

CELLULAR AUTOMATA RULES GENERATOR FOR MICROBIAL

COMMUNITIES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Melissa Marie Quintana

December 2010

CELLULAR AUTOMATA RULES GENERATOR FOR MICROBIAL

COMMUNITIES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Melissa Marie Quintana

December 2010

Approved by:

Keith Evan Schubert, Advisor, School of
Computer Science and Engineering

Date

Ernesto Gomez

Richard Botting

c⃝ 2010 Melissa Marie Quintana

ABSTRACT

Cellular automata were first used for work on self-reproducing automata

which is ideal for the goal of simulating microbial communities . In ad-

dition, cellular automata have the benefit of being discrete, which enables

the simulation of discrete-time signals representing the time intervals of the

changing of growth that occurs within microbial communities. The cellular

automaton called the “Game of Life” is an example that is similar to how

cellular automata are used to represent microbial communities . Currently,

this concept is ideal for representing how each cell within a cellular au-

tomaton representing a microbial community should be affected based on

the conditions of the surrounding elements found within its natural envi-

ronment.

The methods provided in this thesis can be used to derive an approxima-

tion of the value ranges that represent the rules of cellular automata of a

reasonable size through visual identification utilizing image processing. Cur-

rently the number ranges of the underlying rules are identifiable through

the programs of the simulations and not visibly identifiable through image

processing or through patterns. Providing a method that will associate the

rules with patterns through image processing will provide an alternative

method to the current process of identifying them through expert recogni-

tion due to years of experience. The ability to identify an approximation of

the number range within cellular automata will aid in the process of associ-

ating them with microbial communities of similar growth patterns. A new

method is needed because expert recognition is not a practical solution.

This thesis project aims to promote the understanding of the underlying

rules and allow for visual identification that will aid in the process of better

iii

understanding microbial communities . Overall this project will provide a

new method that will enable a visible approximation of the number ranges

and radius involved within the cellular automata simulations.

iv

ACKNOWLEDGEMENTS

I would like to acknowledge everyone who supported my success with this thesis

project. My deepest gratitude goes out to my advisor, Dr. Keith Schubert, for the

guidance that he provided and for the time that he devoted to assist me. I would

also like to express my gratitude towards the other committee members, Dr. Ernesto

Gomez, Dr. Richard Botting, and my graduate coordinator, Dr. Josephine Mendoza,

for their assistance and availability when needed throughout the project. Lastly, I

want to thank Jane Curnutt for guiding me in the right direction and Dr. Penelope

Boston for being such an inspiration.

v

DEDICATION

I dedicate this project to my family who has always believed in me and

whose unconditional love has been my strength. My father, Richard

Quintana, taught me to dream big, just as he did. My mother, Nita

Halcomb, and sister, Melody Quintana, inspired me and instilled in me the

courage to achieve my education. My Grandparents, Celia and Ignacio

Quintana, truly supported my goals and made me promise to never give

up. And, Lisa Rojas, provided me with support in every way to ensure that

I accomplished my dream of achieving a Master of Science in Computer

Science.

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . v

List of Figures . ix

1. Introduction . 1

1.1 Background . 1

1.2 Statement of the Problem . 2

1.3 Purpose . 2

1.3.1 Significance . 3

1.3.2 Contributions . 3

1.4 Theoretical Bases and Organization 5

1.4.1 Findings . 6

1.4.2 A Limitations of the Study . 8

2. Literature Review . 10

2.1 Background . 10

2.2 Similarities . 12

2.3 Differences . 12

3. Methodology . 13

3.1 Samples . 13

vii

3.2 Treatment . 14

3.3 Identifying the Radius of Effect . 16

3.4 Identifying the Rules of Cellular Automata 18

3.5 Identifying the Rules from Pictures 20

3.6 Data Analysis Procedures . 23

4. Results and Discussion . 27

4.1 Presentation of the Findings . 27

4.2 Discussion of the Findings . 33

5. Conclusion . 34

Appendix A: My Code . 36

A.1 First Phase - Part One . 37

A.2 First Phase - Part Two . 76

A.3 Second Phase . 80

A.4 Third Phase . 83

Appendix B: Sample Cellular Automata Code 87

B.5 Sample Code for Part 2 of Phase 2 88

B.6 Sample Code Extreme Environment Plant Growth Simulator 95

References . 105

viii

LIST OF FIGURES

3.1 These are the cellular automaton samples that were provided by Dr.

Keith Schubert. [3] P. Boston, J. Curnutt, E. Gomez, and B. Strader.

To live and die in ca. Retrieved August 20, 2010. 14

3.2 This is the picture of the Cueva de Villa Luz cave regrowth experiment

taken in 1999. [3] P. Boston, J. Curnutt, E. Gomez, and B. Strader.

To live and die in ca. Retrieved August 20, 2010. 15

3.3 This is the picture of the Cueva de Villa Luz cave regrowth experiment

taken in 2003. [3] P. Boston, J. Curnutt, E. Gomez, and B. Strader.

To live and die in ca. Retrieved August 20, 2010. 15

3.4 This is the life histogram output of the second phase that was produced

from cellular automata. 25

3.5 This is the death histogram output of the second phase that was pro-

duced from cellular automata. 25

3.6 This is the stable life histogram output of the second phase produced

from cellular automata. 26

3.7 This is the stable death histogram output of the second phase produced

from cellular automata. 26

4.1 The outer edges of the histogram do not fluctuate to zero indicating

that not all of the rules are visible. 28

4.2 The outer edges of the histogram do not fluctuate to zero indicating

that not all of the rules are visible. 29

ix

4.3 The outer left edge of the histogram do fluctuate to zero indicating

that all of the rules are visible. 29

4.4 The outer right edge of the histogram do fluctuate to zero indicating

that all of the rules are visible. 30

4.5 The output of the picture taken in 1999 of the cave wall shows the

initial starting state. 30

4.6 The output of the picture taken in 2003 of the cave wall shows the

resulting growth pattern that produced high ranges contributing to

life and death due to the extended length of time in which the picture

was taken. 31

4.7 This is the stable death histogram output of the third phase produced

from the 1999 picture. 31

4.8 This is the stable death histogram output of the third phase produced

from the 2003 Picture. 32

x

1. INTRODUCTION

1.1 Background

Conway’s cellular automaton, “Game of Life”, is a simple comparison to the concept

of growth within microbial communities. The cell occupancy in the “Game of Life” is

determined by specified conditions known as the rules. The behavior of the cellular

automaton is specified in terms of each cell’s local relation to its surrounding neigh-

bors. The conditions determining the rules of the “Game of Live” are as follows. A

live cell can only stay alive if it is surrounded by two or three live neighbors. If the

cell is dead and is surrounded by three live neighbors, then it becomes alive. And

lastly, a live cell will die if it has fewer than two or greater than three live neighbors

[7].

Just as the “Game of Life” has rules that act as conditions for the reaction of the

individual cells within the grid, so does cellular automata that resemble microbial

communities. Although the conditions may vary, the concept is still the same [9].

A live cell will die due to under-population if it has less than a specified number of

neighbors or die due to overcrowding if it has more than another specified number

of neighbors. For example, a garden of plants most likely wouldn’t die if they were

provided with enough water which would result in what is known as stabilization.

But as the plant colony grows and the water resources become fewer, some of the

1

garden will die due to overcrowding. If the remaining plants left in the garden are

too few to absorb water and reproduce, they would die due to under-population.

The conditional rules of cellular automata, that resemble the microbial communities,

represent the essential elements of its natural environment.

1.2 Statement of the Problem

Currently, a good guess of the number range can be made through expert analysis.

Years of experience is needed to best determine the value range within a cellular

automaton. A process that allows an approximation of the number ranges within a

cellular automaton utilizing image processing or pattern association would provide a

more practical method. My thesis provides a form of image processing as program

output that will enable an attempt to approximate the number range of cellular

automata and the radius of effect. This is a more practical method than the current

method of expert analysis.

1.3 Purpose

Extreme environments that were thought to be void of life due to the presence of

hostile elements have proven otherwise. After much exploration, it has become ap-

parent that life forms can and do exist in environments that would be detrimental

to most living species [2]. The methodological process of learning about microbial

communities lies within the scientific objective to learn about life in space or in areas

of our planet heavily affected by climate change. Cellular automata have been the

focus of much of the scientific study in the quest to understand microbial communities

2

[4]. Currently, there is a need for a method that extracts the cellular automata rules

which simulate the growth patterns of microbial communities found within extreme

environments [5]. The purpose of this study is to provide a visual representation as

program output so that the rules and the radius of effect can be estimated.

1.3.1 Significance

The significance of this project is that it provides a method that derives an approx-

imation of the underlying values of the rules and the radius of effect within cellular

automata of a reasonable size through visual identification utilizing image process-

ing. Previously the number ranges of the underlying rules were identifiable withih

the program code and not visibly identifiable through image processing. The meth-

ods provided promote the understanding of the underlying rules and allow for visual

identification aiding in the process of better understanding microbial communities

[4]. The ability to identify an approximation of the number range will also aid in the

process of associating rules of cellular automata with microbial communities of similar

growth patterns. The method overall provides a new understanding of how to visibly

approximate the number ranges involved within the cellular automata simulations.

1.3.2 Contributions

The sample cellular automata simulations that I used were created by Dr. Keith

Schubert and are general to any biological system and appear to resemble bio-patterns

related to microbial communities. Each simulation incorporates varying amounts of

environmental elements and random instances of life and death resulting in similar

3

patterns of those found in microbial communities. The random instances of life and

death are considered to be the white noise and can range from interference that is

natural in nature, caused by human interference or simply a random occurrence. In

addition to the white noise, there are values incorporated into the code that represent

the conditions of how each individual cell should react in relation to its neighbors.

The final results of the simulations are contributed to these values assigned to enforce

growth, stabilization, and death. Each program was created utilizing SciLab and was

designed to run on a time series of twenty iterations, which is a considerable amount

to produce a reasonable size cellular automaton. The values are visible within the

code and indicate what surrounding conditions of each cell will cause it to live, die or

remain stable. My project output uniquely aims to expose the internal value ranges

of dynamic simulations. It contributes to ongoing studies by providing a means of

identifying an approximation of the values of a cellular automaton of reasonable size

through image processing utilizing histogram analysis.

