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ABSTRACT

In the search for life on Mars and other extraterrestrial bodies, how do

we recognize life or the remains of ancient life when we find it? We will

need to recognize residual patterns left by life. One approach to recogniz-

ing these kinds of patterns is to look at patterns created and left by life

in extreme environments here on Earth. In this thesis, we investigate the

nature of elementary cellular automata to better understand their relation-

ship of the models they support to the biological organisms that create the

mats and soil crusts found in extreme environments here on earth. A bet-

ter understanding of cellular automata will also make it possible for us to

match the cellular automata more effectively to the biological area being

modeled. This investigation has led us to develop a graphical grammar for

simple cellular automata, using L-systems, a grammar system designed by

a biologist, Aristid Lindenmayer, to describe growth in biological systems.

We also discuss scaling algorithms, and the associated variable dependen-

cies that create them. Future directions for research in both modeling with

cellular automata, and cellular automata theory are discussed.
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1. INTRODUCTION

1.1 Overview

A key aspect of planning a space mission is to set scientific mission objectives with

the ability to adapt them based on observations and mission situations. The search

for extraterrestrial life is a major scientific objective, but the exact nature of that life

and how to confirm it is a major debate. A further problem in the search for life in

space is how to select the areas that we want to investigate more intensively. Photo

surveys, geology, and knowledge of biology here on Earth can target a likely area,

but, unlike the Martian dust devils [29], there is no motion to point out the right

direction from there.

We use life in extreme environments on Earth as analogs for the kinds of life

that we could encounter in space. We propose using these analogs to create a series

of templates which could be used to indicate areas that might be worth deeper in-

vestigation. In resource limited environments, organisms grow in patterns that are

self-enforcing and exhibit hysteresis [1, 26, 57] which can be used to recognize them

and their fossils at a distance. Particularly on Mars, as the environment became less

hospitable, extremophiles similar to Earth’s were likely the last to survive, and should

be the easiest to find. It has recently been suggested that fossilized bacteria may be

identified in the rock varnish on Mars [50, 15]. Among the techniques that have been

1



used to model these patterns are evolutionarily stable strategies in game theory and

differential equations [24, 18, 26, 55, 57].

While good results have been generated using differential equations, they require

tuning of the parameters and experience in mathematical and numerical techniques

to obtain valid results. In previous research [12, 3, 52, 40, 53, 4]we have developed

cellular automata that produce similar predictions to the differential equation models,

while preserving the rapid modeling and hypothesis testing of cellular automata (CA).

Similar models can also be applicable to group animal behavior [11, 20, 25, 31]. Our

method for deriving rules for cellular automata from observed data in organism growth

patterns accounts for soil nutrients, water, root growth patterns, and geology, allowing

scientists to easily examine the effects of modifying conditions without damaging the

environment. We apply this model to identify factors affecting patterning with respect

to growth, die-out, and stabilization in extreme environments. We have compared

the results of our model with better to say biological soil crusts or microbiotic soil

crusts growth in Zzyzx, CA. These models could be used to rapidly check data from

space missions to rate the potential of various locations for the possibility of life or

fossils.

To further refine our modeling, this thesis seeks to investigate the nature of simple

cellular automata. The results from this thesis will allow us to make better informed

decisions when setting up parameters for modeling, and may make it possible, in the

future, to do in situ modeling in locations with limited computer resources, such as

Mars.

2



1.2 Background

In the 1940s, John von Neumann developed the first cellular automata, while working

on the self-replicating systems problem. Von Neumann’s original CAs contained 29

states in each cell. In 1970, John Conway developed his Game of Life, a two dimen-

sional cellular automaton that exhibited aspects of both order and randomness. In

1983, Stephen Wolfram published the first of many papers on cellular automata. His

research into this area of mathematics culminated in 2002 with the publication of his

book, “A New Kind of Science.”

Cellular automata have been used to study growth and patterns in forests, arid

desert environments, predator-prey problems, and sea shells. It has also been used to

study areas as diverse as epidemiology and linguistics. Cellular automata have been

used as the core of computer games as well. In particular the computer game, Sim

City, is driven by a cellular automaton [61].

1.3 Literature Survey

1.3.1 Complexity and Cellular Automata

One class of CAs are called totalistic cellular automata. These include Conway’s

game of life [17]. A totalistic CA is one in which the value of a particular cell in the

next time step is based on the sum of the values of the cells immediately surrounding

the target cell.

Alvy Ray Smith wrote his PhD thesis, Cellular Automata Theory [44], in 1969, at

Stanford University. He wrote a number of papers on cellular automata between 1968

3



and 1993. Many of his papers focused on the application of formal language theory

to cellular automata [47, 49, 45]. In his paper, Two-Dimensional Formal Languages

and Pattern Recognition by Cellular Automata [47], Smith developed a measure of

computing speed for two dimensional CAs based on the increase in the perimeter size

with respect to the number of time steps.

Tommaso Toffoli did his PhD thesis, Cellular Automata Mechanics [56], in 1977,

while part of The Logic of Computers Group, at the University of Michigan at Ann

Arbor, Michigan. His primary areas of interest were reversible CA, and parallel

computing with CA.

There is an entire area of research involving chaos theory, and complexity that

looks into how simple systems can generate complex results (chaos theory) and how

complex systems generate simple outcomes (complexity theory). Self-organization,

self-similarity, fractal theory, emergent behavior and cellular automata are all aspects

of research in these areas. A hallmark of this kind of research is a holistic approach

to problems which exhibit behaviors that are more than the sum of their parts or

very complex systems that deliver profoundly simple results. In this sense, as early

as the 1969, a German physicist, Konrad Zuse proposed, in his book, “Rechnender

Raum”(Calculating Space) [62], that the universe is a cellular automaton. Melanie

Mitchell has written an excellent survey of the sciences of complexity in her book,

“Complexity a Guided Tour” [27]. Mitchell’s book, published in 2009, provides an up-

to-date context for cellular automata within the sciences of complexity theory. Russ

Abbott [2], in his paper, “Emergence Explained”, discusses the area of complexity and

emergence, and proposes that a Turing machine emulator can be implemented on a

4



cellular automata. Martin Nowak [30] uses CAs in what he calls spatial games to study

the struggle between cooperators and defectors in his book, “Evolutionary Dynamics”.

Palash Sakar published an excellent survey of the history of cellular automata [36].

Stephen Wolfram [59] has written a number of papers cellular automata since the

early 1980s. This work culminated in the publication, in 2002, of his magnum opus,

“A New Kind of Science” [60], which is an exhaustive catalog of cellular automata .

In “Keith on Numerical Analysis” [39], Dr. Keith Schubert discusses using the

three point formula to numerically approximate first and second derivatives by taking

the point slope form, y = mx+ b, over the two points f(x) and f(x+h), applying the

same formula to the two points f(x) and f(x−h) and averaging the result to approx-

imate the first derivative of f(x). This can be extended to the numerical estimation

of the second derivative by using the same technique with f ′(x) and f ′(x± h
2
).Brian

Strader in his master’s thesis [51] develops a set of guidelines for choosing parameters

discretizing PDEs. He looks at optimizing these choices to provide stability and con-

vergence. Using the three point formula technique, Strader [51], points out that that

in the resulting approximation, that f(x) depends on the values of two equidistantly

spaced points at f(x±h). He goes on to state that these numerical results point to a

possible link between continuous partial differential equations and discretized cellular

automata.

1.3.2 Biology and Self-Organization

The idea for Lindenmayer systems, or L-systems [33] began in 1968 with Aristid

Lindenmayer, who was the director of the Theoretical Biology Group at the University
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of Utrecht. The original idea was to provide a theoretical framework for studying

plants. Lindenmayer later collaborated with the Computer Graphics Group at the

University of Regina, under the supervision of Przzemyslaw Prusinkiewicz. This

interdisciplinary collaboration lead to the development of a graphical grammar with

roots in both biology and formal language theory. Since its inception, L-systems

has gone on to be used in computer graphics for the nearly photorealistic computer

visualization of plant structures.

A number of papers have been published that model plant growth patterns using

partial differential equations. E. Meron, et al, have studied patchiness in the Negev

Desert, modeling the vegetation patterns as a function of the rainfall gradient in that

area, and proposing a hysteresis loop that is part of the desertification and recovery

cycle [26, 57].

One of the most referenced papers in the area is, Self-organized Patchiness and

Catastrophic Shifts in Ecosystems, by Reitkerk, et al [34]. This article studies the re-

lationship between self-organized patchiness and catastrophic shifts in various ecosys-

tems, using CAs to model the patchiness in an attempt to predict the catastrophic

shifts the behavior of the patchiness both in situ and in the cellular automata model.

P. Hogeweg has used CAs to model ecologies [21]. D. L. Dunkerly has used CAs to

model banded vegetation with uniform rainfall [16]

William Schlesinger and his coauthors discuss the desertification of the Jornada

Experimental Range in southern New Mexico. This was formerly grasslands [38].

They propose the change from grasslands to desert is a change from a homogeneous

environment for grasslands to isolated discrete environments that occur when, for any
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one of a number of reasons, the grasslands become deserts.

In our research with Penelope Boston, Director, Cave and Karst Institute, New

Mexico Tech, [12, 3, 52, 40, 53, 4] we have used CAs to model the patterns of biover-

miculation growth that appear inside caves, and on the structure walls at Palenque.

Boston has authored or coauthored a number of books and articles on plant growth in

caves [5], sulfuric acid caves, [7, 22, 23], and astrobiology [8, 5]. Boston and Michael

Spilde were the first people to identify the correlation between the cellular automata

models our research group was working on in 2006 and 2007, and the biovermicula-

tions that they had identified in sulfuric acid caves in Mexico [6]. New Scientist [15]

reported on a presentation by M.N. Spilde [50] stating that a form of desert varnish

was identified in caves in Snowy River, NM, and speculating that, since the source

of desert varnish here on Earth is bacterial interaction with dust and manganese,

perhaps the first extraterrestrial life that we will identify on Mars will be in the rock

varnish there.

1.4 Contributions

In this research we have discovered high level abstractions to model cellular automata

that may be of use in the resource-constrained computing environments of a Mars

lander. These rules provide us with a better understanding and the insight to be more

effective in choosing the best variables for a particular CA model. In the process, we

have discovered a connection to L-system grammar that opens many new lines of

future research.
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1.5 Document Organization

The rest of this thesis is organized into four major sections, plus a chapter that

includes contributions and future research. The first major section is chapter 2, Initial

Conditions, which contains a brief introduction to CA. It also contains a discussion

of the types of CA we chose to work with, and the decisions that we made regarding

the experimental setup and why those choices were made. There is a discussion

of calculation methods and the advantages and disadvantages to each method. A

survey of examples are shown to demonstrate the different development of different

initial start patterns. Another comparison is made of the same start pattern, with

the same number of time steps at six different radii. There is also a discussion

and examples of an experiment with deliberate perturbation of patterns showing

comparative distortion due to missing values and added values at a calculation radius

equal to 1 (3× 3 Moore neighborhood), and comparing the effect of exactly the same

perturbation at a calculation radius equal to 3 (7× 7 neighborhood). To summarize,

this chapter establishes our experimental perspective on cellular automata and the

associated methodology that we chose.

The next major section is chapter 3, Fractal Cellular Automata, which surveys

growth behavior of elementary CA with the minimal variables of birth = 1, radius =

1, four primal start patterns. Chapter 3 also introduces the effect of the radius of

calculation on the developing pattern. The effect of adding a death value to this set

of variables is observed. The contribution each of these variables makes to fractal

behavior of this very elementary 2-dimensional CA is discussed. Two visual analysis

techniques are introduced. A brief foray is made into the effect of larger (and smaller)
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calculation radii, when birth numbers are held constant. The observation is made that

through out the material presented in chapter 3, the variables have been independent

of each other.

The third major section is chapter 4, On Birth and Rules, that takes the observa-

tions that we made on growth behavior in chapter 3, isolates the variable responsible

for it, and creates a context sensitive graphical grammar for simple CAs by adapting

a grammar, L-systems, designed by Aristid Lindenmayer [33] (a biologist), to describe

the growth behavior of plants.

The final major section is chapter 5, The Effect of Scaling on Developing Patterns,

which uses a family of nearly identical CA patterns to investigate the effect of scaling

start patterns, birth numbers, and calculation radii, together. We demonstrate that

the variables that were previously independent of each other, are now each dependent

on the others.

Finally, chapter 6, Conclusions, contains the sections, Contributions, and Future

Research.

Appendix 6.2 with a full listing of the Scilab code used to do the research for this

thesis.
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2. INITIAL CONDITIONS

2.1 Introduction

What is a cellular automaton? A cellular automaton, is a discrete model that develops

on an infinite grid or an n×n grid (like a piece of graph paper). Each cell (or square on

the graph paper) has 1 or more values stored in it. The cellular automata used in this

thesis have one of two values stored in each square (1 or 0). Each square is examined

in every time step using a set of rules that determine what happens to the square in

the next time step. These rules are based on the sum of the values stored in the eight

squares surrounding the “target” square, (the square being examined). These eight

squares are the target square’s neighborhood. This type of neighborhood is a Moore

neighborhood. (Another neighborhood configuration, a von Neumann neighborhood,

uses only the four squares immediately adjacent to the sides of the the target square,

and has the appearance of a plus sign.) The simplest rules are: something new can

grow in an empty square (be born) if the sum (in the eight squares) = 1 (or some

other single value ≤ 8, the maximum possible sum), and what is in the square will

die (go to zero), if sum > 3 (notice that this value is a range between 3 < sum ≤ 8.

