Kourouklis and C. C. Paige. A Constrained Least Squares Approach to

the General Gauss-Markov Linear Model. J. Amer Stat. Assoc., 76:620–625,

1981.

[87] H.W. Kuhn. A Note on Fermat’s Problem. Mathematical Programming,

4:98–107, 1973.

[88] A.J. Laub. Computational Matrix Analysis. Class notes for ECE 234 and

ECE 231A.

[89] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. SIAM,

Philadelphia, PA, 1995.

213



[90] H. Lebret and S. Boyd. Antenna Array Pattern Synthesis Via Convex Op-

timization. IEEE Transactions on Signal Processing, 45(3):526–532, March

1997.

[91] L. Ljung. System Identification Toolbox User’s Guide. The Math Works,

Inc., Natick, MA, 1991.

[92] L. Ljung. System Identification. In The Control Handbook. CRC Press,

1996.

[93] Lenart Ljung. System Identification: Theory for the User. Prentice Hall,

Englewood Cliffs, NJ, 1987.

[94] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of Second-

Order Cone Programming. Linear Algebra and its Applications, 284:193–

228, November 1998. Special Issue on Linear Algebra in Control, Signals

and Image Processing.

[95] R. Lorenz and S. Boyd. Robust Minimum Variance Beamforming. Submit-

ted to IEEE Transactions on Signal Processing, October 2001.

[96] R.F. Love. Locating Facilities in Three-dimensional Space by Convex Pro-

gramming. Naval Research Logistics Quarterly, 16:503–516, 1969.

[97] N. Mastronardi, P. Lemmerling, and S. Van Huffel. Fast Structured To-

tal Least Squares Algorithm for Solving the Basic Deconvolution Problem.

SIMAX, 22:533–553, 2000.

[98] D. A. McQuarrie and P. A. Rock. General Chemistry. W. H. Freeman and

Company, New York, NY, 1987.

214



[99] J. M. Mendel. Lessons in Estimation Theory for Signal Processing, Com-

munications, and Control. Prentice Hall, Englewood Cliffs, NJ, 1995.

[100] K. Miller. Least Squares Methods for Ill-posed Problems with a Prescribed

Bound. SIAM J. Math. Anal., 1:52–74, 1970.

[101] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle. On- and

Off-line Identifiation of Linear State-Space Models. In R. V. Patel, A. J.

Laub, and P. M. Van Dooren, editors, Numerical Linear Algebra Techniques

for Systems and Control. IEEE Press, 1994.

[102] B. De Moor. Structured Total Least Squares and L2 Approximation Prob-

lems. Linear Algebra Appl., 188-189:163–207, 1993.

[103] V. A. Morozov. On the Solution of Functional Equations by the Method

of Regularization. Soviet Math. Dokl., 7:414–417, 1966. cited in [76].

[104] Y. Nesterov and A. Nemirovski. Interior-point Polynomial Algorithms in

Convex Programming. SIAM, 1994.

[105] A. Neubauer and O. Scherzer. Regularization for Curve Representations:

Uniform Convergence for Discontinuous Solutions of Ill-posed Problems.

SIAM J. Appl. Math., 58:1891–1900, 1998.

[106] Y. Nievergelt. Total Least Squares: State-of-the-Art Regression in Numer-

ical Analysis. SIAM Rev., 36:258–264, 1994.

[107] D. P. O’Leary. Near-Optimal Parameters for Tikhonov and Other Regu-

larization Methods. Technical report, CS Dept., University of Maryland,

1999. CS-TR-4004.

215



[108] D. P. O’Leary and J. A. Simmons. A Bidiaonalization-Regularization Pro-

cedure for Large Scale Discreizations of Ill-Posed Problems. SISSC, 2:474–

489, 1981.

[109] W. J. Ostrander. Reflection Seismology. UCSB Bookstore Custom Pub-

lishing, Goleta, CA, 1999.

[110] M. L. Overton. A Quadratically Convergent Method for Minimizing a Sum

of Euclidean Norms. Mathematical Programming, 27:34–63, 1983.

[111] C. C. Paige. Computer Solution and Perturbation Analysis of Generalized

Least Squares Problems. Math. Comp., 33:171–184, 1979.

[112] C. C. Paige. Fast Numerically Stable Computations for Generalized Linear

Least Squares Problems. SINUM, 16:165–171, 1979.

[113] C. C. Paige. The General Limit Model and the Generalized Singular Value

Decomposition. Lin. Alg. and Its Aplic., 70:269–284, 1985.

[114] C. C. Paige and S. Zdeněk. Bounds for the Least Squares Residual using

Scaled Total Least Squares. In S. van Huffel and P. Lemmerling, editors, To-

tal Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms

and Applications, pages 35–43, Dordrecht, 2002. Kluwer Academic Publish-

ers.
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[157] P.-Å. Wedin. Notes on the Constrained Linear Least Squares Problem. A

New Approach Based on Generalized Inverses. Technical Report UMINF–

75.79, Institute of Information Processing, University of Ume̊a, 1979.

[158] E. Weiszfeld. Sur le point par lequel la somme des distances de n points

donnés est minimum. Tohoku Mathematics Journal, 43:355–386, 1937.

[159] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice Hall,

Englewood Cliffs, NJ, 1985.

[160] A. S. Willsky. Digital Signal Processing and Control and Estimation Theory:

Points of Tangency, Areas of Intersection, and Parallel Directions. MIT

Press, Cambridge, Ma, 1979.

[161] G. H. Yang and J. L. Wang. Robust Nonfragile Kalman Filtering for Uncer-

tain Linear Systems with Estimator Gain Uncertainty. ITAC, 46:343–348,

2001.

[162] M. E. Zervakis and T. M. Kwon. Robust Estimation Techniques in Regu-

larized Image Restoration. Op. Eng., 31:2174–2190, 1992.

221


