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ABSTRACT 

General Block Min Max Criterion (GBMM) is a pre-2D-

chopped robust estimation method designed by Dr. Schubert.  

It may be applied on image clarification, pollution 

detection … etc.  This thesis tries to parallelize GBMM 

method not only to speedup it, but also to see whether a 

pre-chopped algorithm is suitable to be implemented in 

checker-board method or not. 
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CHAPTER ONE 

BACKGROUND 

1.1 Introduction 

The content of Chapter One presents an overview of the 

thesis. The contexts of the problem are discussed followed 

by the purpose, significance of the thesis, and assumptions. 

Next, the limitations that apply to the thesis are reviewed. 

Finally, definitions of terms are presented. 

1.2 Purpose of the Thesis 

The purpose of the thesis is to develop a parallel 

implementation of the General Block Min Max Criterion (GBMM) 

which is designed by Dr. Keith Schubert. [7] GBMM is a 

robust estimationa method which tries to solve Ax = b where 

A is a matrix, b and x are vectors, especially when A is 

ill-conditionedb. This thesis not only tries to parallelize 

                     

a Robust estimation is “an estimation technique which is 

insensitive to small departures from the idealized assumptions which 

have been used to optimize the algorithm.” [11] 

b A matrix is ill-conditioned if the condition number 

( AAA ⋅= −1)(κ ) is large. The condition number is a measurement of 

whether a problem is good to digital computation. The condition number 

“gives a bound on how inaccurate the solution x will be after 
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GBMM so that it will be performed more rapidly, but also 

tries to see whether a pre block-chopped algorithm may 

better fit the checker board decompositionc method or not. 

1.3 Context of the Problem 

The context of the problem is to address whether the 

block decomposed structure can match the checker board 

decomposition which is a widely used parallel method. Matrix 

multiplication is notoriously time consuming, but is widely 

used in many fields both in research and industry, such as 

physics, chemistry, pollution detection, image clarification. 

1.4 Significance of the Thesis 

The significance of the thesis is, at least, twofold. 

First of all, robust estimation and identification is 

important in many ways as listed in previous sections. But 

it usually takes time to calculate. The speedup is an 

endless desire and a necessity, especially in scientific 

usage. If we wish to clarify a video instantly for driving 

in fog, the speed is definitely important in that situation. 

Parallel computing is a good method to speedup. 

                                                             

approximate solution. Note that this is before the effects of round-off 

error are taken into account.” 

c Checker board decomposition is a widely used method in parallel 

implication to get better speedup. 
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Secondly, whether the structure of an algorithm is an 

important issue to parallel or not? As a pre-block-chopped 

algorithm, GBMM is a good example to examine. 

1.5 Assumptions 

Although GBMM does not have the following assumptions, 

this thesis adds some assumptions listed below: 

1. The matrix A is chopped into equal size. 

2. The number of processes used is a perfect square 

number, say, 1, 4, 9, 16 … n2 …, etc. 

3. All the number of partitions, q and p, and matrix 

size, h and w, are multiple of n, the square root 

of the number of processes used. 

4. Assume none of the ψi in equation (6) listed in 

section 2.2 is zero. 

1.6 Limitations 

During the development of the thesis, a number of 

limitations were noted. These limitations are presented here. 

This parallel implementation is based on Cannon’s 

Algorithm which will be briefly introduced in 2.2; therefore, 

the number of processes should be a perfect square number. 

This is the reason why this thesis must have that assumption. 
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1.7 Definition of Terms 

The following terms are defined as they apply to the 

thesis. 

CPO – Communication Parallel Overhead. 

DM – Diagonal Matrix. 

Focused process – The process which is doing more work than 

the other processes. Usually, process 0 is the focused 

process, but not always so. 

GBMM – General Block Min Max. GBMM is a robust method 

proposed by Dr. Schubert. 

MPI – The Massage Passing Interface. MPI is a library 

specification for message-passing, proposed as a 

standard by a broadly based committee of vendors, 

implementers, and users. 

RCPO – Redundant Calculations Parallel Overhead. 

1.8 Organization of the Thesis 

This thesis is divided into five chapters. Chapter One 

provides an introduction to the context of the problem, 

purpose of the thesis, significance of the thesis, 

limitations, and definitions of terms. Chapter Two is a 

review of relevant literature. Chapter Three documents the 

methodology used in this thesis. Chapter Four presents the 

results from the research. Chapter Five gives the conclusion 
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of the thesis. Finally, the references for the thesis are 

listed. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Chapter Two presents discussion of the relevant 

literature. Section 2.2 describes the GBMM method. Section 

2.3 illustrates Cannon’s Algorithm. Section 2.4 gives an 

introduction to the Householder QR decomposition. Section 

2.5 mentions parallel QR decomposition. And a brief summary 

is presented in section 2.6. 