I produced a method to derive an approximation of the number ranges from a

cellular automaton. I produced several programs that provide histogram analysis

as the program output in hopes to encourage future research that would eventually

associate the value ranges with patterns produced by cellular automata or microbial

communities. The process consisted of creating four programs utilizing SciLab, three

of which Dr. Schubert’s simulations were run on. The programs utilities extract the

values based on specified radii of each simulation for image processing. The results

of the image processing enables histogram analysis so an attempt can be made to

determine an approximation of the rule sets and the radius of effect. Now that an

4

appropriate approximation of the rules and the radius of effect can be identified to

support current and ongoing research, I encourage future studies to be conducted to

associate the rules with patterns.

1.4 Theoretical Bases and Organization

I expect that my thesis will assist with active research collaborated with universities

and government labs. Jane Curnutt, a student of California State University, has been

an active participant in the subject matter of learning about microbial communities.

Her presentation titled “Patterned Growth in Extreme Environments” was held in

Pasadena, CA. for the Third IEEE International Conference on Space Mission Chal-

lenges for Information Technology. She concluded her presentation by stating that

it would be useful for biologists if a method could be developed that would enable

the underlying rules of cellular automata to be recognized within the growth patterns

found in photographs of microbial communities [5]. My thesis project is the start

of an area of research which aims to associate the rules to growth patterns found

in microbial communities by first attempting to approximate them through image

processing.

The programs I developed produce output which enables a visual approximation

of the rules within cellular automata to be determined. Each were developed to

account for every cell within a cellular automaton and extract the values based on

specified radii for image processing. The output of each program allows for histogram

analysis in an attempt to determine if the number ranges or the radius of effect

can be approximated. The program provides a visual representation of the data,

5

so that an attempt of approximating the number range of cellular automata can be

performed resulting in a new method of approximation over the current method of

expert recognition which requires years of experience.

I expect that my thesis will benefit others in the current process of understand-

ing microbial communities within extreme environments. The project is expected to

promote the understanding of the underlying rules and promote the continued re-

search of visual identification through a means of image processing. It is likely that

the underlying values of the rules may be approximated through visual identification

of patterns within microbial communities now that methods are available that ap-

proximate the rules in reference to patterns found within cellular automata. Overall,

the project will aid in the current study of understanding microbial communities by

allowing for a better understanding of the underlying rules.

1.4.1 Findings

The findings of this thesis are as follows:

∙ Cellular automata are credited for the benefit of being discrete [9], which en-

ables the simulation of discrete-time signals representing the time intervals of

the changing of growth that occurs within microbial communities. This is ex-

plained in section 2.1.

∙ The images of microbial communities can be converted into matrix format en-

abling image processing for analysis. Images were prepared using the Scilab

Image Processing tool. In the third phase, which involved using images to es-

timate the rules, I discovered that the images would have to be prepared for

6

the program. This consisted of analytically determining what points in the pho-

tograph would be used as reference points for clipping the picture to provide

consistency and eliminate unnecessary imagery. In addition, the size was deter-

mined based on the size of the radius used for calculations. A size was chosen

that would enable the radius to be evenly distributed to prevent inconsistent

calculations. This is explained in sections 3.2 and 3.5.

∙ Several algorithms served as a form of treatment and were needed for the success

of the program. In particular, each of the four programs needed an algorithm

that would perform calculations that would iterate through a matrix based on a

specified radius or radii. The programs developed within the second and third

phase needed an algorithm that would store all cell state values and summa-

tions. This algorithm would also have to strategically compare the cell states

and restore specific summed values. This is explained in sections 3, 3.2, 3.3, 3.4,

and 3.6.

∙ Segmentation image processing was needed in the second and third phase of the

project. This was accomplished by developing algorithms to perform the neces-

sary calculations within the program. The pixel values were not large enough to

produce ones and zeros within the segmentation algorithm of the third phase.

Modifications were made to the algorithm so that the largest pixel value was iden-

tified and used as a multiplication factor within the calculations so that when

the summed values were rounded a matrix of ones and zeros was produced. This

is explained in sections 3, 3.2, 3.3, 3.4, and 3.6.

∙ Histogram-based image processing was needed as output for all of the programs.

7

This enabled a visual analysis of the data to be analyzed. This is explained in

sections 1.3.2, 3.3, 3.5, 3.6, 4.1.

∙ The first phase of the project produced results that would identify the radius of

effect. This is explained in sections 4, 4.1, 4.2, 5.

∙ The second phase of the project produced results that would identify an estima-

tion of the rules from cellular automata. This is explained in sections 4, 4.1, 4.2,

5.

∙ The Third phase of the project produced results that would identify an estima-

tion of the rules from pictures of a microbial community. This is explained in

sections 4, 4.1, 4.2, 5.

1.4.2 A Limitations of the Study

Observing the life of a live microbial community over any period of time through-

out its life cycle was a limitation of the study. There was nothing at my disposal

that would provide a consistent record of the growth of a microbial community for

analysis. Several methods were utilized to overcome this limitation. First, a Cellu-

lar Automaton was used to represent microbial communities. Cellular Automata are

known to generate patterns that are similar to those generated by microbial commu-

nities. Second, iterations of a Cellular Automaton that changed cell state based on

specified rules were used in the first and second program to represent the possible

growth of a microbial community over time. This method simulates what would be

expected of the growth of a microbial community and allows for consistent monitoring

throughout its growth over time which is a specified period of twenty iterations. The

8

same limitation occurred when the project progressed into analyzing pictures using

the fourth program developed. There was nothing at my disposal that would provide

a consistent record of the growth of a microbial community for analysis. To overcome

this limitation, two pictures of a cave wall were used to represent two periods in time

that were taken over a four year period.

9

2. LITERATURE REVIEW

2.1 Background

The 1940s brought about the invention and introduction of cellular automata. The

invention of the discrete dynamic system known as cellular automaton is attributed to

mathematician Staislaw Marcin Ulam [8]. Using a modeled lattice network, he applied

a mathematical abstraction to study the growth of crystals [6]. Cellular automata

were introduced by John Von Newman as he used it to work on self-reproducing

automata [8]. Ulam suggested to Newman that he use a mathematical abstraction

when it became evident that he was having difficulty designing a self-replicating robot.

This resulted in the first cellular automaton system [6]. Mathematician John Conway

popularized cellular automaton with his development of the “Game of Life” in 1970

[8]. It soon became evident that cellular automata were simple models that were

useful in the study of biological processes [6].

Pattern growth is visually evident amongst the different types of microbial commu-

nities and even microscopic biology, such as grasses in Negev and Australia and tree

clumping at the edge of forests in dry areas. The environmental elements available

to the microbial communities are a significant factor of its ability to grow and are

considered to be the determining rules associated with their unique growth patterns.

The level of accessibility of a particular environmental element within the microbial

10

community determines whether the microbial community or a subset of it experi-

ences growth, die-out, or stabilization. The differing elemental accessibility factors

contribute to sub-communities reacting differently within each microbial community

resulting in unique growth patterns.

My thesis topic is at the center of an active research collaborated with other

universities and government labs. Dr. Keith Schubert, a Computer Science professor

of California State University of San Bernardino, has encouraged fellow professors

and students to take an active interest in the study of cellular automata. He has

developed cellular automata in an effort to better understand how the underlying

rules influence the structure of microbial communities. His simulations incorporate

values representing varying amounts of environmental elements and random instances

of life and death through time series. The results of his simulations produce patterns

similar to those found in microbial communities [4].

Another collaborator, Dr. Penelope Boston is a microbiologist who studies mi-

crobial life within extreme environments. Her explorations of extreme environments

have provided evidence that microbial organisms are capable of thriving in unlikely

places here on earth. Bacterial strings called Snotties and other microbial life forms

have been discovered through her explorations [2]. Dr. Penelope Boston is also one

of the coauthors of the case for mars [2] and is actively involved in the search for

extraterrestrial life [1]. The search for life in Extreme Environments here on earth

is gained experience preparing scientists for future searches of life on extraterrestrial

bodies when the opportunities should arise [2].

11

2.2 Similarities

My thesis is similar to Dr. Schubert’s and Dr. Boston’s approaches to the study of

microbial communities because it incorporates the importance of using both cellular

automata and onsite samples within the study to be used as a comparison. Cellular

automata were used to attempt an estimation of the rules. Test site field sample

images were used as the advancement of the project progressed into estimating rules

based on the actual microbial images in which the cellular automata resembled.

2.3 Differences

Individually, Dr. Schubert’s and Dr. Boston’s approach to the study of microbial

communities are equally important. The obvious difference was that my project

combined both approaches to the study of microbial communities. It was evident

through the progression of my thesis project that both methods would be of similar

use to develop a confirmation of my thesis findings. In addition, Dr. Schubert studied

the rules based on a static image, whereas I studied the rules based on a dynamic

image.

12

3. METHODOLOGY

This study resulted in four separate programs, each of which played an important

part of the project as it progressed into three different phases. The first phase of the

project consisted of developing the first program to test the accuracy of the algorithm

that was used to iteratively calculate through a matrix of known values. Once the

accuracy was determined to be correct, the algorithm was used to run through series

of a cellular automaton, which resulted in the second program. The second Phase

of the project consisted of developing a third program using a similar algorithm in

which the estimated output values were tested against the estimated output values

of another program developed by Dr. Schubert. An additional algorithm was used

to store the calculated values bases on a comparison of the cell states. The third

phase of the project consisted of developing a fourth program that would analyze the

estimated output values of actual images of a microbial community.

3.1 Samples

The program samples used were two cellular automata programs that were developed

by Dr. Keith Schubert. The first of the Cellular Automata, KeithGrowthSimulator[1],

was chosen for the second program because the output resembled maize like patterns

that are formed by microbial communities, such as desert soil crusts [4]. The cellular

13

Fig. 3.1: These are the cellular automaton samples that were provided by Dr. Keith Schubert. [3] P. Boston,

J. Curnutt, E. Gomez, and B. Strader. To live and die in ca. Retrieved August 20, 2010.

automaton, ExtremeEnvironmentPlantGrowthSimulator[1], was chosen for the third

program because it was used by Dr. Keith Schubert to produce estimated values

based on a static image. His output was compared to output produced by a program

I developed that estimated values based on a dynamic image. The cellular automata

output are shown on page 14.