For this example, there are values, 2 and 3, that cause neither birth, nor death. For

sums of the eight surrounding squares with these values, the value currently stored

in the target square stays the same. The new value for square is written to a copy
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Fig. 2.1: Diagonal line with calculation neighborhoods

of the grid. Once the entire grid has been calculated, the copy and the original grid

are swapped and the process begins again on the new grid. This calculation of the

new grid and the subsequent swap of grids ensures that all of the cells in the grid

are updated simultaneously. During the calculation process no cell is aware of the

new state for any other cell. In practice, this is considerably simpler that it sounds.

The key to this is the eight square neighborhood with the target square at the center.

Think of a card with an aperture the size of the neighborhood cut into it. When you

lay the card on the grid, all you can see is the neighborhood. Count the number of

black squares in the aperture, around the target square, and apply the rules. Store

the result in the copy of the grid.

In figure 3.8, the start pattern is shown in green, and the target square is in red.

After we have seen the calculation neighborhood for a target square, that square will

be dark blue in the following frames. The final frame shows the remaining squares that

will grow in the next time step in light blue. The first frame shows a neighborhood

with a target square and one square of the original diagonal line. The sum in this

neighborhood is one. The birth rule for this cellular automaton is birth = 1, that
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is to say, if there is one, and only one square in the neighborhood that is alive (has

a one stored in it), then something can grow in the center or target square in the

current neighborhood in the next time step. In the next frame, the neighborhood is

in a different position, but the sum is the same, so this target square will grow in the

next time step. In the third frame, the two previous target squares are shown in dark

blue, and the neighborhood again has a sum equal to one, and will grow in the next

time step. One more neighborhood and target square are shown in the final frame.

It, too will grow in the next time step. The remaining squares that will grow (with

neighborhoods that we didn’t look at in figure 3.8, are shown in light blue.

Calculation neighborhoods come in different sizes or radii. The one shown in

figure 3.8 has a radius equal to one. (In the rest of the thesis this will be referred to

as radius = 1. This neighborhood is 3×3 squares in size, or 9 squares. A radius = 2

neighborhood is 5× 5 squares in size, or 25 squares. A radius = 3 neighborhood will

be seven squares wide. Most of the neighborhood used in this thesis will fall into one

of those three sizes.

Death rules are applied the same way as the birth rules, by counting up the the

number of occupied squares in the neighborhood and applying the rule. The one

difference is that the number shown in the death rule is a lower bound on the range

for the death value. If the sum in the neighborhood is such that neither the birth

rule nor the death applies, the value in the target square stays the same for the next

time step.

Conway’s Game of Life was one of the earliest broadly available cellular automata.

Its behavior has been exhaustively studied, to the point that there are several catalogs
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of start patterns and their subsequent behavior. Some of these catalogs are available

on the Web [9, 32, 54, 42]. Paul Callahan’s Patterns, Programs, and Links for Con-

way’s Game of Life was originally started in 1995, at Johns Hopkins. Some sites

not only catalog Game of Life patterns and behavior, but also provide (sometimes

exhaustive) lists of links to other Game of Life sites [9, 32]. Conway’s Game of Life

continues to be an active test bed for cellular automata, complexity and emergent

behavior [2]. In the spirit of the exhaustive investigation of seed patterns and their

behavior in Conway’s Game of Life, we have adopted a similar approach.

2.2 Variables

Our initial research focused on finding the driving variables in the cellular automata

models of biological patterns on cave walls and soil crusts. We determined, by ex-

perimentation [3, 4, 12, 40, 52, 53], that replicating biologically generated patterns

could be satisfactorily achieved via cellular automata with just a few variables, three

of which have a rough correspondence to the environmental factors that the life forms

might encounter. The variables selected were:

1. initial pattern - roughly corresponds to the species of life form

2. birth rules - how difficult it is to germinate and grow

3. death rules - how difficult it is to survive

4. the radius over which these rules were applied,

5. the choice of weighted or unweighted calculations.
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This set of 5 variables are used to form a tuple that uniquely identifies the initial

conditions for an experimental run, and categorize the results. Other factors we

looked at are the number of iterations executed, and whether or not the run had

distortions, or randomness. the effects of the basic five factors are discussed in more

detail in the rest of this section.

Weighted calculations had the advantage that the results from various radius cal-

culations with the same birth and death rules could be compared to each other using

the same set of rules for all. The disadvantage to using weighted calculations is that

calculations in the neighborhood are based on weighted averages of the sums within

the neighborhood, not the specific locations of live cells within the neighborhood,

so the results, while interesting for some things, are generic, and not specific to the

particular configuration being examined. Unweighted calculations consider only the

specific experimental configuration currently being used. What do we gain from these

choices? Weighted calculations simplify the rules for larger radius CAs, and provide

an overview of sorts of what is possible with just the right configuration. (They also

provide a smoothing effect on CAs with radius > 1). The unweighted calculations al-

low us to deconstruct the rules that lead to certain behaviors, i.e., to examine changes

in pattern caused by small changes in single variables.

Initially, we chose a variety of initial seed patterns (5) to include: 1. a horizontal

line 7 squares long; 2. a 4x4 hollow square; 3. a corner 4 wide x 4 long; 4. a diagonal

checkerboard 3x3; 5. a 5x5 cross over a 3x3 square (4 rotated corner patterns together)

to use with a weighted calculation. The sixth pattern, consisting of a filled square

with adjustable dimensions was created to provide a a sufficiently saturated pattern
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Fig. 2.2: 6 initial seed patterns: line, hollow 4× 4 square, corner, 3× 3 checkerboard, 7× 7 cross and 3× 3
square at center, 7× 7 filled square

to start CAs with sparse rules. These patterns are shown in figure 2.2.

From a programming standpoint, we chose to use synchronous totalistic CAs,

which are updated all at one time and based on the sum of the values in the squares

around the target square. This decisions influenced the decision we made to use

L-systems for the grammar that we present in chapter, On Birth and Rules. The

examination and calculations for each square in the grid are done one at time and

the updated values are placed on a temporary grid until the entire original grid is

completed. No square, during the examination and updating process, is aware of any

other square, outside its neighborhood, and no square is aware of any of the updates

until they are all updated together. At this point, the two grids are swapped, and the

process begins again. This continues until the predetermined number of time cycles
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is completed. The complete Scilab code used for the research done in this thesis is in

appendix, Scilab Code.

A decision had to be made about how the edges of the grid would be handled.

The alternatives were: a cylindrical wrap, a toroid wrap, or no wrap at all. The

patterns that we model, on cave walls, are bounded on all sides (by ceiling, floor,

and rocky outcrops. With this in mind, for simplicity, we elected not to use wrap-

around on grid calculations. To implement this in the program, a border (equal to the

radius being calculated) was not examined in the calculation process. This eliminated

unrepresentative artifacts in the pattern edges caused by the edge squares not having

8 surrounding squares.

The birth rules we chose to use with the weighted calculations were designed to

work in radius=1 (which include the 8 adjacent squares around the target square).

This is often referred to as the cell’s neighborhood. (In particular, this is called a

Moore Neighborhood. [35]) The values we chose were from 2 − 4. The death rules

we selected were a range, from death value, d, to 8. These were usually expressed as

death on values > d − 1. The values we selected were > 3, > 4, > 5, and > 6. We

will discuss the effects of the birth in most of the rest of the thesis. Death rules are

discussed in chapter, Fractal Cellular Automata.

We were the unsure of the importance of wider range calculations in our modeling,

so we systematically tested our birth and death rules over radii from 1 to 6. This

involved making a decision to vary either the rules to fit the number of additional

squares in wider radius calculations, or weighting the sums of all the squares to provide

values equivalent to radius 1, so that we could hold the original birth and death rules
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constant.

Ultimately, after surveying the initial results we settled on an approach that al-

lowed us to limit variables to a minimalist set that included only:

1. radius = 1 initially, and in the later part of chapter 3, and in chapter 4, expand-

ing to include radius = 2, and radius = 3

2. birth = 1 initially, and later expanding to include birth = 2, and birth = 3

3. death == 0 initially, expanding in chapter 3 to include some fractal patterns

with death > 1, death > 2, and death > 3.

4. initial start pattern

2.3 Methods of Calculation

Weighting was only necessary for radii greater than one. The method used to do the

weighted calculations had an effect on the final patterns. In order to compare the

results of the larger radii to the radius = 1 results, it was necessary to use a neutrally

weighted calculation method. This method treated sums of all radii equally. This

was done by dividing the final total of all the surrounding squares (at all radii being

calculated) by the total number of squares inspected for that total, multiplying by

8 (to simulate the 8 squares in a radius 1 CA), and rounding to the nearest integer.

Doing this provided us with a basis to compare results from various radius calculations

with the same birth and death rules to each other.

Once the patterns were systematically calculated for each start pattern, by apply-

ing each of the birth rules as specified, over each of the death rules, we inspected the
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Fig. 2.3: The 6 different seed patterns: line, hollow 4 × 4 square, corner, checkerboard (3 × 3), 7 × 7 cross
with a 3× 3 square at the center, 7× 7 filled square, all with radius = 1

results. For radius = 1, the general result was patterns that were strongly geometric

and reflected the starting seed pattern. The square seed pattern was used to see

how the self organizing patterns developed in an initial condition that didn’t restrict

resources.

The patterns shown in figure 2.3 were calculated with a birth number of 2, a death

number of 4, and the calculation radius is 1. All of them were calculated with 75

iterations.

For radius 2, patterns continued to be geometric and reflect the starting seed

pattern, but not as strongly as radius 1.

The patterns shown in figure 2.4 are all using the same filled square pattern. We

are using the same birth and death values used in figure 2.3, birth = 2, death = 4,
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Fig. 2.4: Filled square seed patterns (birth = 2, death = 4), with radius = 1, on the upper left, increasing
to radius = 6, on the lower right
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but the variable here is the the radius. The calculation radius for this set of patterns

increases incrementally from 1 to 6.

Radius = 3 patterns tend to chaotic behavior with an emerging self-organizing

behavior that occurs with changes in death rules. It is worth pointing out that, in

figure 2.4, the residual effect of the filled start square can be seen at the center of

all of the patterns. Each of them has a square and/or a cross at the very center of

the pattern, and has four axes of symmetry. At radius = 4, 5, and6, the patterns in

figure 2.4 had a familial resemblance to the radius = 3 pattern shown in figure 2.4

that appears as a progressively more rounded central cross and square motif.

One of the things that we observed was that the closer the death value was to the

birth value, the more time cycles the center of the developing pattern oscillates before

stability (in the center) is achieved. Once the center of the patterns reach a stable

state, most of growth is on or around the perimeter of the pattern.

2.4 Pattern Distortion

We investigated how much it took to distort the patterns by selecting one square in

radius 1 (the upper right hand corner - (i + 3,j + 3)), and subtracting it from the

neighborhood total, and for comparison, adding it into the neighborhood total twice.

One square was enough to distort the results completely within 25 iterations. The

interesting result was that all of the resulting patterns looked very much alike.

The diagonal line start was not right/left symmetrical in the perturbed patterns,

unlike the line and square starts, which were right/left symmetrical. The diagonal

start, itself, does not have right/left mirror symmetry. Interestingly, the diagonal line
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Fig. 2.5: Radius = 1 patterns: row 1:line, row 2:square, row 3:diagonal line; column 1: unperturbed, column
2: upper RH square added twice, column 3: upper RH square subtracted, t=25
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start, unperturbed, has upper left/lower right, and lower left/upper right symmetry,

but the distortion caused by adding an additional upper right corner, or subtracting

it, distorts the symmetry altogether.

The result of perturbing the radius = 1 patterns raised the question, “Would

a larger radius be more perturbed, or less perturbed (due to a larger number of

squares in a larger radius neighborhood)?” We chose to use the same patterns in

radius = 3, which has a 7×7 neighborhood, to compare to the results we observed in

the radius = 1, 3×3 neighborhood. The radius = 1 has 9−1 = 8 squares (we are not

using the value in the center square to calculate the sum for the rules). By comparison

the radius = 3 neighborhood has 49−1 = 48 squares. The perturbation as a function

of the calculation sum for radius = 1 is 1 ÷ 7 = 0.1486 for the radius = 1 patterns

perturbed by a missing square. For the the radius = 1 patterns perturbed by adding

a square, the perturbation would be 1 ÷ 9 = 0.1111. In radius = 3 patterns, the

perturbation caused by a missing square, would be 1÷ 47 = 0.0213, and that caused

by adding an extra square would be 1÷ 49 = 0.0205.