2.2 The General Block Min Max 
Criterion 

General Block Min Max Criterion (GBMM) is a robust 

method provided by Dr. Schubert. This section describes 

general ideas and equations that are used in this thesis. 

The general (block) perturbation min max problem is 

stated as 
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where 

A is the coefficient of Ax = b, where A belongs to m*n 

and b belongs to m. 
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q and p are block partition numbers of A on column and 

row, respectively. 

E is the errors in A. 

Eb is the errors in b 

The equations used in this thesis are listed below: 

Mi = ii bxA −,*       ...... (2) 

ζi,j = 
i

jji

M
x,η

      ...... (3) 

φi = 1 + 
i

ib
p

j
ji M

,

1
,

η
ζ +∑

=

     ...... (4) 

Φ = diag(φ1I, ..., φqI)   ...... (5) 

ψj = ∑
=

q

i ji

iji

1 ,

2
,

ζ
ϕη

      ...... (6) 

Ψ = diag(ψ1I, ..., ψpI)   ...... (7) 

where 

jiji E ,, =η  and ibib E ,, =η  are the amount of uncertainty in 

the matrix A and vector b, respectively. 

I is the identity matrix. 

Dr. Schubert provides a recursive method for GBMM. It 

has two recursive formulas: 

xi = Ψ-1 AT Φ (b - Axi-1)    for big Ψ .... (8) 

xi = (AT Φ A)-1 (AT Φ b - Ψxi-1)   for small Ψ .. (9) 



 

8 

where AT is the transpose of A and Ψ-1 is the inverse of 

Ψ. 

The Stopping condition is suggested as 

i

ii

x
xx 1−−

 ≤ δ  for δ between 10-4 and 10-8 (10) 

2.3 Cannon’s Algorithm 

This thesis uses Cannon’s Algorithm to calculate the 

matrix multiplication. The standard Cannon’s Algorithm 

requires the number of processes to be a perfect square 

number, n2. The processes are arranged in a 2-D mesh. Each 

process contains an equal partition of the matrix A and B as 

well. (See Figure 1) The number of iterations that the 

algorithm requires in order to complete the whole 

calculation is the square root of the number of processes, 

2n =n. Before all the iterations, both A and B need an 

initial shift to start the calculation. (See Figure 2) After 

each iteration, all of the processes need to transfer their 

own portion of A to their left processes, and the leftmost 

processes needs to send its own portion of A to the 

rightmost processes. Not only A but also B requires shifts 

as well. The difference is that B needs an up shift. (See 

Figure 3) After all the iterations, both A and B need a 
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final shift to restore all the partitions of A and B to the 

arrangement that existed before Cannon’s Algorithm began. 

In each iteration, each process does a serial matrix 

multiplication on the sub matrix the process has now. The 

sum of all the iterations in a process is the answer of the 

sub matrix that each process is responsible for. 

 

Figure 1. Initial distribution of blocks among 16 = 42 

processes. 
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Figure 2. Initial shift of Cannon’s Algorithm so that each 

process contains Ai,k and Bk,j which are what matrix 

multiplication requires. 
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Figure 3. The way Cannon’s matrix multiplication algorithm 
shifts. In C = A * B, sub-matrix A needs a left shift while 

sub-matrix B needs an up shift. 
 

2.4 The Householder QR 
Decomposition 

This thesis uses QR Decomposition instead of matrix 

inversion to calculate the matrix inversed in equation (9)e. 

                     

d Dr. Schubert uses Singular Value Decomposition (SVD) to compute 

the matrix inverse. SVD is more stable than QR but, of course, more 

complicated than QR. 
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The result obtained through the use of QR factorization is 

more stable than the one obtained from the inverse. 

QR decomposition forms an orthogonal projector of A on 

Q, so that A = QR where Q is an orthogonal matrix and R is 

an upper triangular matrix (UTM). 

The idea to use QR instead of the inverse is due to the 

fact that if 

  A = QR, 

then 

 Ax = b, 

which becomes 

 QRx = b. 

From the above, we can easily obtain 

 Rx = Q-1b. 

Because the only operator of x is the UTM R, it is very easy 

to solve for x. 

This thesis use Householder QR Factorization to compute 

the QR decomposition. The implementation of the Householder 

QR Factorization Algorithm in this thesis can be written as 

                                                             

e In the case of the diagonal matrix, Ψ, the inverse matrix of Ψ, 

Ψ -1 , can easily be calculated by inverting all the diagonal cells. 