In addition to the cellular automata, two picture samples were used to identify

rules. They were taken of a cave wall, in the Cueva De Villa Luz cave near Tabasco,

Mexico, in which microbial life was removed and then later observed. They were

made available by geologist Louise Hose and are a result of a re-growth experiment

which she conducted. The pictures of the cave wall are shown on page 15.

3.2 Treatment

There are two treatments in particular that were needed for preparation. The first

treatment that took place involved installing additional software that would be needed

to complete the project. This consisted of downloading Scilab 4.1.2, and the Scilab

SIP Toolbox. The second treatment involved preparing the images to be inserted into

14

Fig. 3.2: This is the picture of the Cueva de Villa Luz cave regrowth experiment taken in 1999. [3] P. Boston,

J. Curnutt, E. Gomez, and B. Strader. To live and die in ca. Retrieved August 20, 2010.

Fig. 3.3: This is the picture of the Cueva de Villa Luz cave regrowth experiment taken in 2003. [3] P. Boston,

J. Curnutt, E. Gomez, and B. Strader. To live and die in ca. Retrieved August 20, 2010.

15

the program developed during the third phase of the project. Each image was clipped

and made to be the same size using the Microsoft Paint program. Additionally,

each image was converted into a matrix using the Scilab SIP Toolbox. Any other

treatments used throughout the project would be in the form of developing algorithms

to be used within the programs.

3.3 Identifying the Radius of Effect

The first phase of the project consisted of developing a program in an effort to identify

the radius of effect. The first program was developed to test the accuracy of the

calculations that would be used on specific areas of interest within a matrix. The

algorithms developed strategically iterate through the cells of a predefined matrix

while calculating, storing and comparing the values of radii one, two, and three. A

predefined matrix was used so that the accuracy of the calculations could be verified

using the program output. The algorithms are designed to start at the center cell

of each radius and iterate across each row until the last center cell of the radius is

reached within the matrix. It is important to start and end at the center of the

cell within the radius so that the entire radius is accounted for. Otherwise, it would

extend outside of the matrix boundary and an estimation of the cell values exceeding

the boundary would have to be made. This option was not considered because it

would have reduced the accuracy of the program output.

As each center cell of the radii are accessed, the values within the entire radius are

summed and stored within the index of a vector that matches the number summed.

For example, a radius of one would have values stored within each cell of either one

16

or zero. This meant that it contained a total of nine cells and at the most could sum

to the value of nine if each cell contained the value of one. If the total sum was nine,

the index of nine within a vector would have a one added to it indicating that one

value of nine was found. The algorithm would run for each radii specified within the

program and for every series specified within the cellular Automaton. Each series

represents a change in time where the rules determine the state of each cell based

on the current state of the surrounding neighbor cells within the radius. In addition,

the output was designed to be in the form of histograms so that visually identify the

radius of effect could be attempted.

Because a matrix of predefined cell states was used, thorough testing for calculation

accuracy was possible. Each cell value within the radius that iterated through the

matrix was displayed as output. This output was then compared to a printout of the

matrix being used to determine that each radius within the matrix was accounted for.

A summed value for each radius was also displayed in the output and was compared

to a manual count performed using the printed matrix to insure the summations were

correct within the program. Histograms were also included in the program output

so that a visual identification of the radius of effect could be attempted. Lastly, the

total count of each particular summed value was determined from the hard copy of

the matrix and compared to total values indexed within the program vector, which

was also displayed in the program output. These values were also visually evident in

the sequence of the histograms. The code is shown in A.1, starting on page 37.

Once thorough testing was completed, verifying the accuracy of the program calcu-

lations, the program was turned into a function and called at every time series within

17

Dr. Schubert’s growth simulator cellular automaton program. This resulted in a

second program in which the calculations were performed using a cellular automaton

rather than a predefined matrix. The calculations were performed on a total of twenty

matrices because there was a time series of twenty specified within the program. The

goal was to generate histograms as output for each radius in each series that would

provide information about each radius of effect that could be interpreted by others

who may not be familiar with reading and understanding Scilab code. The algorithm

containing the conditions that would call the function with the cellular automaton

named KeithgrowthSimulator[1] is shown in A.2, starting on page 76.

3.4 Identifying the Rules of Cellular Automata

The second phase of the program was inspired by an estimation of the rules contribut-

ing to growth, die-out and stabilization within the cellular automaton. The estimated

rules were identified by Dr. Keith Schubert of California State University using a pro-

gram in which he developed named ExtremeEnvironmentPlantGrowthSimulation[1].

His program was designed to provide the estimations based on a cellular automaton

simulating iterations that would represent a static image. I developed algorithms that

were inserted into Dr. Schubert’s cellular automaton that would represent a dynamic

image. The algorithms were developed to process calculations and analyze each series

with the cellular automaton. Each series represents a phase of growth over time of a

microbial community. Analyzing iterations, each as a series of time within the cellular

automaton simulation, enabled me to study the results dynamically.

Similar to the first program, the value resulting from the sum of the radius is

18

indexed into a new matrix. But unlike the others, it is indexed into separate sequenced

indices and not accumulatively assigned to the index matching the summed value.

This method allows the cell states of two separate matrices to be compared. It also

enabled me to compare any two consecutive series of twenty series specified within the

program. Although the summed values of the radius of both series are indexed to be

referenced, it is the sum of the first series that determines the rule depending on the

state of the following series. The actual content of the cell, one or zero, was also noted

and indexed sequentially within a vector. A cell state of zero could represent death

or stability and a cell state of one could represent life or stability. The comparison of

these two values between the first and second series determines whether the state of

the cell resulted in life, death or stability. For example, if the state of a particular cell

in the first series was zero and then one in the next series, this would determine that

the total sum of the radius within the first series would be a rule for life or stability.

The values, known as rules, contributing to whether the cell state resulted in

life, death, or stability is written in the cellular automaton code. The overall goal

was to generate output that would provide an estimation of the rules that could be

interpreted by others that may not be familiar with reading and understanding Scilab

code. This program was used to identify whether the estimated rules of a Cellular

Automaton representing a static image would be the same or different from a Cellular

Automaton representing dynamic series of time. The results were compared to Dr.

Schubert’s to determine whether there would be a difference between the two or

whether the results would prove to be the same. The code is shown in A.3, starting

on page 80. The successful completion of this program and analysis lead me to the

19

next phase of the project in which I determined whether an estimation of the rules

can be identified from pictures.

3.5 Identifying the Rules from Pictures

After researching the approximations of the rules within Cellular Automata, I devel-

oped a fourth program in an attempt to approximate the rules using pictures. The

pictures that were used for this portion of the project were provided by Penny Boston

and are of a re-growth experiment that was performed by Louise Hose. Louise Hose

has a PH. D. in geology and has actively studied the caves of Mexico for many years.

The first picture was taken in April of 1999 and consisted of two portions of a wall,

within Cueva De Villa Luz cave near Tabasco, Mexico, that was scraped so that the

microbial life was removed. The second picture used was taken at the same test site

in September of 2003 and reveals a pattern of microbial life that developed over the

years from the areas in which it was first scraped. The pictures are shown on page

15.

The pictures consisted of additional aspects of the cave that were not needed for

the project. Microsoft Windows Paint program was used to clip and resize the areas

of interest from the pictures. To ensure that picture regions were proportionally equal

when clipped, specific features of the cave wall were identified and used as a reference

for the top most left corner and bottom most right corner of the clip process. Each

picture was resized to ensure that the length and width of the pixels in each were

consistent.

When determining the size of the pixels, I considered that I would be using a radius

20

of one which would be an area containing three rows and three columns. I chose a

size of 106 in width and 103 in height for each. This would ensure that the radius

of one would distribute evenly from left to right and top to bottom as the iterative

calculation is performed. Sizing the image so that the radius would distribute evenly

throughout the program was a method used to ensure that the calculations were

correct.

Each picture was converted into a matrix using the Scilab Image Processing (SIP)

tool. In order for the images to be recognized by the tool throughout the conversion

process, the images had to be stored in a specific path within the “Scilab 4.2.1” folder

which was created with the install of Scilab. The specific path is Scilab 4.2.1/con-

trib/siptoolbox/images. After storing the images accordingly, the SIP toolbox was

compiled within Scilab and the command, imread, was used within the Scilab com-

mand prompt to convert the images. Converting the pictures into matrix form pro-

vided a format that enabled my program to run calculations on the images for the

purpose of image processing.

After converting the pictures into matrix format, they were ready to be called by

the program so that the image processing could be performed. The last program that

I developed reads the pixel values and performs image processing. Each process of

segmentation image processing used in this phase of the project plays an important

role as the final output for analysis is reached. The two forms of image processing

that were incorporated into the program are thresholding and histogram-based.

Thresholding is used to create a new matrix containing binary values of one’s or

zeros after the program reads in each image. Thresholding is done by utilizing an

21

algorithm that sums the area of a radius, divides it by the maximum cell value found

times the radius squared, and rounds the resulting value. The greatest cell value was

found to be 0.5411765, which initially produced of matrix of all zeros when rounded.

Incorporating the method of multiplying the max cell value into the thresholding

algorithum provided values of ones and zeros when rounded. So that one represented

live and zero represented death, the resulting values had to be inverted within the

program.

The new matrices were sorted and compared, using the algorithms, so that histogram-

based segmentation could be developed as output for analysis. After the thresholding

was performed, the comparisons were performed using the earliest image taken in

April of 1999 as the first series to represent time within the program and the latest

image taken in September of 2003 as the second series to represent time. The algo-

rithm compares each cell value of the first series to the same cell value of the second

series and determines if the value contributes to life, death or stabilization. As pre-

viously mentioned, it is the calculated value within the first series that is of interest

and that is stored into a vector that will be used to produce the final histogram. For

example, if the cell in the first series is zero and the same cell position in the second

series is one, then the summed total of the specified radius within the first series is

summed and stored in a vector that is developed to hold all values that are shown to

be a rule contributing to life. This examples summed radius value of the first series

is determined to contribute to live because the initial cell state of the first series was

zero which represents no life and the following cell state of the second series was one

which represents life. The four final histograms produced as output separately store

22

accumulated values that relate to growth, death, and stabilization for analysis.