The result of this experiment (see figure 2.6) shows considerable distortion in

radius = 3 patterns, but because the overall patterns are larger, the apparent visual

distortion could be, partially, a result of the larger patterns, which are, in turn due

to the larger radius of calculation. The radius = 3 perturbed patterns also look

very much alike, and the same symmetry issues we observed in the radius = 1

patterns exist here, as well. The bottoms of the patterns are less disturbed than

the tops because we were adding or subtracting an upper corner, and that corner

of the calculation neighborhood was never down at the bottom of the pattern. The
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Fig. 2.6: Radius = 3 patterns: row 1:line, row 2:square, and row 3:diagonal line; column 1: unperturbed,
column 2: upper RH square added twice, column 3: upper RH square subtracted, t=25
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distortion seen at the bottom of the pattern is the result of a trickle-down effect of

the having the upper pattern distorted and calculating repeatedly over the distortion

in course of twenty five time steps.

The most interesting results from this are:

1. There is a strong resemblance among the radius = 1 patterns with different

starting patterns. This leads us to believe that the effect of the radius on the

overall developing pattern, at radius = 1 at least, is very strong.

2. At radius = 3 and above, with the same set of birth and death rules or values,

the resulting patterns have a familial resemblance. The implications of this, for

modeling biological growth, are that we only need to model for radius = 1,

radius = 2, or radius = 3 spaces.

3. The distorted patterns more closely resemble what we have seen in the im-

ages taken in caves. This may be because perfect symmetry in seed patterns in

biomats is unlikely in the extreme, and these model patterns are easily distorted.

They also may serve in models as a method for including geological features that

channel extra nutrients to some areas, or restrict the flow of nutrients to partic-

ular area. Another potential use, outside of the caves, is modeling asymmetrical

root growth due to any number of causes, which could include rocky soil, roots

due to animal predation, lack of water to part of the root ball, etc.

In the next three chapters we examine the results of using an unweighted calcu-

lation and initially holding the radius constant at 1 (a 3 × 3 neighborhood grid),

and eliminating death from the calculations. This essentially leaves the birth value
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as the only variable. We have also chosen to target the first 1 to 15 time steps as

our primary area of interest for these CAs. As our understanding grew, we added or

changed variables one at a time in an effort to identify the variable (or variables) that

were responsible for each behavior in the resulting CA.
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3. FRACTAL CELLULAR AUTOMATA

3.1 Introduction

Cellular automata can be as delicate and stunningly beautiful (and complex) as those

shown in figure 3.1. The top row and the bottom are the same automata. The bottom

row shows residual growth in green, new growth in blue, and death in this time step

in red. What drives the beauty and complexity that derive from such simple rules?

In this chapter we are going to take a minimalist’s view of cellular automata to try

and determine some of the mechanism that creates patterns like the one in figure 3.1

. The only way we can understand the underlying framework of two dimensional

CAs is to look at them in their most elementary form. What are the fewest number

of variables? How do they behave? What happens when we throw away crowding,

throw away death, and start with birth= 1, radius= 1, and build on that?

We are going to start by covering the behavior of three prototypical seed starts.

Using this approach we will begin with birth= 1, no death (minimal case), and discuss

their habits of growth.

With a solid view of what happens with birth= 1, radius= 1 and no death, we

will begin adding other variables. We will continue holding birth and radius equal

to 1, and add death to the mixture, discussing the results. Then we will step back

to radius= 1, birth= 1, no death, and introduce the effects of larger radii, which will
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Fig. 3.1: Birth = 3, death = 5, radius = 1, upper row and lower row the same images - top row: black and
white, bottom row: green = growth from previous time step, blue = new growth in this time step,
red = death in this time step, columns (L - R): t = 24, 68, 100
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introduce the scaling seed patterns to the neighborhood or radius size as variable.

This whole journey is to try and determine which initial conditions in a simple CA

are key variables, and how they affect the developing pattern. The next chapter on

the effect of birth rules will attempt to codify what we observe here into a series of

grammatical statements.

In this chapter, the variables are independent of each other, but in the chapter

on the effect of scaling on developing patterns, we will discuss what happens when

a group of variables become interdependent, and produce a family of twenty nearly

identical patterns across a range of seven different radii, and an equal number of

birth numbers. We will look into how these variables work together to produce this

particular pattern, and what the effects of variables are that make this possible.

3.2 Radius= 1, Birth= 1, No Death

The simplest case for the cellular automata that we have studied is radius= 1, birth

on 1, no death. The seed patterns that we chose to study are: a horizontal line 7

squares long; a 7×7 filled square; a single square; and a diagonal line. These patterns

are of additional interest because the line has 2 axes of symmetry, the square and

the single square have a 4-way symmetry, and the diagonal line, has 2-way symmetry

(like the line, but rotated 45 degrees). (Other patterns, like a triangle, have only one

axis of symmetry.) The patterns that develop from these starts preserve the original

symmetry of their seed patterns.
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3.2.1 Observations

Horizontal Line

In the case of the line, with a birth = 1 (shown in figure 3.2), there is only one

way that the pattern can grow. It must grow at the end points of the original line,

and because we are calculating in radius= 1, the lines can grow to a maximum of

three squares long, as there are only three positions of neighborhood that include

the endpoint, and do not include any other part of the line (since birth only takes

place with one neighbor only). At the end of time step 1 we have the seven unit line,

with two 3-unit lines– one attached vertically to each end of the original horizontal

line. There are no more endpoints on the original line, but there are 2 endpoints

on each of the 2 new lines. On the next time step (t= 2), the pattern grows four

3-unit, horizontal lines, one at each endpoint of the 2 vertical lines we grew in the last

time step. Again, there are no more endpoints to grow from this time, but there are

eight end points to grow from on the next time step. In the next time step (t= 3),

the pattern grows four 3-unit vertical lines on the outer ends of the 8 end points we

created last time. We begin to see some crowding in this time step (t= 3) which

causes the inside lines to only be 2 units long. There is a growth pattern developing

here:

1. The number of growth points is doubling with every time step, and

2. Growth is alternating between vertical and horizontal lines on successive time

steps. In point of fact, on odd numbered time steps, the pattern only grows

vertical lines. On even numbered time steps, the pattern only grew horizontal
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Fig. 3.2: Fractal 7-unit line growth, birth = 1, no death, radius = 1, top row: t = 1 − 4, bottom row:
t = 5− 8

lines.

On the fourth time step, we develop a filled square with four horizontal lines on

top and four on the bottom. On the next time step, there are only four places it

can grow (on the outside of the pattern). Figure 3.3 shows that this is a recurring

cycle. The pattern develops in this binary fashion, first vertically, then horizontally

until the only end points that can grow are on the corners. this cycle increases in a

predictable way producing filled patterns on the 4th, 12th, 28th, 60th, 124th (and so

on...) time steps, with 4, 8, 16, 32, 64 lines top and bottom respectively. At each

filled pattern it takes twice as many time cycles to reach the next filled pattern.

Note that the 2-way symmetry we began with in the 7 unit line persists in the

developing pattern. It is also worth noting that the measure of computation speed

developed by A. R. Smith [47] could be used here - the change in perimeter with

respect to the number of time steps.
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Fig. 3.3: Fractal 7-unit line growth complete Squares, birth = 1, no death, radius = 1, t = 4, 12, 28, 60, 124

Filled Square � Single Square

In figure 3.4, with the 7 × 7 filled square as a seed pattern, growth can’t begin on

endpoints. There is another way that birth with only one neighbor can grow in a 9

square Moore Neighborhood. Since we are looking at birth= 1, with no death, and a

calculation radius= 1, the filled center of the square will remain. Without endpoints,

the only place these rules will allow growth is a single point diagonally out from the

corners of the square. In time step (t= 2), this develops into new corners at each

corner of the original square. In the next time step these corners each provide 2 end

points that can grow, in addition to the new points diagonally out from these corners,

themselves. In the fourth time step the diagonal points from the previous time step

develop into corners, again, and each of the lines that grew at the end points of the

previous corners now grows a 3-unit line. By the end of the this time step the pattern

has become a 4 × 4 filled pattern with no end points to grow from (a larger version

of the original pattern), leaving only the corners as growth points, in time step 5.

The filled squares in this sequence(see figure 3.5) also occur in the same recursive

cycle as the pattern that began with a line. Additionally, due to the 4-way symmetry,

it is easy to see that the size of the filled square is the same as the number of time
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Fig. 3.4: Fractal 7 × 7 square growth, birth = 1, no death, radius = 1, top row: t = 1 − 4, bottom row:
t = 5− 8

Fig. 3.5: Fractal 7×7 square growth complete squares, birth = 1, no death, radius = 1, t = 4, 12, 28, 60, 124

steps in the cycle that it completes. For t= 4, the filled square is 4 × 4. In t= 12,

which took 8 (12− 4) cycles to complete the resulting filled square is 8× 8. The filled

square at t= 28 is 16× 16, and doing the math (28− 12 = 16), it took 16 time steps

to develop. Each successive cycle takes twice as long to complete.

Another interesting observation is that where the pattern that develops from the

line grows in alternating vertical and horizontal growth in odd and even time steps,

this pattern alternates lines perpendicular to the sides of the original square, with

lines parallel to its sides of the original square. Additionally, we observe that the 4-
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Fig. 3.6: Single square growth, birth = 1, no death, radius = 1, t = 1− 5

way symmetry in the initial seed pattern is preserved as a result of the corner growth

from the filled patterns.

Single square starts in radius= 1, birth= 1, and no death, grow to a 3× 3 square

in the next time step, and proceed to grow following the patterns above described

for the filled square. Figure 3.6 is shown in color to clearly show the single square

start in the first frame (in green). Note that the 3× 3 square is the size of the Moore

neighborhood at radius= 1. This is a function of radius of calculation being used.

Think of a card with a square aperture the exact size of the radius 1 neighborhood.

Then think of placing the card in various positions that include the single square

start. For each of these positions the square in the center of the card would change

from empty (0) to 1. There are eight of these surrounding the single square, which

causes the square to grow from a single square at t=0, to a 3×3 square at t= 1. This

can only take place if there are no other squares appearing in the 3× 3 aperture that

we use to examine the pattern.
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Fig. 3.7: 7-unit diagonal line growth, birth = 1, no death, radius = 1, top row: t = 1 − 4, bottom row:
t = 5− 8

Diagonal Lines

Another pattern of growth in radius= 1, birth= 1, no death, is diagonal lines. We

have observed that a diagonal line grows parallel to itself and continues on in the

same direction, with diagonal lines of the same width. It generates one diagonal line

at each time step. Figure 3.7 shows the first eight time steps of pattern development

that begins with a 7-unit diagonal line. The first corner forms off of the endpoints

of the line in the very first time step. The sequence shows that the end corners

alternate between new corners and a single diagonal square off the corner formed in

the previous (odd numbered) time step. By time step 6, the sequence of corners has

gotten far enough away from the band of parallel diagonal lines that there is enough

open space around the latest corner’s endpoints to permit lines to grow there for the

first time.
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3.3 Conclusions for Radius= 1, Birth= 1

3.3.1 Habits of Growth

There are only 4 ways that radius= 1, birth= 1 patterns can grow:

1. They can grow off the endpoints of lines, and if not crowded, the lines will be 3

squares long (the length of one side of the radius = 1 Moore neighborhood);

2. They can grow diagonally, with a single square, at each of the corners of the

square, and in the next time step, they will form another corner;

3. They can grow from a single square to a 3× 3 square (the size of the calculation

neighborhood);

4. They can grow from a diagonal line, parallel and equal in length to the original

line.

Can we reconcile the alternating vertical and then horizontal growth of line starts

with the square start’s single square diagonally out from the corners of the starting

square, and alternating growth that is parallel to the sides of the square and then

perpendicular to the sides of the square? Is there a simple rule that will cover all of

these?

Line

The line growth appears to alternate between horizontal and vertical growth. But,

this is really perpendicular growth at the endpoints of the lines grown in the previous

time step.
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Filled Square � Single Square

The single square start is really a subset of the filled starting square above. We can

break it down into 2 sets of squares, the diagonal squares we discussed above, and

those squares that are orthogonal to the sides of the original single square (like a

von Neumann neighborhood). Clearly the orthogonal squares are perpendicular to

the sides of the original square, and clearly the diagonal corners are perpendicular to

both sides of the original square. Once we get past time step 1, the growth proceeds

exactly like the starting square above, with a 3× 3 square.

The growth in the 7× 7 starting square appears to be a bit more complicated, but

if we look at it carefully, the single square at each corner is the only point that is

perpendicular to both sides that form the corner. The next time step has two 3-unit

lines joining to form a corner, parallel to the original corner of the start-square, and

one row beyond the single square. If the single square is perpendicular to both sides

of the start-square that forms the corner, then the corner that is formed parallel to

the original starting corner, must be perpendicular to the single square that formed in

the previous time step. So this growth is also perpendicular to growth in the previous

time step.