Therefore, equation (8) needs neither inverse nor QR. 
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the following formulas, which closely resemble those used by 

Math Lab: 

for k  = 1 to n 

 x  = kmkA ,:      ...... (11) 

 kv  = xexxsign +121)(     ...... (12) 

 kv  = 
2

/ kk vv      ...... (13) 

 nkmkA :,:  = )(2 :,:
*

:,: nkmkkknkmk AvvA −    ...... (14) 

And the Q-1b is obtained by the following formulas: 

for k = 1 to n 

 mkb :  = )(2 :
*

: mkkkmk bvvb −     ...... (15) 

2.5 Parallel QR 

There are some parallel QR algorithms like [2], [4] [5] 

or [9]. This thesis applies none of them. Nor does this 

thesis use Givens rotation which is more easily parallelized 

than Householder transformation. It just parallelize 

Householder QR algorithm according to equation (11) through 

(14) naively. 

2.6 Summary 

The literature important to the thesis was presented in 

this chapter. For a full version, please refer to the 

bibliography. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

Chapter Three documents the methodologies used in this 

thesis. The test code uses many speedup methods. The methods 

listed here are directly related to the parallel programming. 

This chapter introduces methods mainly by the order of 

modules. Section 3.2 states reduce parallel overhead. 

Section 3.3 mentions general methods used in this thesis. 

Section 3.4 talks about speedup method used in Cannon’s 

Algorithm. Section 3.5 discusses other matrix multiplication 

used. Section 3.6 states how the transpose is designed. 

Section 3.7 describes the Householder QR Decomposition. 

Section 3.8 documents the implementation of solving linear 

equation by QR decomposition. Section 3.9 explains how the 

main GBMM subroutine goes. And finally, the main test 

program is described in Section 3.10. 

3.2 Reduce Parallel Overhead 

Parallel overheads hinder the parallel speedup from 

achieving the ideal value. The ideal speedup is just the 

number of processors used. These include extra calculation 

for parallel, communications between processes, 

synchronizing the processes, etc. This thesis deals with two 
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kinds of parallel overheads only: redundant calculations 

parallel overhead (RCPO) and communication parallel overhead 

(CPO). 

3.2.1 Reduce Redundant Calculation Parallel Overhead 

Redundant calculations parallel overhead are some 

calculations required in parallel program but not needed in 

serial programs. For example, getting the number of process 

used, knowing the ranking of this process, calculation of 

which portion of data this process is using, etc. 

In this thesis, some of these calculations include the 

calculation of a process’s 2-D coordinates and ranking, 

vertical ranking, horizontal ranking and local block size. 

It uses global variables so that they are calculated one 

time only in most cases. 

3.2.2 Reduce Communication Parallel Overhead 

Communication parallel overhead refers to the time 

spent on communications between processes which are totally 

unnecessary in serial programs. 

There are many ways to reduce the CPO. In addition to 

the checker-board decomposition, this thesis groups 

information that need to communicate together to reduce the 

latency. 
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Another method used in this thesis to reduce CPO is the 

application of Cannon’s algorithm. See section 3.4 for 

details. 

3.3 General Methods 

Some RCPO is not “calculations.” It maybe a simple if-

statement, especially if the if-statement is in a loop, it 

may cause detectable timing. This section states how this 

thesis deals with this kind of problem. 

3.3.1 Delete Unnecessary if 

Sometimes only the focused process has the correct 

answer. For example, at the end of a subroutine, we may need 

to write something like 

if (id==y) return α;f 

else   return β; 

Because only the id==y has the correct answer, α, letting 

all processes return α saves an if-statement on the process 

whose rank is y which is the focused process so that the 

parallel overhead will be reduced a tiny bit. 

For example, when calculating the 2-norm in a 

subroutine, each process calculates the sum of the square of 

                     

f Unless explained, the programs or partial codes listed in this 

document are C style. 
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each cell of the sub matrix it owns, and then does a sum 

reduction to the focused process. The focused process does a 

square root of the total sum, and then returns the answer, 

which is the 2-norm. The standard way to code on the last 

return should be 

return id==y ? garbage : sqrt(norm); 

The focused process can not start calculating the 

square root until the last partial squared sum has been 

received which is a short time later than the last message 

had been sent. Therefore, though this will cause all 

unfocused processes in the same communication group an extra 

square root calculation, but will save the focused process 

an if-statement. Hence reduce the parallel overhead on 

focused process a tiny bit. 

3.3.2 Loop Unrolling for parallel overhead 

Loop unrolling is frequently used to speedup serial 

program. It expands loops in some ways to allow instruction 

rescheduling, better register usage, or reduce overhead 

instructions so that the speedup is achieved. [12] 

Usually, when a program is parallelized, some extra if-

statement will be used which is a parallel overhead. If this 

happened in a loop, it usually can be reduced by loop 

unrolling. An example used in this research will be stated 

in 3.4. 
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3.4 About Cannon’s Algorithm 

As briefly noted in 2.3, Cannon’s Algorithm needs to 

shift both A and B on each iteration. The B in GBMM is a 

const matrix, see equation (9). Keeping all the square root 

of the number of process, n, portions of Bg required for 

each process in each process will reduce the time needed for 

communication, hence save n times of the communication of 

one over n2 portion of B. Though it wastes a little bit more 

than n times of RAM in each process, it speedups 

dramatically. 