3.6 Data Analysis Procedures

A visual analysis of simulated histograms were used to analyze the output of the

first phase of the project. The program itself did not produce a simulation of the

histograms. The output provided four histograms that were labeled life, death, stable-

life, and stable-death for each series that was specified within the program. The

summed values were stored in a histogram labeled life if the cell state in the first

series was zero and the cell state in the second series was one. The summed values

were stored in a histogram labeled death if the cell state in the first series was one

and the cell state in the second series was zero. The summed values were stored in

a histogram labeled stable-life if the cell state in the first series was one and the cell

state in the second series was one. The summed values were stored in a histogram

labeled stable-death if the cell state in the first series was zero and the cell state in the

second series was zero. This was performed on each of the twenty iterative time series

specified and resulted in a total of eighty histograms. These were then categorized by

the title of the histogram and placed within Microsoft Power-point to simulate from

the first to last as they were produced by the program for a simulated visual analysis.

Normalization was used to analyze the output of the second and third phase of the

project. Similar to the first phase of the project, the output provided histograms that

were labeled life, death, stable-life, and stable-death. The difference would be that

the code used in the second and third phase produced four histogram rather than

a histogram for each time series. The summed values of the first series were stored

23

accumulatively in an index that matched the summed value of a histogram labeled

life if the cell state in the first series was zero and the cell state in the second series

was one. The summed values of the first series were stored accumulatively in an index

that matched the summed value of a histogram labeled death if the cell state in the

first series was one and the cell state in the second series was zero. The summed values

of the first series were stored accumulatively in an index that matched the summed

value of a histogram labeled stable-life if the cell state in the first series was one and

the cell state in the second series was one. The summed values of the first series were

stored accumulatively in an index that matched the summed value of a histogram

labeled stable-death if the cell state in the first series was zero and the cell state in

the second series was zero. The normalization process was manually performed as

each visible value range was noted and compared from the four resulting histograms.

The values that were found in more than one histogram were eliminated according to

the histograms being compared. Specifically, the histograms labeled die and stable-

die were compared. If a particular value was found to be in both histograms, the

value was eliminated from the stable-die. Similarly, the histograms labeled life and

stable-life were compared. If a particular value was found to be in both histograms,

the value was eliminated from the stable-life. The remaining values are the estimated

value ranges representing the rules that contribute to life, death or stability. The

output results for the second phase can be seen on pages 25-26. The output results

for the third phase can be seen on pages 31-32.

24

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0.00

0.05

0.10

0.15

0.20

0.25

Fig. 3.4: This is the life histogram output of the second phase that was produced from cellular automata.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fig. 3.5: This is the death histogram output of the second phase that was produced from cellular automata.

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 3.6: This is the stable life histogram output of the second phase produced from cellular automata.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 3.7: This is the stable death histogram output of the second phase produced from cellular automata.

26

4. RESULTS AND DISCUSSION

The results in each phase of the project were analyzed as a consequence of the pro-

grams. The two things that were kept in mind throughout the analysis process were

that I was attempting to visually identify the radius of effect and an estimation of

the rules. All three phases produced results that, combined, provide a small addition

to the infinite process of learning about how environmental factors affect microbial

communities.

4.1 Presentation of the Findings

The first phase of the project produced a visual representation of the radius of effect

that was specified within the cellular automaton that was used. A visual analysis

of the simulated histograms used to analyze the output revealed that in some of

the histograms, the columns nearest to the left most and right most portions of the

histogram did not fluctuate enough or in some cases at all to the bottom of the

histogram. This would indicate that the histograms were not fully revealing the

rules and that the radius used was not the radius specified within the program. One

particular simulation that held the results of the calculations, using a radius of three,

showed that all of the columns nearest to the left most and right most portions of

the histogram did fluctuate all the way to the bottom. This visual representation in

27

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fig. 4.1: The outer edges of the histogram do not fluctuate to zero indicating that not all of the rules are

visible.

particular indicated that all of the rules specified within the program were identified

and visually represented within the program output image analysis. The results can

be viewed on pages 28-30.

The second phase of the project produced a method that can be used to determine

the rules based on the comparison of the value ranges provided through histogram

outputs. A histogram-based analysis was conducted by eliminating shared values

from the stable-die and stable-live histograms. The results of the manual assessment

of the values revealed that there were values specific to each histogram that weren’t

found in the others. The remaining range of values found within the histograms

labeled live and dead are the estimated value ranges representing the rules that result

in each of the cell states. The remaining range of values found in the stable-live and

the stable-death combined are the estimated value ranges representing the rules that

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

200

400

600

800

1000

1200

Fig. 4.2: The outer edges of the histogram do not fluctuate to zero indicating that not all of the rules are

visible.

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
0

100

200

300

400

500

600

700

800

Fig. 4.3: The outer left edge of the histogram do fluctuate to zero indicating that all of the rules are visible.

29

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
0

100

200

300

400

500

600

700

800

Fig. 4.4: The outer right edge of the histogram do fluctuate to zero indicating that all of the rules are visible.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Fig. 4.5: The output of the picture taken in 1999 of the cave wall shows the initial starting state.

30

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Fig. 4.6: The output of the picture taken in 2003 of the cave wall shows the resulting growth pattern that

produced high ranges contributing to life and death due to the extended length of time in which

the picture was taken.

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
0

10

20

30

40

50

60

Fig. 4.7: This is the stable death histogram output of the third phase produced from the 1999 picture.

31

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
0

10

20

30

40

50

60

Fig. 4.8: This is the stable death histogram output of the third phase produced from the 2003 Picture.

result in a cell state of stability.

The third phase of the project reused the method produced in the second phase,

which determined the rules based on a comparison of the value ranges provided

through histogram outputs. From the output, I found that I would not be able

to eliminate the shared values from the stable-die and stable-live histograms because

the life and death histograms shared the same values in the higher ranges that were

summed within the program. After developing several programs that produced the

same results, it became evident that the results were accurate and the time series was

not. There are portions of the cave in which a portion with no life, surround entirely

by life, becomes alive. And, there are portions of the cave in which a portion with

life, surround entirely by life, becomes dead. These pictures can be viewed on pages

30-31. This resulted in life and death values falling into the same higher value range.

The time series should be close enough so that the life and death value ranges can

32

be identified uniquely as either a low or high value range. The pictures used as time

series were taken around four years apart. A smaller time series would have to be

used in order for the rules to be adequately identified. The program output results

can be viewed on pages 31-32.

4.2 Discussion of the Findings

I feel that the thesis findings are an important step in the direction of continuing to

learn more about several aspects pertaining to microbial communities. Identifying

the radius of effect may be the start of understanding the range of an area in which

microbial communities reside. Identifying an approximation of the rules may be

the start of understanding how much and of what type of environmental elements

influence the growth of microbial communities. And as a whole, the methods of

visual identification provided through image analysis may be a valuable resource in

the process of learning to correlate patterns and rules based on visual identification

of microbial communities within their environments as we increase our knowledge of

them and how the environmental elements affect their growth.

33

5. CONCLUSION

I feel that this project could reach its fullest potential if there were more picture sam-

ples used. For example, the cellular automata uses a series of time that incorporates

more than a series of two which enables a study of the growth from the beginning of

the growth, to an end point of the growth, and anywhere in between. The two pic-

tures that were used can only represent the beginning of the growth to an end point,

but nothing in between. In addition to finding that some of the same rules were found

to represent both life and death, there may have been unrecognized rules due to the

portion of time represented by the pictures and within the cellular automata because

a small sample of only two consecutive time series were used. It is likely that not

every rule may have occurred from one series to another that was compared. After

analyzing the program output of the fourth phase I determined that an extended

comparison of the study is needed using more picture samples because the time series

is not a close enough representation of time to produce an accurate estimation of the

rules, which resulted in the same rules contributing to life and death, and because

there also may have been rules that were not identified. More than two pictures would

allow for continued research of estimating the rules using pictures.

I also feel that additional tests using pictures of various time series will aid in

understanding what amount of time should represent a time series within cellular

34

automata. Iterations in cellular automata represents categorized series of time. But

what is or should be the span of time that equals a series within cellular automata?

For example, the pictures that I used were nearly four years apart. Should each series

of growth within cellular automata be based on a day, week, month, year, or years

to respond to the surrounding elements? How much time passed should represent a

series of cellular automata? Studying the differences in time, in which the pictures are

taken, will enable more testing of estimated rules by visually comparing the cellular

automata output of each series to the output produced using the pictures taken. A

variety of picture samples taken at various times will enable the continued study of

estimating rules.

Understanding the spatial properties of microbial communities is of major impor-

tance to the scientific community interested in continuing to learn more. Continued

testing will increase knowledge and potentially, over time and with experience, will

evolve into expert recognition of being able to correlate patterns with rules with an

understanding of which and how much of the surrounding environmental factors have

contributed to the growth. This would be ideal and beneficial for current earth and

future extraterrestrial explorations for new life. My hope is that this project will

inspire others to continue researching using the methods provided and lead to a much

better understanding of life forms in extreme environments.

35

APPENDIX A

MY CODE

36

The First Program was developed to specify a radius of one, two, and three and to

perform calculations on each as it iterates through a matrix of a cellular automaton.

This program was then turned into a function to be used within the second program

developed. The second program consisted of code which calls the function at every

time series of the cellular automata so that the calculations can be performed on

every grid produced. This resulted in the identification of the radius of effect. The

third program resulted in an estimation of the rules of a cellular automaton. The

fourth program resulted in an estimation of the rules based on pictures of a microbial

community.