Diagonal Line

The diagonal line’s growth is parallel to the original line with one row for each time

step. If the line is a single line, not part of a larger pattern, two things will occur. The

growth will occur on both sides of the diagonal line, like the growth at the endpoints of

the line start, and the end points of the diagonal line will begin to develop as corners.
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Fig. 3.8: Parallel growth in diagonal lines, birth = 1, no death, radius = 1, neighborhood shown, with
target square in red; previous time step in green, current time step in blue

As we mentioned earlier, the symmetry of the original pattern will be preserved.

What makes the line, and the square patterns all grow in the same way while the

diagonal line grows in a different manner? All of our patterns are being developed

on an n×m rectangular grid, where the x and y axes are perpendicular to each other.

The diagonal line start is the only pattern that grows parallel to the original pattern,

and it is not along the x and y axes like the others.

If we return to the idea of the card with an aperture exactly 3 squares × 3 squares

(the size of our calculation neighborhood at radius= 1), we will find that the center of

the neighborhood that sees only one square is up one row and over one column from

the square, on the start line, that the neighborhood sees. Up one row, and over one

column, for each square in the entire diagonal line, forces the resulting line to be both

parallel and of equal length. On the backside of the diagonal start the the location

is down one square and over one square. (These directions presume that the original
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Fig. 3.9: Corner formation in diagonal lines, birth = 1, no death, radius = 1, with neighborhoods shown
(the outside two frames were shown in 3.8)

line is a backward leaning diagonal– forward leaning diagonals will have similar, but

not identical patterns of development for their parallel lines.)

In figure 3.8, the green squares are the pattern the neighborhood is using to calcu-

late the next time step and the blue squares represent the results of that calculation.

Figure 3.8 shows that the parallel lines that form in the next time step are in fact, the

only way that the parallel line start can grow. Figure 3.9 show how the neighborhood

forces the growth of a corner off the endpoints of the diagonal line.

These patterns are both recursive and self-similar by the nature of how birth with

one neighbor forces them to grow. In the case of the line, the pattern can only grow

from end points, growing by powers of 2, where the start line has two endpoints to

attach to, and the two lines that attach have four endpoints, and so forth.

A completely filled square occurs at t= 4, t= 12, t= 28... Each cycle takes twice as

long to complete, and has twice the perimeter of the previous filled square (remem-

ber that perimeter growth as a function of time steps is a measure of calculations

speed [47]). Using the perimeter measure vs. number of time steps, we can see that

doubling the perimeter takes double the number of time steps. These CAs are grow-

ing at constant speed. Once a CA fills in the square in each cycle, only the 4 end
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points at the corners are open for growth in the next time step.

In the second case, the filled square, and by extension, the single square, start a

pattern that is repeated at the end of each cycle, leaving only the corners available for

growth in the next time step. These patterns also double their perimeter in double

the number of time steps - so growth is at a constant rate.

This pattern also completes at t= 4, t= 12, t= 28, and so forth, at radius= 1,

birth= 1.

The parallel diagonal line have a slightly different sequence. The pattern completes

at the very first time step (with the corner that forms from the endpoint of the original

line). Thereafter, new, larger patterns are completed at t= 3, t= 7, t= 15, and so

forth, leaving only the exposed diagonal lines at two opposite corners of the square

pattern, and completed corners at the other two corners of the square. This slight

displacement of completed patterns is due to the first time step being complete. The

doubling of the perimeter and time steps begins from there. This CA pattern is also

growing in constant rate.

All of these variations of the birth with one neighbor, no death, patterns calculated

over a single 9 square Moore neighborhood, have fixed geometric growth rules similar

to the Sierpinski Triangle and Koch Snowflake, which are both classic, recursive fractal

functions. Since each of these patterns returns to a state similar to the start pattern

(in the case of the filled square) or the very first time step in the case of the line and the

diagonal line) at the end of each of these cycles, the patterns repeat themselves with

larger and larger squares that grow in longer and longer cycles all based on powers

of 2. These patterns are not just cellular automata, they also meet the recursive,
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geometrically driven growth rules that are characteristic of fractal patterns.

3.4 A Little Death Goes a Long Way... or The Effect of Death on Birth= 1,

Radius= 1, Patterns

3.4.1 Introduction

We are going to start this section with a little discussion about the figures in this

section. The addition of death to the radius = 1, birth = 1 rules makes the resulting

patterns much more difficult to understand. With this in mind, we will be using a

three colored palette for many of the figures for clarity. In the colored figures in this

section, green represents residual growth left over from the previous time step, blue

represents new growth from the current time step, and red represents cells that have

died in the current time step. This is important to keep in mind, because the red

squares are not really there.

Some of the patterns are so dense that they are difficult to view in color, and

frequently the denseness is the result of a strong stability in the developing pattern

that minimizes the effect of the death rule. Sometimes this stability isolates the effect

of the death rule to the outside margins of the pattern, leaving the interior very dense.

In cases like this, we will show the patterns in black and white, to best illustrate the

effect of the developing pattern.

3.4.2 Line Starts

Radius= 1 line starts with death are fractal, and both simple (birth= 1, death> 1),

and very complex. The line start with birth= 1, and death> 2 was the impetus for
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Fig. 3.10: Line start, birth = 1, death > 1, radius = 1, top row: t = 1− 4, bottom row: t = 5− 8

the redesigned program (see the appendix for the full SciLab code) that showed the

cells that died at each time step in red. The pattern with death> 3 is so dense that

it is easier to see in black and white. We will discuss each of them.

The pattern with death> 1, shown in figure 3.10, is very much the line equivalent

of the square start with the same birth and death values. It begins with a 3-unit

horizontal line which in the first time step has two 3-unit vertical lines attached at

the endpoints, and death removes the original line. In time step 2, the 2 vertical lines

from the previous step become 4 horizontal lines. The pattern continues to develop in

this fashion. This is, in a linear way, the equivalent of the square starts for birth= 1,

death> 1 (or > 2, or > 3).

We mentioned earlier that using a 3 color pattern showing growth from the last

time step in green, new growth in this time step in blue, and death in this time step

in red helped to clarify how some of these patterns develop. Figure 3.11 shows the
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Fig. 3.11: Line start, birth = 1, death > 1, radius = 1, top row: t = 1− 4, bottom row: t = 5− 8; pattern
the same as figure 3.10 in color - blue is new growth, green is residual growth from previous time
step, red is death in this time step

patterns from figure 3.10 using this technique– just remember the red squares aren’t

really there.

In figure 3.12 the line start pattern that develops from birth= 1, death> 2, at

radius= 1 is surprisingly complex from the very beginning.

This pattern was the impetus for the color technique showing death in red. It was

difficult to see how the pattern made the transitions from one time step to the next.

As an example, compare both the black and white CA (figure 3.12), and the three

color version in figure 3.13. It is a cyclic fractal, repeating, with changes in scale.

The pattern that we see with death> 3 is also fractal, cyclic, with changes in

scale. It appears at first glance to be deceptively simple (see figure 3.14), but over a

greater number of time steps (> 16, at least) it becomes clear that there is a subtle

pattern of triangles and squares embedded in the larger pattern (see figure 3.15). This

subtle pattern is the result of long (neighborhood+1) and short (neighborhood−1)
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Fig. 3.12: Line start, birth = 1, death > 2, radius = 1, top row: t = 1− 4, bottom row: t = 5− 8

Fig. 3.13: Line start, birth = 1, death > 2, radius = 1, top row: t = 1 − 4, bottom row: t = 5 − 8 in
color - pattern the same as figure 3.10 in color - blue is new growth, green is residual growth from
previous time step, red is death in this time step
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Fig. 3.14: Line start, birth = 1, death > 3, radius = 1, top row: t = 1− 4, bottom row: t = 5− 8

Fig. 3.15: Line start, birth = 1, death > 3, radius = 1, t = 16, 32, 65, and127, shown

lines alternating with single squares to fill in the spaces. We are going to present

these images in black and white. Because the pattern is so dense, it is much easier to

see the developing pattern in black and white.

3.4.3 Square Starts

Looking at figure 3.16, observe that an interesting thing happens with these square

starts - the same pattern develops for death > 1, > 2, and > 3. (Notice, the birth
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Fig. 3.16: Square start fractal patterns with death > 1, > 2, > 3, top row: t = 1− 4, middle row: t = 5− 8,
bottom row: t = 9− 12

numbers are single values and, for death, we are using a single range of values.) This

unexpected, identical result for 3 different, but overlapping ranges of death leads us

to the observation that in this case, the single values of death= 2, and death= 3, are

irrelevant in this pattern.

Single Square Starts

For single square starts, in the first time cycle, the seed goes from the single square to

a square the size of the neighborhood, and the pattern we saw with the 3× 3 square

seed above develops from there. This has the net result of offsetting the time cycle

by one and developing the completed squares that we saw at above at t= 4, 12, 28,
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etc., now appear at t= 5, 13, 29, and so forth.

3.4.4 Diagonal Line Starts

Figure 3.17 shows three different death rules sided-by-side so we can compare them.

The first column is patterns formed by a death > 1 rule. The second column is a

death > 2 rule and the third is a death > 3 rule. Notice that they also form the

same pattern with minor differences in the odd numbered time steps. In death > 1,

the original line dies off completely at t = 1. In death > 2, the original line dies off,

except for the endpoints, at t= 1, and in death > 3, the original line does not die off

at all in t= 1. By t= 2, however, all of the patterns are identical again. The same

thing happens in t= 3, and t= 4. This family of patterns continues to repeat this

cycle of divergence at odd time steps, and return to identical patterns on the even

time steps.

3.4.5 Conclusions

In these simple starts, the addition of death to the rules seems to emphasize the fractal

behavior that we observed before. There are very similar behaviors between the line

start with death > 1(see figure 3.10 and figure 3.11) and the large square start for

death > 1, > 2, and > 3 (see figure 3.16). In each of these patterns, as they grew new

lines, or single squares, the death rule eliminated the original pattern that provided

the basis for the new growth. There are corollaries between the diagonal line, with

death > 1, > 2, and > 3 (see figure 3.17), and the square start, with death > 1, > 2,

and > 3 (see figure 3.16) in that the death range did not really matter for either of
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Fig. 3.17: Fractal diagonal line patterns, column 1: death > 1, column 2: death > 2, column 3: death > 3,
row 1: t = 1, row 2: t = 2, row 3: t = 3, row 4: t = 4
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Fig. 3.18: Birth = 1, no death, 7-unit line start, column 1: radius = 1, column 2: radius = 2, column 3:
radius = 3; row 1: t = 1, row 2: t = 2

them. The square pattern was identical for all three death ranges, and the diagonal

pattern had minor differences in how the associated death range affected the pattern

development in the odd numbered time steps, but by the very next time step (the even

ones), the three patterns were identical. Despite the visual differences between these

patterns, the similarities in growth behavior among them stands out very strongly.
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Tab. 3.1: Birth = 1, line start scaling

radius new line length space between lines
1 3 0
2 5 1
3 7 2

3.5 Taking the Larger View... or The Effect of Larger Radii on Birth= 1 Patterns

Without Death

3.5.1 Line Starts

Figure 3.18 shows a 7-unit line start with birth = 1. The left two diagrams show

radius = 1, the middle two show radius = 2, and the right two show radius = 3.

Looking at the top row (time step 1), at larger radii, the patterns that developed

from the line-start, appear to scale. With birth= 1, and no death, at radius 2, the

new lines that grow at the endpoints of the seed line (if not crowded), are now 5 units

long (the size of a radius= 2 neighborhood). They no longer attach to the endpoints

of the seed line. There is a single square sized space (the neighborhood radius −1)

between them. At radius 3 the lines are 7 units long, and the spaces are 2 units. In

the bottom row (time step 2) this scaling continues.

We conclude from this that patterns that begin as lines scale according to the

neighborhood size with the birth number held constant at 1. This works for line

starts because they are dealing with a single point of attachment at all radii.
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Fig. 3.19: Birth = 1, radius = 2, single square start with neighborhood grid, start square in green, target
square in red, result of calculation (new growth) in blue

3.5.2 Square Starts

Single Square Starts

Single square starts continue to grow into filled squares at larger radii. However, the

filled squares are the size of the radius of calculation. For example, in radius= 2

calculations, the resulting square is 5 × 5, the size of the current neighborhood. In

figure 3.19, the target square is shown in red for clarity. This figure shows the sequence

of neighborhoods that generate the bottom two rows of the resulting square. The

outside two rows on the other three sides are generated in the same way.

This is a function of the size of the neighborhood. Using the idea of the card with a

neighborhood sized aperture, as the calculation radius gets larger, there are more po-

sitions of the card (neighborhoods) that can see that single square, and consequently,

more empty squares that are changed to values of 1 in the next time step.
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Fig. 3.20: Birth = 1, no death, filled square start, column 1: radius = 1, column 2: radius = 2, column 3:
radius = 3; row 1: t = 1, row 2: t = 2

Filled Square Starts

The patterns for square starts the size of the calculation neighborhood at radius= 2,

and radius= 3 are the same. They are scaled versions of the radius= 1 pattern, which

include a scaling in the line thickness due to the larger sized calculation neighborhoods

being used.