A.1 First Phase - Part One

A=[1 1 0 1 0 0 1 1 1 ;

1 0 0 0 0 0 1 0 0 ;

1 1 1 0 0 1 0 0 1 ;

1 1 0 1 1 0 0 0 0 ;

1 1 0 1 0 0 1 1 0 ;

0 0 1 0 1 1 0 0 1 ;

1 0 0 0 1 0 0 1 1 ;

1 1 1 1 0 0 0 1 0 ;

0 0 0 1 0 0 0 0 0] ;

’CENTER CALCULATIONS OF 3X3 RADIUS ’

37

q=10;

Rad3Vector=zeros (q , q) ;

Rad3ColStart=1;

Rad3ColEnd=3;

Rad3f=1;

Rad3g=3;

for Rad3col=A(1 : $−2,Rad3ColStart : $−2)

Rad3x=A(1 : 3 , Rad3ColStart : Rad3ColEnd) ;

Rad3ColStart = Rad3ColStart + 1 ;

Rad3ColEnd = Rad3ColEnd + 1 ;

Rad3RowStart=1;

Rad3RowEnd=3;

for Rad3row=A(: , 1 : $−2)

Rad3x=A(Rad3RowStart :Rad3RowEnd , Rad3f : Rad3g)

Rad3b=sum(Rad3x)

i f Rad3b == 0 then

Rad3b = 10 ;

end

38

Rad3RowStart = Rad3RowStart + 1 ;

Rad3RowEnd = Rad3RowEnd + 1 ;

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

end

Rad3f = Rad3f + 1 ;

Rad3g = Rad3g + 1 ;

end

’CORNER CALCULATIONS OF 3X3 RADIUS ’

Rad2x2=A(1 : 2 , 1 : 2)

Rad3b = sum(Rad2x2)

i f Rad3b == 0 then

Rad3b = 10 ;

end

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

Rad2x2=A($−1:$, 1 : 2)

Rad3b=sum(Rad2x2)

i f Rad3b == 0 then

Rad3b = 10 ;

end

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

39

Rad2x2=A(1 : 2 , $−1:$)

Rad3b=sum(Rad2x2)

i f Rad3b == 0 then

Rad3b = 10 ;

end

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

Rad2x2=A($−1:$, $−1:$)

Rad3b=sum(Rad2x2)

i f Rad3b == 0 then

Rad3b = 10 ;

end

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

’TOP EDGE OF 3X3 RADIUS−i n c l ud ing r i g h t edge ’

Radius3ColStart = 1 ;

Radius3ColEnd = 3 ;

Radius3RowStart=1;

Radius3RowEnd=3;

’TOP EDGE OF 3X3 RADIUS ’

40

for Radius3co l=A(2 : $−1,Radius3ColStart : $−2)

Radius3UpperEdge=A(1 : 2 , Radius3ColStart : Radius3ColEnd)

Radius3ColStart = Radius3ColStart + 1 ;

Radius3ColEnd = Radius3ColEnd + 1 ;

Rad3b=sum(Radius3UpperEdge)

i f Rad3b == 0 then

Rad3b = 10 ;

end

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

’RIGHT EDGE OF 3X3 RADIUS∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’

Radius3x=A(Radius3RowStart : Radius3RowEnd , $−1:$)

Radius3RowStart = Radius3RowStart + 1 ;

Radius3RowEnd = Radius3RowEnd + 1 ;

Radius3b=sum(Radius3x)

i f Radius3b == 0 then

Radius3b = 10 ;

end

Rad3Vector (Radius3b)= Rad3Vector (Radius3b)+1;

end

’BOTTOM EDGE OF 3X3 RADIUS −i n c l ud ing l e f t edge ’

41

Radius3ColStart = 1 ;

Radius3ColEnd = 3 ;

Radius3RowStart=1;

Radius3RowEnd=3;

’BOTTOM EDGE OF 3X3 RADIUS ’

for Radius3co l=A(2 : $−1,Radius3ColStart : $−2)

Radius3x=A($−1:$, Radius3ColStart : Radius3ColEnd)

Radius3ColStart = Radius3ColStart + 1 ;

Radius3ColEnd = Radius3ColEnd + 1 ;

Rad3b=sum(Radius3x)

i f Rad3b == 0 then

Rad3b = 10 ;

end

Rad3Vector (Rad3b)= Rad3Vector (Rad3b)+1;

’LEFT EDGE OF 3X3 RADIUS ’

Radius3x=A(Radius3RowStart : Radius3RowEnd , 1 : 2)

Radius3RowStart = Radius3RowStart + 1 ;

Radius3RowEnd = Radius3RowEnd + 1 ;

Radius3b=sum(Radius3x)

i f Radius3b == 0 then

42

Radius3b = 10 ;

end

Rad3Vector (Radius3b)= Rad3Vector (Radius3b)+1;

end

Rad3Vector (: , 1)

subplot (3 , 2 , 1)

bar (Rad3Vector , 7 , ’ Blue ’)

xt i t le (”3X3 Radius”)

’CENTER CALCULATIONS OF 5X5 RADIUS ’

q=26;

Rad5Vector=zeros (q , q) ;

Rad5ColStart=1;

Rad5ColEnd=5;

Rad5f=1;

Rad5g=5;

for Rad5col=A(1 : $−4,Rad5ColStart : $−4)

Rad5x=A(1 : 5 , Rad5ColStart : Rad5ColEnd) ;

43

Rad5ColStart = Rad5ColStart + 1 ;

Rad5ColEnd = Rad5ColEnd + 1 ;

Rad5RowStart=1;

Rad5RowEnd=5;

for Rad5row=A(: , 1 : $−4)

Rad5x=A(Rad5RowStart :Rad5RowEnd , Rad5f : Rad5g)

Rad5b=sum(Rad5x)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5RowStart = Rad5RowStart + 1 ;

Rad5RowEnd = Rad5RowEnd + 1 ;

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

Rad5f = Rad5f + 1 ;

Rad5g = Rad5g + 1 ;

end

’CORNER CALCULATIONS OF 5X5 RADIUS ’

44

Rad3x3=A(1 : 3 , 1 : 3)

Rad5b = sum(Rad3x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x4=A(1 : 3 , 1 : 4)

Rad5b = sum(Rad3x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x3=A(1 : 4 , 1 : 3)

Rad5b = sum(Rad4x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x4=A(1 : 4 , 1 : 4)

Rad5b = sum(Rad4x4)

45

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x3=A($−2:$, 1 : 3)

Rad5b=sum(Rad3x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x4=A($−2:$, 1 : 4)

Rad5b=sum(Rad3x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x3=A($−3:$, 1 : 3)

Rad5b=sum(Rad4x3)

i f Rad5b == 0 then

Rad5b = 26 ;

46

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x4=A($−3:$, 1 : 4)

Rad5b=sum(Rad4x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x3=A(1 : 3 , $−2:$)

Rad5b=sum(Rad3x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x4=A(1 : 3 , $−3:$)

Rad5b=sum(Rad3x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

47

Rad4x3=A(1 : 4 , $−2:$)

Rad5b=sum(Rad4x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x4=A(1 : 4 , $−3:$)

Rad5b=sum(Rad4x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x3=A($−2:$, $−2:$)

Rad5b=sum(Rad3x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad3x4=A($−2:$, $−3:$)

48

Rad5b=sum(Rad3x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x3=A($−3:$, $−2:$)

Rad5b=sum(Rad4x3)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

Rad4x4=A($−3:$, $−3:$)

Rad5b=sum(Rad4x4)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

’TOP OUTER EDGE USING 3X5 RADIUS ’

Radius5ColStart = 1 ;

49

Radius5ColEnd = 5 ;

for Radius5co l=A(3 : $−2,Radius5ColStart : $−4)

Radius5UpperEdge=A(1 : 3 , Radius5ColStart : Radius5ColEnd)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5UpperEdge)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TOP INNER EDGE USING 4X5 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 5 ;

for Radius5co l=A(3 : $−2,Radius5ColStart : $−4)

Radius5UpperEdge=A(1 : 4 , Radius5ColStart : Radius5ColEnd)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5UpperEdge)

50

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’BOTTOM OUTER EDGE USING 3X5 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 5 ;

for Radius5co l=A(3 : $−2,Radius5ColStart : $−4)

Radius5x=A($−2:$, Radius5ColStart : Radius5ColEnd)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’BOTTOM INNER EDGE USING 4X5 RADIUS ’

51

Radius5ColStart = 1 ;

Radius5ColEnd = 5 ;

for Radius5co l=A(3 : $−2,Radius5ColStart : $−4)

Radius5x=A($−3:$, Radius5ColStart : Radius5ColEnd)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR RIGHT OUTER EDGE USING 5x3 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 5 ;

for Radius5co l=A(Radius5ColStart : $−2 ,3:$−2)

Radius5x=A(Radius5ColStart : Radius5ColEnd , $−2:$)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

52

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR RIGHT INNER EDGE USING 5x4 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 5 ;

for Radius5co l=A(Radius5ColStart : $−2 ,3:$−2)

Radius5x=A(Radius5ColStart : Radius5ColEnd , $−3:$)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR LEFT OUTER EDGE USING 5x3 RADIUS ’

Radius5ColStart = 1 ;

53

Radius5ColEnd = 5 ;

for Radius5co l=A(Radius5ColStart : $−2 ,3:$−2)

Radius5x=A(Radius5ColStart : Radius5ColEnd , 1 : 3)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR LEFT INNER EDGE USING 5x4 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 5 ;

for Radius5co l=A(Radius5ColStart : $−2 ,3:$−2)

Radius5x=A(Radius5ColStart : Radius5ColEnd , 1 : 4)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

54

Rad5b = 26 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

Rad5Vector (: , 1)

subplot (3 , 2 , 2)

bar (Rad5Vector , 7 , ’ Green ’)

xt i t le (”5X5 Radius”)

’CENTER CALCULATIONS OF 7X7 RADIUS ’

q=50;

Rad7Vector=zeros (q , q) ;

Rad7ColStart=1;

Rad7ColEnd=7;

Rad7f=1;

Rad7g=7;

for Rad7col=A(1 : $−6,Rad7ColStart : $−6)

Rad7x=A(1 : 7 , Rad7ColStart : Rad7ColEnd) ;

55

Rad7ColStart = Rad7ColStart + 1 ;

Rad7ColEnd = Rad7ColEnd + 1 ;

Rad7RowStart=1;

Rad7RowEnd=7;

for Rad7row=A(: , 1 : $−6)