In radius= 2, the lines are 2 rows (or columns) wide. The single square at each

of the corners remains, but it is no longer touching the corners. In this pattern it is

offset by 1 square.

In radius= 3, the lines have been scaled to 3 rows (or columns) wide, and the offset

at the corners is 3 squares.

There are a couple of differences to note:
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Fig. 3.21: Diagonal line starts, birth = 1, column 1: radius = 1, column : radius = 2, column 3: radius = 3;
row 1: t = 1, row 2: t = 2

1. There is an implied offset at the corners of the radius= 1 pattern, but because

it is equal to the radius= 1− 1, the net offset = 0, and thus is not visible.

2. In the radius= 1 pattern, at time step 5 the ends of the corners are treated as

endpoints because the line width is 1. In radius = 2, the CA see the ends of the

corners as corners, themselves, because the lines are 2 rows (or columns) wide.

The same thing happens in the radius= 3 pattern, because the lines there are 3

rows (columns) wide.

3.5.3 Diagonal Line Starts

The patterns at larger radii, with birth= 1, and no death, are similar, but scaled by

the calculation radius. Figure 3.21 shows the birth = 1 diagonal line start for time
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Fig. 3.22: The first time step for diagonal line starts, frame 1: birth, radius = 1, frame 2: birth, radius = 2,
birth, radius = 3

steps one (top row) and two (bottom row). The left hand column is radius = 1,

the center column is radius = 2, and the right hand column is with radius = 3.

The diagonal start line continues to generate parallel, equal length diagonal lines.

Now, however, there is an empty diagonal space between the parallel lines equal to

the radius−1, and spaces between the endpoints of the diagonal line and the corner

pattern equal to radius−1.

In figure 3.22 it is clear that if we make the birth number and the calculation

radius equal and vary them together, the pattern continues to develop with the same

general look as radius= 1, but the diagonal lines are offset by a horizontal distance

equal to the radius, and there is no longer a gap between the endpoints and corners

that form there.

3.5.4 Conclusion

This examination of the effect of larger radii on the simple patterns we are using

leads to an insight that there is an additional variable that we have not previously
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considered: the effect of scaling. The scaling to the size of the calculation neigh-

borhood is so clearly demonstrated in these larger calculation radii, that it becomes

clear that scaling in the seed patterns will also affect the developing pattern. If a line,

for example, is too short (shorter than the calculation radius) then the developing

pattern will collide, and the pattern will change. If that same line is too long, lines

that would have intersected in the original pattern may not intersect, leaving gaps

too large, for the calculation radius that we are using, to fill. We also saw this in

the larger radius square starts. In radius= 1, t= 6, we saw perpendicular lines at

the endpoints of the corners. In the larger radii, at the same time step (t= 6) the

places that were endpoints in radius= 1, became corners (see figure 3.20 above) due

to width of the corner lines that were scaled there. The width of the lines became

scaled due to the effect of larger calculation radius.
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4. ON BIRTH AND RULES

4.1 Introduction

The grid that a cellular automata grows upon has often been described as the analog

of a chessboard [44, 46, 43]. Continuing the analogy, the pieces on the chessboard have

only a limited set of moves that are geared to the layout of the chessboard, itself. In

this chapter we discuss basic moves (methods of growth) available to a simple cellular

automaton with birth = 1, radius = 1, and no death. We ave already examined the

ways that this cellular automata can grow in the previous chapter. In this chapter

we will codify what we learned there into a grammatical subset of cellular automata

rules. We will extend the what we have observed to characterize the growth behavior

for birth = 2, radius = 2 and birth = 3, radius = 3.

4.2 Birth = 1 - The Prototypical Seed Patterns

The three prototypical seed patterns in birth= 1 CAs that we discussed previously

were line, dot/square, and diagonal. What makes them prototypical? In the initial

setup for this investigation we have chosen to use a square grid. Other 2-dimensional

grids available. Any single polygon that will tile the plane could make a grid, but

hexagonal, diamond, and triangular are some of the commonly used ones. Because

we have also chosen to use a Moore neighborhood on this square grid, certain CA
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Fig. 4.1: A line can only grow at the endpoints

Fig. 4.2: A single square will grow to the size of the Moore neighborhood

behaviors follow from that, i.e., there are only a limited number of ways that a CA,

on a square grid, using a Moore Neighborhood, can grow (if birth= 1): lines have one

dimension, and therefore, it can only grow perpendicular to its end points (shown as

a diagram in figure 4.1).

A single dot (square) has no dimension, but it has nothing, or everything (depends

on your point of view) from which to draw a perpendicular (diagram in figure 4.2).

A square has two dimensions, no endpoints, and the square grid forces growth to

be perpendicular to the previous time step (or the seed start at step 1), so that the

only way for it to grow is a single square located diagonally out from each corner

(which is perpendicular to both of the sides that form the corner). This is shown in

the diagram in figure 4.3.

A diagonal line, which, unlike the other patterns, is not orthogonal to the square

grid, propagates with identical lines parallel to itself. If the line is part of a larger
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Fig. 4.3: A square will grow to a square with dots sprouting from the corners

Fig. 4.4: A diagonal line will grow parallel to itself

pattern it will grow one line. If the line is by itself, it will grow a new line on

each side. In a square grid, each dot of the new diagonal line is perpendicular to

its corresponding dot in the original line, as it is offset by the same amount both

vertically and horizontally. The diagram in figure 4.4 shows the most general case of

a single offset parallel line. Another related thing happens to the endpoints of the

diagonal line. Cellular automata begins a corner formation as if they were the single

diagonally offset squares that occur in time step one of a square start. This corner

formation continues recursively as the parallel lines are propagating.

We have, in the previous chapter identified grammar-like behavior rules (types of

growth, perpendicular growth, etc.), but we have not yet isolated which of our two

variables, radius or birth, is the driving factor. It is possible that it takes both. To

isolate birth number from radius value, we will look at these starts (line, filled square,

single square, diagonal line) with birth = 1 at radius = 2.
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Fig. 4.5: The top row is birth = 1, radius = 1, the middle row is birth = 1, radius = 2, the bottom row is
birth = 2, radius = 2
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Fig. 4.6: Full square sequence to a new corner for birth = 1, radius = 1

One thing to note about these images: the start is in green (because this is

timestep = 1, and there is no death). Comparing the top row of figure 4.5 to the mid-

dle row, we see the same basic growth patterns with minor differences in spacing and

size of lines and squares that are due to the larger calculation radius at radius = 2.

The square has a sequence of three time steps as shown in figure 4.6. As we discussed

in the previous chapter, the single square start follows the same sequence after t = 1

when the larger square is formed. Once a new corner is formed the process starts all

over again.

When we look at the bottom row, the first thing we notice is that the single square

failed to grow. This is not a surprising result, as the rule that we used for the bottom

row specified birth = 2, so there was not enough resources there for it to grow. This

is something we need to keep in mind, and compensate for, when going to larger birth

numbers. The second thing that is noticeable is that the spaces we saw at birth = 1,

radius = 2 are gone. There appears to be a relationship or scaling effect between

birth number and radius that is almost like native resolution on a liquid crystal

display screen. Birth number appears to display without spaces in the same radius
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number. Comparing the bottom row with the middle row (both are radius = 2), the

line start and the diagonal are nearly the same, but the filled square, and the single

square are not. The filled square is similar, and the single square start needs at least

2 squares to grow. We conclude that the grammar-like behavior is the product of the

birth rules and not the radius. We also conclude that the behavior that we observed

at birth = 1, radius = 1 appears to be a subset of a larger set of rules of growth that

encompass other birth numbers as well.

To see if this behavior is consistent with other birth numbers, we will examine

birth = 2 at radius = 2, radius = 1, and radius = 3. (We were unable to look at

a smaller radius for birth = 1.) First, we need to investigate if we can go from two

single squares to a larger square.

From figure 4.7 we can see that it is possible to get a filled square from 2 single

squares, but there are limitations on the start configuration of the two squares. In

order for the two start squares to be included inside the square or rectangle that

develops, the squares must be adjacent to each other or be separated by no more

than one empty square (radius − 1). Out of nine configurations the only ones that

worked were 2 diagonals that fit the limitations, and the start with two side by

side squares. In those 3 configurations, the two squares were no farther than the

radius + 1 = 3 from the most distant side of the 4× 4 resulting square.

4.3 The Rules for Birth = 2 and Birth = 3

What do we get if we put our theory to the test, and try birth = 2 on a radius = 1

grid or a radius = 3 grid? So far we haven’t been able to try a smaller grid, but if
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Fig. 4.7: Two square starts in various configurations, top row diagonal offset, the middle row horizontal
offset, bottom row asymmetrical offset; column 1: line start, column 2: square start, column 3:
single square start, column 4: diagonal line start
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we are correct, we will get the same patterns at radius = 3, with longer lines and a

space of some sort between the endpoint and lines.

Some of the results shown in figure 4.8 were as we expected. Comparing the

birth = 2 at radius = 2 patterns, in the second row, with the birth = 2 at radius = 3

patterns, in the third row, the results show the same longer lines, larger squares and

and the single extra space that we saw in figure 4.5 when we generated birth = 1

patterns with radius = 2. The full sequence to a corner for birth = 2, radius = 2, as

shown in figure 4.9, still takes two time steps.

Comparing the top row (birth = 2 at radius = 1) we see a compression in the

pattern that is due to the smaller calculation radius which shifts the target square in

the neighborhood to the left one square, positioning it on top of the endpoint(s) of

the start pattern. This compression of the pattern at smaller radius is exactly the

opposite of the effect of placing a pattern on a larger radius, but the essential pattern

is the same. There is something consistent happening here with the compression and

expansion of the patterns. When we get compression, we are displaying a birth = 2

pattern with a radius = 1 neighborhood, which compresses the pattern, or moves

the developing vertical lines in a negative direction. The birth number is constant,

but we are changing the radius of the calculation neighborhood. At radius = 2,

birth = 2, there is no offset, so it appears to be a difference between the value of

the birth number and the value of the radius. At radius = 3, birth = 2, there is a

positive offset that results in a single space between the endpoints on the start line and

the vertical lines. That would imply that the relationship is radius − birthnumber.

For radius = 3, that would be 3 − 2 = 1. Does this explain the compression? For
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Fig. 4.8: The top row is birth = 2 at radius = 1, second row is birth = 2atradius=2, the third row is
birth = 2 at radius = 3, the bottom row is birth = 3 at radius = 3; column 1: line start, column
2: square start, column 3: single square start, column 4: diagonal line start
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Fig. 4.9: Full square sequence to a new corner for birth = 2, radius = 2

Tab. 4.1: Space size in patterns at different radii, radius− birth number = space size

radius birth
number

space size

1 1 0
2 1 +1
1 2 -1
2 2 0
3 2 +1
3 3 0

radius = 1, then, it would be 1− 2 = −1. The size of the space(s) or compression in

a pattern is, thus, shown to be equal to radius-birth number.

Table 4.1 shows the results of our analysis of figure 4.5 and figure 4.8 to determine

what relationship between radius and birth number was causing the compression and

expansion of the pattern when different calculation radii were used.

Notice that the bottom row in figure 4.8 which is birth = 3 at radius = 3 is the

same for the line at larger scale (caused by the larger radius). The filled square has

a slightly different configuration, , as shown in figure 4.10, (which takes 3 time steps

to complete to a new corner instead of the the 2 time steps it takes for birth = 1, and
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Fig. 4.10: Full square sequence to a new corner for birth = 3, radius = 3

birth = 2).

Three squares to a large square is a bit different, but consistent with what we saw

at birth = 2. The squares from the start are still not more than radius + 1 distance

from the farthest side of the square. The diagonal in birth = 3, radius = 3, forms the

diagonal pattern in the second row, with scaling that spaces the parallel lines farther

apart, and causes the corners that form over the end points to encompass two squares

at each end of the original diagonal line. From this we can conclude that the driving

variable in this grammar-like growth is the birth number alone. In each of the larger

birth numbers we see the same growth pattern or some analog of the growth patterns

that we saw in birth = 1 patterns. This consistency across multiple birth values leads

us to the idea that the growth patterns observed in each of these birth numbers is a

subset of a much larger context sensitive or context dependent graphical grammar.

4.4 L-systems

“Organic form itself is found, mathematically speaking, to be a function of time....

We might call the form of an organism an event in space-time, and not merely a

configuration in space.” –D’Arcy Thompson [14]
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The kind of growth that we have observed in these cellular automata, with birth =

1, birth = 2, or birth = 3, and no death, is growth along a wavefront that begins

at the initial seed pattern and propagates out, in all directions, with each time step,

from there. This is important to keep in mind because new growth at the edges of

the pattern is perpendicular to the wavefront propagation in the previous time step.

The context that generates the next time step pattern appears to be only behind

the pattern that is generated in the current time step. This observation ignores the

fact that there must be sufficient empty space ahead of the wavefront to preclude

crowding, if the pattern is to form completely. To simplify this investigation of a

grammar, we are going to stipulate that both the CA and the associated grammar

will be 2-dimensional, and limited to a single, convex seed pattern, to eliminate the

possibilities of two patterns colliding or the some concave portion of the pattern

colliding with itself.