Rad7x=A(Rad7RowStart :Rad7RowEnd , Rad7f : Rad7g)

Rad7b=sum(Rad7x)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7RowStart = Rad7RowStart + 1 ;

Rad7RowEnd = Rad7RowEnd + 1 ;

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

end

Rad7f = Rad7f + 1 ;

Rad7g = Rad7g + 1 ;

end

’CORNER CALCULATIONS OF 7X7 RADIUS ’

’Top Le f t Corner ’

56

Rad4x4=A(1 : 4 , 1 : 4)

Rad7b = sum(Rad4x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x5=A(1 : 4 , 1 : 5)

Rad7b = sum(Rad4x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x6=A(1 : 4 , 1 : 6)

Rad7b = sum(Rad4x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x4=A(1 : 5 , 1 : 4)

57

Rad7b = sum(Rad5x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x5=A(1 : 5 , 1 : 5)

Rad7b = sum(Rad5x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x6=A(1 : 5 , 1 : 6)

Rad7b = sum(Rad5x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x4=A(1 : 6 , 1 : 4)

Rad7b = sum(Rad6x4)

i f Rad7b == 0 then

58

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x5=A(1 : 6 , 1 : 5)

Rad7b = sum(Rad6x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x6=A(1 : 6 , 1 : 6)

Rad7b = sum(Rad6x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

’Bottom Le f t Corner ’

Rad4x4=A($−3:$, 1 : 4)

Rad7b=sum(Rad4x4)

i f Rad7b == 0 then

59

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x5=A($−3:$, 1 : 5)

Rad7b=sum(Rad4x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x6=A($−3:$, 1 : 6)

Rad7b=sum(Rad4x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x4=A($−4:$, 1 : 4)

Rad7b=sum(Rad5x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

60

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x5=A($−4:$, 1 : 5)

Rad7b=sum(Rad5x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x6=A($−4:$, 1 : 6)

Rad7b=sum(Rad5x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x4=A($−5:$, 1 : 4)

Rad7b=sum(Rad6x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

61

Rad6x5=A($−5:$, 1 : 5)

Rad7b=sum(Rad6x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x6=A($−5:$, 1 : 6)

Rad7b=sum(Rad6x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

’ Right Top Corner ’

Rad4x4=A(1 : 4 , $−3:$)

Rad7b=sum(Rad4x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

62

Rad4x5=A(1 : 4 , $−4:$)

Rad7b=sum(Rad4x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x6=A(1 : 4 , $−5:$)

Rad7b=sum(Rad4x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x4=A(1 : 5 , $−3:$)

Rad7b=sum(Rad5x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x5=A(1 : 5 , $−4:$)

Rad7b=sum(Rad5x5)

63

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x6=A(1 : 5 , $−5:$)

Rad7b=sum(Rad5x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x4=A(1 : 6 , $−3:$)

Rad7b=sum(Rad6x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x5=A(1 : 6 , $−4:$)

Rad7b=sum(Rad6x5)

i f Rad7b == 0 then

Rad7b = 50 ;

64

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x6=A(1 : 6 , $−5:$)

Rad7b=sum(Rad6x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

’ Right Bottom Corner ’

Rad4x4=A($−3:$, $−3:$)

Rad7b=sum(Rad4x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x5=A($−3:$, $−4:$)

Rad7b=sum(Rad4x5)

i f Rad7b == 0 then

65

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad4x6=A($−3:$, $−5:$)

Rad7b=sum(Rad4x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x4=A($−4:$, $−3:$)

Rad7b=sum(Rad5x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x5=A($−4:$, $−4:$)

Rad7b=sum(Rad5x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

66

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad5x6=A($−4:$, $−5:$)

Rad7b=sum(Rad5x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x4=A($−5:$, $−3:$)

Rad7b=sum(Rad6x4)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

Rad6x5=A($−5:$, $−4:$)

Rad7b=sum(Rad6x5)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

67

Rad6x6=A($−5:$, $−5:$)

Rad7b=sum(Rad6x6)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

’TOP OUTER EDGE USING 4x7 RADIUS ’

Radius7ColStart = 1 ;

Radius7ColEnd = 7 ;

for Radius7co l=A(: , Radius7ColStart : $−6)

Radius7UpperEdge=A(1 : 4 , Radius7ColStart : Radius7ColEnd)

Radius7ColStart = Radius7ColStart + 1 ;

Radius7ColEnd = Radius7ColEnd + 1 ;

Rad7b=sum(Radius7UpperEdge)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

end

68

’TOP CENTER EDGE USING 5X7 RADIUS ’

Radius7ColStart = 1 ;

Radius7ColEnd = 7 ;

for Radius7co l=A(: , Radius7ColStart : $−6)

Radius7UpperEdge=A(1 : 5 , Radius7ColStart : Radius7ColEnd)

Radius7ColStart = Radius7ColStart + 1 ;

Radius7ColEnd = Radius7ColEnd + 1 ;

Rad7b=sum(Radius7UpperEdge)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

end

’TOP INNER EDGE USING 6X7 RADIUS ’

Radius7ColStart = 1 ;

Radius7ColEnd = 7 ;

for Radius7co l=A(: , Radius7ColStart : $−6)

Radius7UpperEdge=A(1 : 6 , Radius7ColStart : Radius7ColEnd)

69

Radius7ColStart = Radius7ColStart + 1 ;

Radius7ColEnd = Radius7ColEnd + 1 ;

Rad7b=sum(Radius7UpperEdge)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

end

’BOTTOM OUTER EDGE USING 4X7 RADIUS ’

Radius7ColStart = 1 ;

Radius7ColEnd = 7 ;

for Radius7co l=A(: , Radius7ColStart : $−6)

Radius7x=A($−3:$, Radius7ColStart : Radius7ColEnd)

Radius7ColStart = Radius7ColStart + 1 ;

Radius7ColEnd = Radius7ColEnd + 1 ;

Rad7b=sum(Radius7x)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

70

end

’BOTTOM CENTER EDGE USING 5X7 RADIUS ’

Radius7ColStart = 1 ;

Radius7ColEnd = 7 ;

for Radius7co l=A(: , Radius7ColStart : $−6)

Radius7x=A($−4:$, Radius7ColStart : Radius7ColEnd)

Radius7ColStart = Radius7ColStart + 1 ;

Radius7ColEnd = Radius7ColEnd + 1 ;

Rad7b=sum(Radius7x)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

end

’BOTTOM INNER EDGE USING 6X7 RADIUS ’

Radius7ColStart = 1 ;

Radius7ColEnd = 7 ;

71

for Radius7co l=A(: , Radius7ColStart : $−6)

Radius7x=A($−5:$, Radius7ColStart : Radius7ColEnd)

Radius7ColStart = Radius7ColStart + 1 ;

Radius7ColEnd = Radius7ColEnd + 1 ;

Rad7b=sum(Radius7x)

i f Rad7b == 0 then

Rad7b = 50 ;

end

Rad7Vector (Rad7b)= Rad7Vector (Rad7b)+1;

end

’TEST FOR RIGHT OUTER EDGE USING 7x4 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 7 ;

for Radius5co l=A(Radius5ColStart : $−2 ,4:$−3)

Radius5x=A(Radius5ColStart : Radius5ColEnd , $−3:$)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 50 ;

end

72

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR RIGHT CENTER EDGE USING 7x5 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 7 ;

for Radius5co l=A(Radius5ColStart : $−2 ,4:$−3)

Radius5x=A(Radius5ColStart : Radius5ColEnd , $−4:$)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 50 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR RIGHT INNER EDGE USING 7x6 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 7 ;

for Radius5co l=A(Radius5ColStart : $−2 ,4:$−3)

73

Radius5x=A(Radius5ColStart : Radius5ColEnd , $−5:$)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 50 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR LEFT OUTER EDGE USING 7x4 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 7 ;

for Radius5co l=A(Radius5ColStart : $−2 ,4:$−3)

Radius5x=A(Radius5ColStart : Radius5ColEnd , 1 : 4)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 50 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

74

end

’TEST FOR LEFT CENTER EDGE USING 7x5 RADIU ’

Radius5ColStart = 1 ;

Radius5ColEnd = 7 ;

for Radius5co l=A(Radius5ColStart : $−2 ,4:$−3)

Radius5x=A(Radius5ColStart : Radius5ColEnd , 1 : 5)

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 50 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

’TEST FOR LEFT INNER EDGE USING 7x6 RADIUS ’

Radius5ColStart = 1 ;

Radius5ColEnd = 7 ; //5

for Radius5co l=A(Radius5ColStart : $−2 ,4:$−3)// 3 : $−2

Radius5x=A(Radius5ColStart : Radius5ColEnd , 1 : 6)

75

Radius5ColStart = Radius5ColStart + 1 ;

Radius5ColEnd = Radius5ColEnd + 1 ;

Rad5b=sum(Radius5x)

i f Rad5b == 0 then

Rad5b = 50 ;

end

Rad5Vector (Rad5b)= Rad5Vector (Rad5b)+1;

end

Rad7Vector (: , 1)

// su bp l o t (3 ,2 ,3)

f 3=s c f (3) ;

bar (Rad7Vector , 7 , ’Red ’)

xt i t le (”7X7 Radius”)

A.2 First Phase - Part Two

i f plotBuildupOrGrowth==0 then

s c f ()

Matplot (time−bui ldup) ;

i f t==1 then rad ius1 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==2 then rad ius2 = RadiusCa lcu la t ions (N)

76

s c f ()

e l s e i f t==3 then rad ius3 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==4 then rad ius4 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==5 then rad ius5 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==6 then rad ius6 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==7 then rad ius7 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==8 then rad ius8 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==9 then rad ius9 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==10 then rad ius10 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==11 then rad ius11 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==12 then rad ius12 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==13 then rad ius13 = RadiusCa lcu la t ions (N)

s c f ()

77

e l s e i f t==14 then rad ius14 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==15 then rad ius15 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==16 then rad ius16 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==17 then rad ius17 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==18 then rad ius18 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==19 then rad ius19 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==20 then rad ius20 = RadiusCa lcu la t ions (N)

s c f ()

end

else

s c f ()

Matplot ((MaxN+1)−N) ;

i f t==1 then rad ius1 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==2 then rad ius2 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==3 then rad ius3 = RadiusCa lcu la t ions (N)

78

s c f ()

e l s e i f t==4 then rad ius4 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==5 then rad ius5 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==6 then rad ius6 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==7 then rad ius7 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==8 then rad ius8 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==9 then rad ius9 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==10 then rad ius10 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==11 then rad ius11 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==12 then rad ius12 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==13 then rad ius13 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==14 then rad ius14 = RadiusCa lcu la t ions (N)

s c f ()

79

e l s e i f t==15 then rad ius15 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==16 then rad ius16 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==17 then rad ius17 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==18 then rad ius18 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==19 then rad ius19 = RadiusCa lcu la t ions (N)

s c f ()

e l s e i f t==20 then rad ius20 = RadiusCa lcu la t ions (N)

s c f ()

end

end

end

A = N;

rad iu s = RadiusCa lcu la t ions (N)

A.3 Second Phase

i f plotBuildupOrGrowth>0 then

80

s c f () //Mel i s sa added

Matplot ((MaxN+1)−N(TopData−1:BottomData ,

LeftData−1:RightData)) ;

end

i f t==1 then

i f (min(rows , c o l s)>2∗ f ixedRadius) then

for row=f ixedRadius +1: rows−f ixedRadius ,

for c o l=f ixedRadius +1: co l s−f ixedRadius ,

contents=N(row , c o l) ;

index=sum(N(row−f ixedRadius : row+fixedRadius ,

co l−f ixedRadius : c o l+f ixedRadius))− contents ;

a1 (row , c o l) = contents ;

a2 (row , c o l)= index ;

end ,

end

end

end

i f t==2 then

i f (min(rows , c o l s)>2∗ f ixedRadius) then

for row=f ixedRadius +1: rows−f ixedRadius

for c o l=f ixedRadius +1: co l s−f ixedRadius

contents=N(row , c o l) ;

index=sum(N(row−f ixedRadius : row+fixedRadius ,

81

co l−f ixedRadius : c o l+f ixedRadius))− contents ; ///

b1 (row , c o l) = contents ;

b2 (row , c o l) = index ;

end

end

end

end

end

for i =1:prod (s ize (a1))

i f (a1 (i)==0 & b1 (i)==1) then

Live (a2 (i)+1)=Live (a2 (i)+1)+1;

e l s e i f (a1 (i) − b1 (i)>0) then

Die (a2 (i)+1)=Die (a2 (i)+1)+1;

e l s e i f (a1 (i)==1 & b1 (i)==1) then

StableOne (a2 (i)+1)=StableOne (a2 (i)+1)+1;

e l s e i f (a1 (i)==0 & b1 (i)==0) then

StableTwo (a2 (i)+1)=StableTwo (a2 (i)+1)+1;

end

end

s c f ()

bar (Live , 1 , ’Red ’)

82

xt i t le (” L i f e ”)

s c f ()

bar (Die , 1 , ’ Green ’)

xt i t le (”Death”)

s c f ()

bar (StableOne , 1 , ’ Blue ’)

xt i t le (” Stab le − L i f e ”)

s c f ()

bar (StableTwo , 1 , ’ Blue ’)

xt i t le (” Stab le − Death”)

A.4 Third Phase

OverallWidth = 106 ;

Overa l lHe ight = 103 ;

rad iu s = 1 ;

maxColor = max(max(Apr1999)) ;

[rows , c o l s]= s ize (Apr1999) ;

83

for c o l =1: c o l s / rad iu s

for row=1: rows/ rad iu s

ca1 (row , c o l)=round(sum(Apr1999 (row∗ radius−rad iu s

+1:row∗ radius , c o l ∗ radius−rad iu s +1: c o l ∗ rad iu s))

/(maxColor∗ rad iu s ˆ 2)) ;

end

end

maxColor = max(max(Sept2003)) ;

[rows , c o l s]= s ize (Sept2003) ;

for c o l =1: c o l s / rad iu s

for row=1: rows/ rad iu s

ca2 (row , c o l)=round(sum(Sept2003 (row∗ radius−rad iu s

+1:row∗ radius , c o l ∗ radius−rad iu s +1: c o l ∗ rad iu s))

/(maxColor∗ rad iu s ˆ 2)) ;

end

end

[rows , c o l s]= s ize (ca1) ;

r ad iu s =3;

84

Live=zeros ((2∗ rad iu s +1)ˆ2+1 ,1);

Die=zeros ((2∗ rad iu s +1)ˆ2+1 ,1);

StableOne=zeros ((2∗ rad iu s +1)ˆ2+1 ,1);

StableTwo=zeros ((2∗ rad iu s +1)ˆ2+1 ,1);

for c o l=rad iu s +1: co l s−rad iu s

for row=rad iu s +1: rows−rad iu s

bordersum=sum(ca1 (row−rad iu s : row+radius ,

co l−rad iu s : c o l+rad iu s))+1;

i f (ca1 (row , c o l)==0 & ca2 (row , c o l)==1) then

Live (bordersum)=Live (bordersum)+1;

e l s e i f (ca1 (row , c o l) − ca2 (row , c o l)>0) then

Die (bordersum)=Die (bordersum)+1;

e l s e i f (ca1 (row , c o l)==1 & ca2 (row , c o l)==1) then

StableOne (bordersum)=StableOne (bordersum)+1;

e l s e i f (ca1 (row , c o l)==0 & ca2 (row , c o l)==0) then

StableTwo (bordersum)=StableTwo (bordersum)+1;

end

end

end

s c f ()

bar (Live , 1 , ’Red ’)

85

xt i t le (”Live Value Range”)

s c f ()

bar (Die , 1 , ’ Green ’)

xt i t le (”Death Value Range”)

s c f ()

bar (StableOne , 1 , ’ Blue ’)

xt i t le (” Stab le Value Range − Live ”)

s c f ()

bar (StableTwo , 1 , ’ Blue ’)

xt i t le (” Stab le Value Range − Death”)

86

APPENDIX B

SAMPLE CELLULAR AUTOMATA CODE

87

The sample code “Keith Growth Simulator” was used in part two of phase one.

The sample code “Extreme Environment Plant Growth Simulator” was used in phase

two of the thesis project.

B.5 Sample Code for Part 2 of Phase 2

width=100;

he ight =100;

time=100;

MinSame=2;

MaxSame=6;

MinGrow=2;

MaxGrow=3;

MinN=0;

MaxN=2;

RandGrow=0.02;

RandDie=0.12;

WrapTopToBottom=0;

88

TopNutrients=1;

BottomNutrients=0;

WrapLeftToRight=1;

Le f tNut r i en t s =0;

RightNutr ients =0;

InitRow=1;

InitRowLR=2;

InitRowTB=2;

In i tSquare =1;

InitSquareLR=1;

InitSquareTB=3;

plotBuildupOrGrowth=1;

rand (’ uniform ’) ;

rand (’ seed ’ ,getdate (” s ”)) ;

function BorderSum=CalcBorder (N, row , co l , r ad iu s)

89

BorderSum=N(row−1, c o l)+N(row−1, co l−1)+N(row , co l −1)

+N(row+1, co l−1)+N(row+1, c o l)+N(row+1, c o l+1)+

N(row , c o l+1)+N(row−1, c o l +1);

i f radius>1 then

BorderSum=BorderSum+N(row−2, co l−2)+N(row−2, co l−1)+

N(row−2, c o l)+N(row−2, c o l +1);

BorderSum=BorderSum+N(row−2, c o l+2)+N(row−1, c o l+2)+

N(row , c o l+2)+N(row+1, c o l +2);

BorderSum=BorderSum+N(row+2, c o l+2)+N(row+2, c o l+1)+

N(row+2, c o l)+N(row+2, co l −1);

BorderSum=BorderSum+N(row+2, co l−2)+N(row+1, co l−2)+

N(row , co l−2)+N(row−1, co l −2);

end

endfunction

WrapWidth=MaxN;

LeftData=WrapWidth+1;

RightData=width+WrapWidth ;

TopData=WrapWidth+1;

BottomData=he ight+WrapWidth ;

DataRow=LeftData : RightData ;

90

DataCol=TopData : BottomData ;

LeftWrap=1:WrapWidth ;

RightWrap=RightData+1:RightData+WrapWidth ;

TopWrap=1:WrapWidth ;

BottomWrap=BottomData+1:BottomData+WrapWidth ;

LeftDataWrap=LeftData : LeftData+WrapWidth−1;

RightDataWrap=RightData−(WrapWidth−1): RightData ;

TopDataWrap=TopData : TopData+WrapWidth−1;

BottomDataWrap=BottomData−(WrapWidth−1):BottomData ;

OverallWidth=RightData+WrapWidth ;

Overa l lHe ight=BottomData+WrapWidth ;

Ful lCol =1: Overa l lHe ight ;

LeftN=ones (OverallWidth ,WrapWidth) . ∗ Le f tNut r i en t s ;

RightN=ones (OverallWidth ,WrapWidth) . ∗ RightNutr i ents ;

TopN=ones (WrapWidth , he ight) . ∗ TopNutrients ;

BottomN=ones (WrapWidth , he ight) . ∗ BottomNutrients ;

MidLR=width /2+1;

MidTB=he ight /2+1;

91

Le f tS ide=width /4+1;

RightSide=width ∗3/4+1;

TopSide=he ight /4+1;

BottomSide=he ight ∗3/4+1;

LRPosition=[Le f tS ide MidLR RightSide] ;

TBPosition=[TopSide MidTB BottomSide] ;

N=zeros (Overal lHeight , OverallWidth) ;

W=ones (Overal lHeight , OverallWidth) . ∗ 6 ;

i f plotBuildupOrGrowth==0 then

xset (” colormap” ,graycolormap (time+1))

else

xset (” colormap” ,graycolormap (MaxN+1))

end

i f InitRow==1 then

CenterLR=LRPosition (InitRowLR) ;

CenterTB=TBPosition (InitRowTB) ;

for i =−3:3

92

N(CenterTB , CenterLR+i) = 1 ;

end

end

i f In i tSquare==1 then

CenterLR=LRPosition (InitSquareLR) ;