What kind of grammar are we going to need? We need a grammar that can handle

graphical words, that is context sensitive, and one that updates globally all at one time

(like our totalistic CA). The update constraint eliminates Chomsky grammars where

grammatical productions are applied sequentially. Lindenmayer Systems (hereafter

called L-systems) are massively parallel in that the grammar productions are applied

globally. L-systems are an array rewriting grammar system that was developed to

handle biological modeling. They were designed to handle graphical words, and they

can be context sensitive (with either 1-sided or 2-sided context sensitivity). They can

also handle 2-dimensional grammar.
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L-systems are defined as a tuple:

G = (V, ω, P ) (4.1)

Where V is the alphabet, ω is the start symbol or symbols from V that defines

the initial state, and P is the set of production rules. The < represents the search

for a left context, and > represents the search for the right context. Later on we will

be using arrows to indicate directional moves. These will generally appear in pairs,

one right or left, and one up or down. The magnitude of the move will be indicated

by a number in parentheses after the arrow. These directional pairs will be enclosed

in square brackets, which in L-systems notation indicates information that will be

ignored for context purposes.

Directional moves in L-systems are defined in terms of Logo’s turtle graphics.

Turtle graphics involve the commands, “draw” “forward”, “move forward” (with pen

up), “pen up”, “pen down”, “turn left 90 deg”, and “turn right 180 deg”. The turtle

has three properties:

1. a position

2. an orientation

3. a pen, which has color, width, and is either up (not writing), or down (writing).

All changes of position or orientation are described relative to the “turtle’s” current

position.

Table 4.2 is a table of attributes, direction symbols, operators, and characters that

are part of the alphabet, V for CAs. Most of these are part of the adaptation of
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Tab. 4.2: List of graphical forms and symbols

Name Pattern Symbol

point, endpoint ¥ ¥
vertex y ∧

rotate 90◦ ª 90◦ R90◦

rotate 45◦ ª 45◦ R45◦

up 1 move up one square ↑ (1)
down 1 move down one square ↓ (1)
right 1 move one square to the right → (1)
left 1 move one square to the left ← (1)

search for left context <
search for right context >

skip over in search for context [ ]
line — L

forward diagonal line � DF

backward diagonal line � DB

corner q C
square ¤ B

corner dot, B = 1 see fig. 4.6 d1

corner dots, B = 2 see fig. 4.9 d2

corner dots, B = 3 see fig. 4.10 d3

2R + 1 space @A SP

NOTES: Attributes, like ¥ (end-
point), and ∧, (vertex), act
as modifiers to specify where
the attachment point (which
serves as the context) is on
pattern symbols

¥, ∧

¥ is overloaded to mean
both point (single square - a
new growth ), and endpoint
(an attribute on an existing
pattern).

¥

The choice of counter clock-
wise direction for the rotate
symbol is completely arbi-
trary, but it is necessary to
be consistent about the di-
rection.

ª
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Fig. 4.11: The effect of having other occupied squares within the neighborhood 2r + 1 radius.

L-systems notation to cellular automata. The search for context symbols (<, and <)

and the square brackets ([, ]) are directly from the L-system specifications [33].

Why are we using SP for the character? We are using SP for the space character

that represents the distance, 2R+1, which is the length of one side of the calculation

neighborhood.

Why do we need SP? In figure 4.11, the target square, at the center of the neigh-

borhood is marked with a black dot. The first frame shows how the pattern (that we

are using as an example) should develop in the first time step. The neighborhood is

shown in a red grid. The target square, at the center of the neighborhood is shown

with a black dot, to make it easier to identify. The second, third and fourth frames

show what happens when there is a single occupied square at the lower left, lower

right, and upper right corners of the the neighborhood. The extra square, in each

of these cases keeps the CA from completing its pattern, due to crowding. If we

specify this space, the width of the current calculation neighborhood, must be empty,

as one side of the context, then the pattern can develop completely. The use of the

SP character in the vocabulary, guarantees that the full expression of the rule takes

place. It also makes this a 2L-system, with context sensitivity on both sides of the

69



Fig. 4.12: The occupied squares are all outside the 2r + 1 neighborhood

new term.

In figure 4.12, the first panel, again, shows how the pattern should fully develop.

The other panels show occupied squares outside the neighborhood radius. Notice

that the line start pattern fully develops as does the single square to large square,

because they are sufficiently far apart to eliminate interference, and permit the full,

uncrowded growth of both.

The application of the L-system grammar to describe the behavior of cellular

automata requires that we stipulate some global constraints. An L-system updates

all possible applications of a production (rules) at one time. The following points

guide and constrain our approach:

1. We will develop the subset of the alphabet, V, that we will use from points.
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In effect we will create the alphabet from 0-dimensions to 1-dimension and use

those alphabet characters to create the alphabet for our 2-dimensional, square

grid with Moore neighborhood, which is a subset of the alphabet, V, for all

cellular automata.

2. New lines are 2r + 1 in length (the length of one side of the current radius

of calculation), and attach the mid-point of the new line at an endpoint of an

existing line.

3. Context for production rules comes from endpoints (more about this later), on

one side, and enough space to grow on the other.

4. Rules may applied in any rotational multiple of 45◦ or 90◦, as long as the proper

context exists in that place, and rotation (the limitation to these two angles is

due to our choice of grid, and may be different in other grids- like a hexagonal

grid).

Developing an Alphabet Subset

Cellular automata can be 1-dimensional, 2-dimensional, or have even more dimensions

than that. From geometry, we know that points are dimensionless. In a CA, a single

square, by itself, is a point. In a 1-dimensional CA, the only figures are a point, and

a line. (Often, 1-dimensional CAs are plotted against a vertical timeline, which gives

them the appearance of 2-dimensions.)

1. We propose that a line, for the purposes of this L-system, is a 1-dimensional

figure that consists of two points (endpoints) connected by an edge. New growth
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Fig. 4.13: Birth = 1, radius = 1, line start, left frame: t = 1, right frame: t = 2

Tab. 4.3: The L-system production for developing a line from a single square

variables: ¥, L, SP
constants:
start: ¥
rules: SP¥SP ⇒ SP ¥< ¥ >SP (repeat)

SP¥. . . ¥ < ¥ > SP⇒ L

can take place only at the endpoints of the line. Endpoints are attributes of

lines. A line has 2 points of attachment.

The procedure in table 4.3 builds a line through simple concatenation. This

leaves only the two points at the ends of the line available for new growth in the

next time step.

2. In a 2-dimensional CA, two mutually perpendicular, equal lines can be connected

at one endpoint on each line, essentially, superimposing one line’s endpoint on

top of the other line’s endpoint. This forms a corner with a vertex. On a corner,

new growth can only take place at the remaining endpoints of the two lines or at
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Tab. 4.4: The L-system production for developing a corner from a line

variables: L, C, SP
constants: R90◦ , ¥
start: L
rules: SP ¥L¥ SP ⇒ SP ¥ L ¥ [ R90◦ ] < ¥ L ¥ >

SP ⇒ C

Tab. 4.5: The L-system production for developing a filled square from a single square

variables: ¥, B, SP
constants: R45◦

start: ¥
rules: SP< ¥ >SP⇒ SP ¥< ¥ >SPR45◦ [re-

peat(8)]
⇒ B

the vertex, where the lines are joined. A corner has the attributes of an endpoint

connected to a vertex, which is connect to another endpoint. A corner has three

points of attachment.

In the production in table 4.4, the corner formed can be thought of as having

two line segments connected together at a vertex. In the cellular automata, the

only places to connect to are the endpoints of the lines, and the vertex (which

is used as a reference for building a new corner). A visual construction of the

corner might look like this:

¥—∧—¥.

3. A point or single square can form a larger square by creating another adjacent

point, rotating 45◦. This is repeated eight times.

In figure 4.5, the single square takes one time step to become a neighborhood-
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Tab. 4.6: The L-system production for developing a square from a corner

variables: B, C, SP
constants: R90◦ , ¥
start: C
rules: SP¥C¥SP ⇒SP ¥C¥< C >SP[R90◦ ] [re-

peat(4)] ⇒ B

sized square because the radius = 1 neighborhood, with the rule, birth = 1,

can see the single square from the eight different positions all around the single

square start.

4. Four instances of a corner can be rotated in multiples of 90 degrees, and joined

at their endpoints to form a square. A square has four points of attachment -

one at each each vertex. A square has the attribues of a vertex connected to a

vertex, rotated 90◦, connected to a third vertex, rotated 90◦, connected by to

a fourth vertex, rotated 90◦, connected to the unconnected side of the original

vertex.

The square built in the procedure in figure 4.6has no endpoints to attach to

because the endpoints of the corners are butted up against each other. The only

places new growth can take place is off the vertices of the four corners that form

the square.

5. A diagonal line forms from a single point with unit steps (right or left and up or

down). Pick one (right or left), and one (up or down). Say we choose: (right-1,

up-1). To make a diagonal line we repeat (right-1, up-1) however many times

we need for the length of the diagonal line−1 (we had one point to begin with).

This creates a diagonal line that rises up and to the right.
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Tab. 4.7: The L-system production for developing a diagonal line from a single point

variables: ¥, SP
constants: ↑, →
start: ¥
rules: SP¥SP ⇒SP ¥[↑(1),→(1)]< ¥ >SP

Tab. 4.8: The L-system production for r = 1, birth = 1, no death, line start

variables: L, SP
constants: ¥
start: L0

rules: L0⇒ SP¥L0¥SP
SP¥L0¥SP ⇒ SP<L>L0<L>SP

A diagonal line has the attributes of two endpoints connected step-wise to each

other. This is shown in the L-system production in table 4.7.

All four of the prototypical start patterns for the 2-dimensional CAs that we have

been investigating have now been created from points and lines. The important thing

to remember is that the features that drive the contextual growth are the endpoints

and vertices. The line edges just connect the endpoints. The symbol L, for line, will

be an implied ¥L¥, which shows the endpoints.

An Example of L-systems Applied to Cellular Automata - a Line Start

We are going use the line start CA. An example of the first two time steps in this

cellular automata is shown in figure 4.13.

In table 4.8, the <, and >, symbols connect the rewritten term, <L> for example,

to its left<, and >right context. The second rule, says, if enough space exists to

the left of the of the original line, L0, and an endpoint exists, a new vertical line
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Fig. 4.14: Birth = 1, radius = 1, no death, sequence to new corner, each frame represents 1 time step

can attach its mid-point at the left hand endpoint of the original line, and if enough

space exists to the right of the other end of the original line, another new line can

attach (or grow) with its mid-point at the endpoint of the original line, L0. The

production in table 4.8 was written to do both end lines in one rule. It could have

been written in two separate rules, one to do the left hand side of the original line,

and one for the right hand side. This production for line start growth describes rules

that function in larger birth numbers (and radii). The larger patterns for larger birth

number will occur as a result of a larger calculation neighborhood, without requiring

any adjustment to L-system production.

Square Start

The first two time steps to a new corner for a birth = 1, radius = 1, square start are

shown in figure 4.14. The L-system procedure to generate this pattern is in table ??,

where the first rule specifies the original square, at a vertex, will grow a single square,
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Tab. 4.9: The L-system production for r = 1, birth = 1, no death, square start

variables: B, SP, C, d1

constants: ∧
start: B
rules: B ⇒ B∧SP

B∧SP ⇒ B< d1 >SP
B d1 SP ⇒ B d1 < C > SP

Fig. 4.15: Single square corner sequence, each frame represents 1 time step

providing there is enough space for it to grow. The L-system procedure will globally

apply this rule where ever the context (square vertex on one side, and space enough

on the other) exists in the start pattern. The second rule specifies that if there is a

single square, with enough space on one side, a new corner will form.

Single Square Start

It is worth noting again that the single square start take one time step to become a

neighborhood sized square and from then on, it follows the same development as the

square start. For a given point in the sequence the single square will get there one

time step later.
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Tab. 4.10: The L-system production for r = 1, birth = 1, no death, single square start

variables: ¥, B, SP, C, d1

constants: ∧
start: ¥
rules: ¥ SP⇒8(¥ < ¥ >SP[R45◦ ])

⇒ B
B ⇒ B∧ SP
B∧SP ⇒ B< d1 >SP
Bd1 SP ⇒ B d1 < C > SP

Tab. 4.11: The L-system production for r = 1, birth = 1, no death, backward diagonal line start

variables: DB, C, SP, ¥
constants: ¥, ↑, ↓, ←, →, ∧
start: DB

rules: DB ⇒ SP DB[↑ (1),→ (1)]< ¥ >SP
DB ⇒ SP DB[← (1),↓ (1)]< ¥ >SP
¥ SP⇒¥ < C >SP
¥C∧ SP⇒¥ C< d1 >SP

Diagonal Line Starts

The procedures in table 4.11, and table 4.12, work for larger birth numbers as well.

The only modification necessary is to substitute the birth number into the first value

in the direction tuple in each rule. We will provide a generic example for the forward

diagonal line for all birth number in table 4.13. This change generates the space

between the parallel diagonal lines that occur with birth numbers > 1. The corner

procedure for that birth number will have to be substituted as well. The point to this

is that essentially the same rules (in the L-system we have developed) will generate

a pattern from a diagonal line start.
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Tab. 4.12: The L-system production for r = 1, birth = 1, no death, forward diagonal line start

variables: DB, C, SP, ¥
constants: ¥, ↑, ↓, ←, →, ∧
start: DB

rules: DB ⇒ SP DB[→ (1),↓ (1)]< ¥ >SP
DB ⇒ SP DB[↑ (1),→ (1)]< ¥ >SP
¥ SP⇒¥ < C >SP
¥C∧SP⇒¥ C< d1 >SP

Tab. 4.13: The L-system production for generic birth number, no death, forward diagonal line start

variables: DB, C, SP, ¥
constants: ¥, ↑, ↓, ←, →, ∧
start: DB

rules: DB ⇒ SP DB[→ (birthnumber),↓ (1)]<
¥ >SP
DB ⇒ SP DB[↑ (birthnumber),→ (1)]<
¥ >SP
¥ SP⇒¥ < C >SP
¥C∧SP⇒¥ C< dbirthnumber >SP
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Fig. 4.16: Birth = 1, radius = 1, no death, sequence to new corner, each frame represents 1 time step

Tab. 4.14: The L-system production for developing a birth = 1 new corner

variables: ¥, C, d1, SP
constants: ↑, →, ∧
start: C
rules: C∧SP⇒ C∧[↑(1),→(1)]< ¥ >SP ⇒ Cd1

Cd1 SP⇒Cd1< C >SP

Birth = 1 Corners

We are now going to take a look at how the corners at radius = 1, radius = 2, and

radius = 3 corners develop. To make it easier to compare them, the figure from the

square start section above and procedure are reproduced here.

The procedure in table 4.16 is the L-system procedure to generate the radius = 1

corner shown in figure 4.16. Because each of these corners is unique in either number

of dots in the corner formation or placement of those dots, it is important to note
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Fig. 4.17: Birth = 2, radius = 2, no death, sequence to new corner, each frame represents 1 time step

Tab. 4.15: The L-system production for developing a birth = 2 new corner

variables: ¥, C, d2, SP
constants: ↑, →, ∧
start: C
rules: C∧ SP ⇒ C∧SP[↑(2),→(1)]< ¥ >SP

C∧ SP ⇒ C∧SP[→(2),↑(1)]< ¥ >SP
⇒ Cd2

Cd2 SP⇒Cd2< C >SP

that this radius + 1 corner has a single square diagonally adjacent to the vertex at

each corner of the start square. If the order of the direction arrows is reversed, it still

places the dot in the same spot.

Birth = 2 Corners

Figure 4.17 shows (at radius = 2) the sequence for developing a birth = 2 corner.

This corner forms two dots at each vertex (not directly adjacent, but just beyond the

position of the radius = 1 dot), before completing the new corner. The L-system
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Fig. 4.18: Birth = 3, radius = 3, no death, sequence to new corner, each frame represents 1 time step

Tab. 4.16: The L-system production for developing a birth = 3 new corner

variables: ¥, C, d2, SP
constants: ↑, →, ∧
start: C
rules: C∧ SP ⇒ C∧SP[↑(3),→(1)]< ¥ >SP

C∧ SP ⇒ C∧SP[→(3),↑(1)]< ¥ >SP ⇒ Cd3

Cd3 SP⇒Cd3< d1 >SP
Cd3d1SP⇒Cd3d1< C >SP

procedure to generate the birth = 2 corner is in table 4.15. Rules for the dot placement

are similar to the birth = 1 corner rules, but reversing order of the direction arrows

no longer places the dots in the same spot. They are symmetric along each of the

diagonal axes of symmetry.

Birth = 3 Corners

This birth = 3 corner (shown in figure 4.18) is a little different than the previous two

corners. It has three dots, but it takes an extra step in the sequence to form the new

corner. The first rule in the L-system procedure forms two dots in the first rule are

placed, one, vertically adjacent to one of the birth = 2 dots, and one, horizontally
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Tab. 4.17: The correlation between radius number and L-system production directions for developing a new
corner

Radius Number L-system directions
1 [↑(1), →(1)]
2 [↑(2), →(1)]

[→(2), ↑(1)]
3 [↑(3), →(1)]

[→(3), ↑(1)]

adjacent to the other birth = 2 dot. The second rule places a single dot where the

row and column of the first two dots intersect. Only then, does the new corner form

from the third rule in the L-system procedure. All the corners are symmetric about

one of the diagonal axes of symmetry. There is one at each axis (each corner) of the

original start square, thus preserving the symmetry of the original pattern.

4.5 Conclusion

The procedures that we developed for line and diagonal line starts work for birth > 1.

Those developed for single square starts requires at least as many squares for the start

as the birth number. There are limits to the ways that these squares can be configured.

But, the procedures do correlate to each other. Square starts appear to build corner

dot patterns unique to each birth number before the new corner form. However, an

interesting result of using the L-system productions in tables 4.14, 4.15, 4.16 and the

first associated direction from the original corner vertex mirrors the radius number.

This is shown in table 4.17.

Each of these methods of growth, act to preserve the symmetry of the original

seed pattern. The recursive growth behavior that led us to the grammar presented
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in this chapter, combined with the grammar, itself, leads us to a belief that simple

cellular automata, with single, convex start patterns are all a discrete variety of fractal

pattern, whether their fractal nature is a series of repeating patterns that grow larger

with constant time, or is of a type where the cycles of growth wave fronts recursively

enclose a similar smaller pattern formed in the previous cycle in constant time – a

type that is concentrically fractal.

Other types of grids, using different neighborhoods for calculation, may have dif-

ferent, but largely equivalent prototypical seed patterns and different L-system pro-

cedures to accommodate growth with different grids and neighborhoods adapted to

those grids.

The entire grammar for cellular automata is exceedingly complex, but it appears

there is some nominal subset of these rules about which the rest of the grammar

pivots. These three prototypical seed patterns, in the simple patterns that we are

investigating, lead to a subset of this context free grammar that defines the way those

CAs with the rules, birth=1, and no death, grow. The changes necessary to use those

rule in birth = 2, and birth = 3 cellular automata are minimal. Some changes are

required to provide enough resources for the CA to grow, and some seem to be the

result of the uniqueness of the dot patterns that lead up to new corners.

The simple subsets of the context free grammar of growth that we have shown in

this chapter lead us to believe that there exists a kind of slow manifold made up of

basis vectors that describes how we can change the rules and starting conditions to

develop families of patterns. In these families of patterns the variables in the rules

and the initial conditions are no longer independent of each other, they become a set
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of dependent variables. Change one condition to a value outside the underlying range

of values and the pattern changes. Stay within the defined values, and the resulting

patterns can be nearly identical depending on where they would fall in the manifold.

We will discuss this further in the next chapter.
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5. THE EFFECT OF SCALING ON DEVELOPING PATTERNS

5.1 Introduction

As we saw in the chapter on fractal patterns, there is an almost harmonic effect

between the scaling of the seed pattern and size of the radius of calculation. The

question remains, are there other variables (birth number, death range, calculation

radius, seed pattern) that can be scaled to produce a particular pattern effect? We

have already seen the scaling effect of larger calculation radii longer lines, gaps at

endpoints, and for square starts, the width of the lines are scaled, as well.

We have already seen families of patterns that are identical in the birth= 1, radius=

1, square start, with death values of > 1, > 2, and > 3, and the diagonal starts for

the same values. The diagonal start is so strongly bound together that the effect of

death in the odd time steps is different, but, in the end, at the even time steps, they

are all identical.

We have seen a series of cellular automata with both line starts and filled squares

using starts that were scaled to the radius of calculation, with birth with exactly one

neighbor, and no death. The resulting patterns were scaled versions of each other.

This demonstrated that choosing the seed the size of the neighborhood produced

scaled versions of the patterns, as well.

The results of scaling birth and radius together in the diagonal starts suggests that
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Fig. 5.1: Scaled pattern - multi-radius, multi-birth number, all t = 5, top row (L to R): radius = 3, birth = 4;
radius = 4, birth = 5; radius = 5, birth = 6; bottom row (L to R): radius = 6, birth = 7;
radius = 7, birth = 8; radius = 8, birth = 9

we could, by scaling the start to the calculation radius as well, be able to reproduce

a nearly identical scaled pattern with different calculation radii, different start line

lengths and different birth numbers.

We are going to discuss one of these families.We have chosen a pattern without

death in the rules, to see if birth values can be part of the scaling process. We will

analyze what variables contribute to the pattern development at different radii, with

different line lengths for seed patterns, and different birth numbers. The pattern we

will be examining is formed from a line start, with birth=radius+1.

Figure 5.1 shows patterns at radius= 4, birth= 5; radius= 5, birth= 6; radius= 6,

birth= 7; radius= 7, birth= 8. Note that the odd numbered radii, have odd length
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Fig. 5.2: Scaled pattern radius = 4, birth = 5, time steps 1-5

line starts, and the even numbered radii, have even length line starts.

5.2 Analysis of the Effect of Radius, Seed Start, and Birth Number

“Why,” said the Dodo, “the best way to explain it is to do it.” –Lewis Carroll [10]

Figures 5.2 and 5.3 show the first 5 time steps for radius = 4 and radius = 3.

Notice that the growth is largely a function of the calculation radius. The vertical

lines that form at t = 1 in figure 5.3 are 2R + 1 in length because the calculation
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Fig. 5.3: Scaled pattern radius = 3, birth = 4, time steps 1-5

Fig. 5.4: Neighborhood views radius = 3, birth = 4, t = 1, (target squares are in red for clarity)
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Fig. 5.5: Neighborhood center falls on the line, Radius = 3, birth = 4, t = 1

neighborhood can see the line from radius number of positions (shown in figure 5.4)

, vertically, above the line start, and the same number of positions, vertically, below

the line. When the center of the neighborhood, in figure 5.5, falls on the line, the

endpoint of the line start already equals 1 (Death = 0 in this family of patterns),

so that square stays the same. This center square is the +1 in the 2R + 1 length of

the vertical line. This occurs because the line start has an axis of symmetry along

the line. Because there is another axis of symmetry perpendicular to the line and at

its center point, this growth is mirrored on the other end of the line, as well. All of

the dimensions shown in figures 5.2 and 5.3 are generated in a similar fashion. This

manner of growth is at the heart of the scaling that we have observed in sequentially

larger radii.

Looking at the radius = 1 entry in the table which starts on page 91, we see that

there is no line length that will produce this pattern. If we look at the minimum line

length for radius = 1, using equation (4.1), we see that the minimum line length for

radius = 1 is 5, which exceeds the maximum line length as calculated by equation

(4.2). In this case the minimum line length value is actually greater than the max-
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Tab. 5.1: Scaling relationships between radii without death

radius birth
number

line length line length
mod2

radius+1 minimum
line length

maximum
line length

1 2 n/a 1 2 5 3
2 3 6 0 3 6 6
3 4 9 1 4 9 9
4 5 10 0 5 10 12
4 5 12 0 5 10 12
5 6 13 1 6 13 15
5 6 15 1 6 13 15
6 7 14 0 7 14 18
6 7 16 0 7 14 18
6 7 18 0 7 14 18
7 8 17 1 8 17 21
7 8 19 1 8 17 21
7 8 21 1 8 17 21
8 9 18 0 9 18 24
8 9 20 0 9 18 24
8 9 22 0 9 18 24
8 9 24 0 9 18 24
9 10 21 1 10 21 27
9 10 23 1 10 21 27
9 10 25 1 10 21 27
9 10 27 1 10 21 27

91



imum line length, so no line exists that can satisfy the value we need at this radius

to form the pattern that we are trying to generate. For radius = 2, we note that the

minimum line length and the maximum line length are the same, so there is only one

line length that will generate the pattern.

MinimumLineLength = 2(R + 1) + LineLength(mod2) (5.1)

MaximumLineLength = 3R (5.2)

Odd and Even Line Starts and the Resulting Effects on the Pattern

In the table, it becomes clear that the line lengths for even numbered radii are even

numbers, and those for odd numbered radii are odd numbers. In the patterns, this

is compensated for in the gaps in the center, between the interior lines that form at

t = 4. In the radius = 3 figure 5.3 and in the radius = 4 figure 5.2 the difference

between odd and even radius can be seen. The gap is always an odd number in odd

numbered radii, and an even number in even numbered radii. The size of the gap

may change in radii which can form multiple versions of the patterns in this family,

but the gap always corresponds to the evenness, or oddness of the pattern’s radius.

Additionally, this scaling effect explains the increasing size of the patterns that we

observed as we increased the size of the calculation radius.