CenterTB=TBPosition (InitSquareTB) ;

for i =−1:1

for j =−1:1

N(CenterTB+j , CenterLR+i)=1;

end

end

end

TempN=N;

bui ldup=N;

for t=1: time

for i=DataCol

for j=DataRow

rad=1;

i f N(i , j)>1 then

rad=2;

93

end

BorderSum=CalcBorder (N, i , j , rad) ;

i f ((BorderSum >=MinGrow) & (BorderSum <=

MaxGrow) ∣ (rand()<RandGrow)) then TempN(i , j)=

TempN(i , j)+1;

e l s e i f ((BorderSum >MaxSame) ∣ (BorderSum < MinSame) ∣

(rand()<RandDie)) then TempN(i , j)=TempN(i , j)−1;

end

i f TempN(i , j)<MinN then TempN(i , j)=MinN ; end

i f TempN(i , j)>MaxN then TempN(i , j)=MaxN; end

end

end

i f WrapTopToBottom>0 then

TempN(TopWrap ,DataRow)=TempN(BottomDataWrap ,DataRow) ;

TempN(BottomWrap ,DataRow)=TempN(TopDataWrap ,DataRow) ;

else

TempN(TopWrap ,DataRow)=TopN;

TempN(BottomWrap ,DataRow)=BottomN ;

end

i f WrapLeftToRight>0 then

TempN(FullCol , LeftWrap)=TempN(FullCol , RightDataWrap) ;

94

TempN(FullCol , RightWrap)=TempN(FullCol , LeftDataWrap) ;

else

TempN(FullCol , LeftWrap)=LeftN ;

TempN(FullCol , RightWrap)=RightN ;

end

N = TempN;

bui ldup=bui ldup+N;

i f plotBuildupOrGrowth==0 then

Matplot (time−bui ldup) ;

else

Matplot ((MaxN+1)−N) ;

end

end

B.6 Sample Code Extreme Environment Plant Growth Simulator

width=100;

he ight =100;

time=20;

f ixedRadius =3;

MinN=0;

95

MaxN=1;

randgrow=0.00;

randdie =0.05;

RangeTest=1;

Grow=[3 4 5 6 7 8] ;

Same=[0 1 2 9 10 11 12 13 1 4] ;

rangeFactor=[1 3 6] ;

MinSame=[1 6 8] ;

MaxSame=[6 22 3 4] ;

MinGrow=[3 6 1 3] ;

MaxGrow=[3 11 3 4] ;

WrapTopToBottom=0;

TopNutrients=MaxN;

BottomNutrients=0;

96

WrapLeftToRight=0;

Le f tNut r i en t s =0;

RightNutr ients =0;

InitRow=1;

InitRowLR=2;

InitRowTB=2;

In i tSquare =1;

InitSquareLR=2;

InitSquareTB=2;

plotBuildupOrGrowth=1;

rand (’ uniform ’) ;

rand (’ seed ’ ,getdate (” s ”)) ;

function [BorderSum]=CalcBorder (N, r , c , r ad iu s)

BorderSum=−N(r , c) ;

for row = r−rad iu s : r+rad iu s

97

for c o l= c−rad iu s : c+rad iu s

BorderSum=BorderSum+N(row , c o l) ;

end

end

endfunction

function [NewN]=GrowSameDie (BorderSum , rad ,MinGrow ,

MaxGrow,MinSame ,MaxSame , randgrow , randdie ,N,MinN,

MaxN, RangeTest ,Grow , Same)

NewN=N;

i f RangeTest==1 then

i f ((BorderSum >= MinGrow(rad))&(BorderSum <=

MaxGrow(rad))&(rand()> randgrow)) then NewN=N+1;

e l s e i f ((BorderSum > MaxSame(rad)) ∣ (BorderSum

< MinSame(rad)) ∣ (rand()< randdie)) then NewN=N−1;

end

else

i f ((or (Grow==BorderSum))&(rand()> randgrow)) then

NewN=N+1;

e l s e i f ((˜ or (Same==BorderSum)) ∣ (rand()< randdie)) then

NewN=N−1;

end

98

end

i f (NewN<MinN) then NewN=MinN ; end

i f (NewN>MaxN) then NewN=MaxN; end

endfunction

WrapWidth=max(MaxN, f ixedRadius) ;

LeftData=WrapWidth+1;

RightData=width+WrapWidth ;

TopData=WrapWidth+1;

BottomData=he ight+WrapWidth ;

DataRow=LeftData : RightData ;

DataCol=TopData : BottomData ;

LeftWrap=1:WrapWidth ;

RightWrap=RightData+1:RightData+WrapWidth ;

TopWrap=1:WrapWidth ;

BottomWrap=BottomData+1:BottomData+WrapWidth ;

LeftDataWrap=LeftData : LeftData+WrapWidth−1;

RightDataWrap=RightData−(WrapWidth−1): RightData ;

TopDataWrap=TopData : TopData+WrapWidth−1;

99

BottomDataWrap=BottomData−(WrapWidth−1):BottomData ;

OverallWidth=RightData+WrapWidth ;

Overa l lHe ight=BottomData+WrapWidth ;

Ful lCol =1: Overa l lHe ight ;

LeftN=ones (OverallWidth ,WrapWidth) . ∗ Le f tNut r i en t s ;

RightN=ones (OverallWidth ,WrapWidth) . ∗ RightNutr i ents ;

TopN=ones (WrapWidth , he ight) . ∗ TopNutrients ;

BottomN=ones (WrapWidth , he ight) . ∗ BottomNutrients ;

MidLR=ce i l (width /2) ;

MidTB=ce i l (he ight / 2) ;

Le f tS ide=ce i l (width /4) ;

RightSide=ce i l (width ∗3/4) ;

TopSide=ce i l (he ight / 4) ;

BottomSide=ce i l (he ight ∗3/4) ;

LRPosition=[Le f tS ide MidLR RightSide] ;

TBPosition=[TopSide MidTB BottomSide] ;

N=zeros (Overal lHeight , OverallWidth) ;

W=ones (Overal lHeight , OverallWidth) . ∗ 6 ;

100

i f (plotBuildupOrGrowth==0)∣(plotBuildupOrGrowth==2) then

BuildupPlot=s c f () ;

Bui ldupPlot . color map=graycolormap (time+1);

end

i f plotBuildupOrGrowth>0 then

GrowPlot=s c f () ;

GrowPlot . color map=graycolormap (MaxN+1);

end

i f InitRow==1 then

CenterLR=LRPosition (InitRowLR) ;

CenterTB=TBPosition (InitRowTB) ;

for i =−8:8

N(CenterTB , CenterLR+i) = MaxN;

N(CenterTB−1,CenterLR+i) = MaxN;

N(CenterTB+1,CenterLR+i) = MaxN;

end

end

i f In i tSquare==1 then

CenterLR=LRPosition (InitSquareLR) ;

CenterTB=TBPosition (InitSquareTB) ;

for i =−4:4

101

for j =−4:4

N(CenterTB+j , CenterLR+i)=MaxN;

end

end

end

TempN=N;

bui ldup=N;

for t=1: time

for i=DataCol

for j=DataRow

i f f ixedRadius>0 then

rad=f ixedRadius ;

else

rad=1;

i f N(i , j)>1 then

rad=N(i , j) ;

end

end

BorderSum=CalcBorder (N, i , j , rad) ;

TempN(i , j)=GrowSameDie (BorderSum , rad ,MinGrow ,

MaxGrow,MinSame ,MaxSame , randgrow , randdie ,

102

TempN(i , j) ,MinN,MaxN, RangeTest ,Grow , Same) ;

end

end

i f WrapTopToBottom>0 then

TempN(TopWrap ,DataRow)=TempN(BottomDataWrap ,DataRow) ;

TempN(BottomWrap ,DataRow)=TempN(TopDataWrap ,DataRow) ;

else

TempN(TopWrap ,DataRow)=TopN;

TempN(BottomWrap ,DataRow)=BottomN ;

end

i f WrapLeftToRight>0 then

TempN(FullCol , LeftWrap)=TempN(FullCol , RightDataWrap) ;

TempN(FullCol , RightWrap)=TempN(FullCol , LeftDataWrap) ;

else

TempN(FullCol , LeftWrap)=LeftN ;

TempN(FullCol , RightWrap)=RightN ;

end

N = TempN;

bui ldup=bui ldup+N;

i f (plotBuildupOrGrowth==0)∣(plotBuildupOrGrowth==2) then

s c f (Bui ldupPlot) ;

103

Matplot (time−bui ldup (TopData : BottomData ,

LeftData : RightData)) ;

end

i f plotBuildupOrGrowth>0 then

s c f (GrowPlot) ;

Matplot ((MaxN+1)−N(TopData−1:BottomData ,

LeftData−1:RightData)) ;

end

end

104

REFERENCES

[1] Earth and environmental science. Internet, New Mexico Tech Web Page, August

1985. Retrieved August 20, 2009.

[2] Life in the extremes: An interview with Dr. Penelope Boston. Internet, Astrobi-

ology, August 2000. Retrieved August 20, 2009.

[3] P. Boston, J. Curnutt, E. Gomez, K. Schubert, and B. Strader. To live and die in

ca. Retrieved August 20, 2010.

[4] P. Boston, J. Curnutt, E. Gomez, K. Schubert, and B. Strader. Patterned growth

in extreme environments. In Proceedings of the Third IEEE International Con-

ference on Space Mission Challenges for Information Technology, pages 221–226.

IEEE Press, July 2009.

[5] P. Boston, J. Curnutt, E. Gomez, K. Schubert, and B. Strader. Patterned growth

in extreme environments. 2009. Presented at the Third IEEE International Con-

ference on Space Mission Challenges for Information Technology.

[6] E.F. Codd. Cellular Automata. Cambridge University Press, 1885.

[7] M. Gardner. The fantastic combinations of John Conway’s new solitaire game of

life. Scientific American, 223:120–123, 1970.

105

[8] M. A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Belknap

Press of Harvard University Press, 2006.

[9] B. P. Strader. Simulating partial differential equations with cellular automata - an

empirical survey. Master’s thesis, California State University of San Bernardino,

2009.

106