92



5.3 Conclusions

In previous chapters we have seen how some of the variables in cellular automata

have independent effects on the resulting patterns. The radius of calculation affects

the size of the resulting pattern due to the number of neighborhood positions that

a given square or squares can be seen from. Each of these positions generate life in

the center square of the neighborhood if the rules are satisfied. The birth number is

responsible for the patterns of growth for the basic start patterns, line, square (and

single square), and diagonal line. In this chapter we have investigated an entirely

different family of cellular automata with three variables: radius, birth number, and

initial start line length. These three variables work together to generate a family or

system of patterns. Change any one of the variables and the pattern is broken. There

are mathematical relationships between the variables. In families of cellular automata

like these, the variables are no longer independent, they are each dependent on the

others.
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6. CONCLUSION

6.1 Review of Contribution

The contributions in this thesis stem largely from the the approach we took to experi-

mental design. Cellular automata and other complex systems are non-linear systems.

We chose to analyze a small corner of a very large and complex area of study. We

chose to use a fractional factorial design [28] for the suite of experiments that we ran.

Much of the insight into growth behavior that we derived from these experiments

came from the first five to 10 time steps of pattern development. The outcome of

these choices was an analysis of growth behavior with a very limited set of variables,

to which we added variables one at a time, and then took them out before adding

a different variable into the mixture. This allowed us to isolate which variables, or

combinations of variables produced certain behaviors. This experimental perspective

was integral to the process that allowed us to identify the growth behaviors of elemen-

tary CAs, which in turn, gave us the information that we needed generate a grammar

using the Lindenmayer system as a framework on which to build it. We were able to

isolate birth number as the driving variable in this grammar, and to show that the

general pattern of grow was consistent with birth = 1 grammar for some patterns

and analogous to birth = 1 for the rest.

The classification of of growth behavior, in turn, led us to the idea that the cal-
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culation neighborhood was not the only way to scale patterns. The variables in the

preliminary experiments that classified growth behavior affected pattern development

independently. In the chapter, The Effect of Scaling on Developing Patterns, three

variables, initial start size, birth number, and calculation radius interact to create a

family of nearly identical patterns that span calculation radii from radius = 2 up,

and birth numbers from birth = 3 up. We identified a lower limit to these values, and

suspect that there is no upper limit (we tested through radius = 9, and birth = 10.

We identified the functions that determined the minimum and maximum line length

to generate this pattern, in terms of the calculation radius, and have shown, given the

line length and birth number, that the pattern development is a function of calcula-

tion radius. We have also identified the fact that these CAs have an odd and even

requirement in the start line length depending on whether the calculation radius is

odd or even.

6.2 Future Research

There are a number of areas for future research in cellular automata, and using cellular

automata to model biological mats. In the area of cellular automata:

1. One area of future research is further investigation into L-systems and cellular

automata. Since L-systems is an array rewriting grammar, further investigation

in the use of L-system grammar in cellular automata with death rules.

2. Investigate the relationship between grammar and display grid. Do number of

grammar rules relate to number of lines of symmetry on display grid? Do other

grid rules relates to square grids? How does the choice of neighborhood affect
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the resulting rules of growth?

3. We have, when using weighted calculations, observed that the patterns consis-

tently formed regular polygons. In these polygons, the number of sides were

equal to the birth number times four. We believe that the times four in this

behavior is due to the square grid that we are using. We conjecture that this is

the source of the increasingly rounded and organic appearance that patterns dis-

play as the radius of calculation increases. The core of the conjecture is that, at

radius = 5, the polygons would have twenty sides, and, at radius = 6, polygons

would have twenty four sides. Polygons with this many sides are indistinguish-

able from circles, at the scale and resolution that we normally use with CAs.

What are the driving factors in this behavior? Does it change on a different type

of grid?

In the area of biological modeling with cellular automata, we have identified a

number of areas of interest for future research:

1. Biological mats in caves have been easier to model because they are not subject

to the amount of erosion typically seen on soil crusts. Two potential areas

of investigation are the use of deblurring filters on digital photographs of soil

crusts to reverse some of the effects of erosion, and the use of blurring filters in

the modeling process itself to simulate the effects of erosion.

2. All of the cellular automata we have investigated in this thesis are totalistic

(they update simultaneously). Random updating of cells in models to simulate

the random availability of resources (water and nutrients) could be especially
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useful in models of resource limited ecologies like deserts, the arctic, and even

Mars.

3. In areas that are being transformed from grasslands to deserts, the local ecologies

are changing from a homogeneous eco-systems created by the grass (which needs

a fairly dense neighborhood population to survive) to islands of non-homgeneous

ecosystems occupied by plants grow best in isolation from other plants. Creosote,

for example, poisons the ground around itself to enforce spacing. Can we model

this behavior with CAs? Perhaps we can model it by using different radii of

calculation for different eco-systems? What might be most interesting is, what

happens at the intersection of two very different ecological niches?

4. Currently, expert recognition is the only method available for determining cellu-

lar automaton rules from images. Melissa Quintana has developed a technique

which uses image processing and histogram analysis of images to determine the

birth and death rules, and the appropriate calculation radius for the correspond-

ing cellular automaton model.
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APPENDIX A

SCILAB CODE
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Listing 1.1: Scilab Test Code for Cellular Automata

// Jane Curnutt
// CA t e s t i n g program
// Thes i s
// Fa l l 2010

clear ;

// S i z e o f F i e ld o f View
r i gh t =9;
bottom=9;

// Ca l cu l a t i on Radius
rad=1;

// Time Steps
time=1;

// Black and White Plot Set Up
N=zeros ( bottom , r i g h t ) ;
Nf ig=s c f ( ) ;
Ncmap=[1 1 1 ; 0 0 0 ] ;
Nf ig . color map=Ncmap ;
Nf ig . f i g u r e s i z e =[700 ,700 ] ;
Nf ig . f i g u r e p o s i t i o n = [ 0 , 0 ] ;

// Color Plot Set Up
C=4∗( ones ( bottom , r i gh t ) ) ;
Cf ig=s c f ( ) ;
Ccmap=[1 0 0 ; 0 0 1 ; 0 1 0 ; 1 1 1 ] ;
Cf ig . color map=Ccmap ;
Cf ig . f i g u r e s i z e =[500 ,500 ] ;
Cf ig . f i g u r e p o s i t i o n = [500 , 0 ] ;

// INITIAL CONDITIONS

// A: row o f 7 black squares in cente r
//N( bottom /2 , ( r i g h t /2)−3) = 1 ;
//N( bottom /2 , ( r i g h t /2)−2) = 1 ;
//N( bottom /2 , ( r i g h t /2)−1) = 1 ;
//N( bottom/2 , r i g h t /2) = 1 ;
//N( bottom /2 , ( r i g h t /2)+1) = 1 ;
//N( bottom /2 , ( r i g h t /2)+2) = 1 ;
//N( bottom /2 , ( r i g h t /2)+3) = 1 ;

// B: hol low 4x4 square
// top
//N( ( bottom/2)+2 ,( r i g h t /2)+1) = 1 ;
//N( ( bottom/2)+2 ,( r i g h t /2)−1) = 1 ;
//N( ( bottom/2)+2 ,( r i g h t /2) ) = 1 ;
//N( ( bottom/2)+2 ,( r i g h t /2)+2) = 1 ;
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// s i d e s
//N( ( bottom/2)+1 ,( r i g h t /2)+2) = 1 ;
//N( ( bottom/2)+1 ,( r i g h t /2)−1) = 1 ;
//N( ( bottom /2) , ( r i g h t /2)+2) = 1 ;
//N( ( bottom /2) , ( r i g h t /2)−1) = 1 ;
//bottom
//N( ( bottom/2)−1 ,( r i g h t /2)+1) = 1 ;
//N( ( bottom/2)−1 ,( r i g h t /2)−1) = 1 ;
//N( ( bottom/2)−1 ,( r i g h t /2) ) = 1 ;
//N( ( bottom/2)−1 ,( r i g h t /2)+2) = 1 ;

// C: de l t a wing ( corner )
// top row
//N( ( bottom/2)−2 ,( r i g h t /2)+1) = 1 ;
//N( ( bottom/2)−2 ,( r i g h t /2)−1) = 1 ;
//N( ( bottom/2)−2 ,( r i g h t /2)+2) = 1 ;
//N( ( bottom/2)−2 ,( r i g h t /2) ) = 1 ;
//row 2
//N( ( bottom/2)−1 ,( r i g h t /2) ) = 1 ;
//N( ( bottom/2)−1 ,( r i g h t /2)−1) = 1 ;
//row 3 & 4
//N( ( bottom /2) , ( r i g h t /2)−1) = 1 ;
//N( ( bottom/2)+1 ,( r i g h t /2)−1) = 1 ;

// F : s c a l a b l e f i l l e d square
r=round( r i g h t / 2 ) ;
b=round( bottom /2 ) ;
N( r−rad : r+rad , b−rad : b+rad)=ones (2∗ rad+1,2∗ rad +1);

// H: Big Tr iang l e
// r=round( r i g h t / 2 ) ;
//b=round( bottom /2 ) ;
//N( r+4,b−4:b+4)=1;
//N( r+3,b−4:b+3)=1;
//N( r+2,b−4:b+2)=1;
//N( r+1,b−4:b+1)=1;
//N( r , b−4:b)=1;
//N( r−1,b−4:b−1)=1;
//N( r−2,b−4:b−2)=1;
//N( r−3,b−4:b−3)=1;
//N( r−4,b−4)=1;

// I : 4x4 Hollow Cross
//N( bottom/2+2, r i g h t /2 : r i g h t /2+1) = 1 ;
//N( bottom/2−1, r i g h t /2 : r i g h t /2+1) = 1 ;
//N( bottom /2 : bottom/2+1, r i g h t /2−1) = 1 ;
//N( bottom /2 : bottom/2+1, r i g h t /2+2) = 1 ;

// Point
//N( bottom/2 , r i g h t /2) = 1 ;
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// Diagonal
//N( ( bottom/2)−3 ,( r i g h t /2)−3)=1;
//N( ( bottom/2)−2 ,( r i g h t /2)−2)=1;
//N( ( bottom/2)−1 ,( r i g h t /2)−1)=1;
//N( ( bottom /2) , ( r i g h t /2))=1;
//N( ( bottom/2)+1 ,( r i g h t /2)+1)=1;
//N( ( bottom/2)+2 ,( r i g h t /2)+2)=1;
//N( ( bottom/2)+3 ,( r i g h t /2)+3)=1;

// Diagonal for Neighborhood Grid
//N( ( bottom/2)−1 ,( r i g h t /2)−1)=1;
//N( ( bottom /2) , ( r i g h t /2))=1;
//N( ( bottom/2)+1 ,( r i g h t /2)+1)=1;
//N( ( bottom/2)+2 ,( r i g h t /2)+2)=1;
// END iNITIAL SEED

temp=N;

// RULES and SUM CALCULATION
for t=1: time

x in f o (” i t e r : ”+s t r i n g ( t ) ) ;
for i =2:bottom−1

// i n s i d e square
for j =2: r i ght−1

//Moore neighborhood
ne ighbors =(2∗ rad+1)ˆ2−1;
BorderSum=round(sum(N( i−rad : i+rad , j−rad : j+rad ) ) ) ;

// BIRTH RULE − SINGLE VALUE
i f BorderSum== 1 temp( i , j )=1;

// DEATH RULE − RANGE OF VALUES
e l s e i f BorderSum >3 then temp( i , j )=0;
end

// DEATH IN THIS TIME STEP − RED
i f N( i , j )==1 & temp( i , j )==0 then C( i , j )=1;
end

// NEW GROWTH IN THIS TIME STEP − BLUE
i f N( i , j )==0 & temp( i , j )==1 then C( i , j )=2;
end

// RESIDUAL GROWTH from PREVIOUS TIME STEP − GREEN
i f N( i , j )==1 & temp( i , j )==1 then C( i , j )=3;
end

// EMPTY SQUARE − WHITE
i f N( i , j )==0 & temp( i , j )==0 then C( i , j )=4;

end
end

end

N = temp ;
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// Black and White Plot
s c f ( Nf ig ) ;
c l f ( ) ;
Matplot(1+N) ;

// Color Plot
s c f ( Cf ig ) ;
c l f ( ) ;
Matplot (C) ;

end

// DRAW BACKGROUND GRID
drawlater ( ) ;

for i =0:( r i g h t )
plot ( [ i +0.5 , i +0 . 5 ] , [ 0 . 5 , bottom +0 . 5 ] ) ;
plot ( [ 0 . 5 , r i g h t +0 . 5 ] , [ i +0.5 , i +0 . 5 ] ) ;

end
drawnow ( ) ;

// NEIGHBORHOOD GRID
// Lower Le f t Corner

x=1;
y=5;

// Length o f 1 Side o f Neighborhood
radN=2∗rad+1;

// Draw Neighborhood Grid
drawlater ( ) ;

for i=x : x+radN
// v e r t i c a l l i n e s

plot ( [ i +0.5 , i +0 .5 ] , [ y+0.5 , y+radN+0.5 ] , ’ b lack ’ ) ;
end

for j= y : y+radN
// ho r i z on t a l l i n e s

plot ( [ x+0.5 ,x+0.5+radN ] , [ j +0.5 , j +0 .5 ] , ’ b lack ’ ) ;
end

drawnow ( ) ;

end
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