The way this thesis uses the advantage of constant 

matrix B in Cannon’s Algorithm is as follows. The whole 

matrix B is cut into n columns and scattered to all 

processes from process 0. A three dimensional array, ***A, 

is used to hold the n portions the process requires. Not 

only the content of the ***A is all the value it needs, but 

also the order of the content is prearranged to what it will 

be used in Cannon’s Algorithm. That is, the A[0] in each 

process contains the portion for the first iteration of 

Cannon’s multiplication this process requires, A[1] the 

second, … A[n-1] contains the last one required in Cannon’s 

Algorithm. 

                     

g This will reduce the scalability of this algorithm. 
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The preorder treatment for the initial shift in 

Cannon’s algorithm is done by exchanging the pointer *A, not 

by switch the content of ***A so that the parallel overhead 

will be reduced. The preordered treatment helps each process 

to use just the A[i] to compute in the ith iteration of 

Cannon’s Algorithm. The processes need not to consider which 

sub 2-D array to use in this iteration. Not only no 

communication is performed for B, but also no tedious 

computation is executed. 

The way the memory is allocated in ***A is the same as 

C arranged 3-D array to get better locality in each sub 2-D 

array, **a, which is what really used in our algorithm. 

About the serial multiplication part of Cannon’s 

Algorithm, this thesis use both naively O(n3) standard 

matrix multiplication method and O(nlog27) ≈ O(n2.80735) 

Strassen’s Algorithm to implement it. [10] 

3.5 Multiplication 

Many kinds of matrix multiplication are used in this 

thesis, not just the matrix multiplication mentioned in the 

previous section. Matrix diagonal-matrix (DM) multiplication, 

DM matrix multiplication, row-vector matrix multiplication 

row-vector column-vector multiplication and matrix column-

vector multiplication are also used. 
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Among them, only the matrix column-vector 

multiplication, DM matrix multiplication and matrix DM 

multiplication are implemented in ways that parallel speedup 

may easily be detected. 

During calculations, sub-matrices and sub-vectors are 

distributed among processes. We do not need to gather them 

to a focused process and redistributed them. This is 

especially the case when, if we are lucky, the distributed 

answers are distributed in the way the following calculation 

needs -- there will be no CPO in this case. 

3.5.1 Row-Vector Matrix multiplication 

Let whole 2-D mesh processes contain corresponding sub 

matrix. Let each row of processes contain a full set of the 

row vector as figure 4 for matrix DM multiplication. After 

calculation, each row of processes has a set of the answer. 

3.5.2 Diagonal-Matrix multiplication 

A DM is a matrix with the property that the values of 

the entries that are not on the diagonal are zero. Therefore, 

we can use an one-Dimensional array to store the value of 

whole DM. 

The sequence the DM matrix and matrix DM multiplication 

is implemented as follows. Let whole 2-D mesh processes 

contain corresponding sub matrix. Let each row of processes 

contain a full set of the diagonal of the DM as figure 4 for 
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matrix DM multiplication. Let each column of processes 

contain a full set of the diagonal of the DM as figure 5 for 

DM matrix multiplication. Thus, each process contains all 

the values it needs to calculate the matrix DM or DM matrix 

multiplication of its own portion. 

 

Figure 4. The portion that each process contains to perform 
the matrix diagonal-matrix multiplication. 
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Figure 5. The portion that each process contains to perform 
the diagonal-matrix matrix multiplication. 

Thus, there will be no CPO if the DM was stored as the 

multiplication demanded before the multiplication begins. 

3.6 The Transpose 

Both the vector and matrix may need to be transposed. 

The vector or matrix may be in focused process before the 

transpose is required or the vector or matrix has been 

scattered in processes already. Though this will have four 

different situations, the thesis used only two of them: 

vector transpose when the vector has been scattered and 

matrix transpose when the matrix is in the focused process 

only. 

3.6.1 The Vector Transpose 

In this thesis, all vectors are stored as one-

dimensional array. It depends on the function to interpret 

whether it is a column vector, row vector, or, even the 

diagonal of a DM. 

Before entering the subroutine, all vectors had been 

row wise or column wise scattered among processes already. 

In the subroutine, calculate local size first, and then 

allocate memory for transposed vector. If the process is on 

the diagonal of the process 2-D mesh, copy the original 

values to the memory prepared for transposed vector. 
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Otherwise, calculate the rank of the destination process, 

send to and receive from the destination process the vector. 

Return the pointer points to the transposed vector. 

3.6.2 The Matrix Transpose 

The only one transpose happens in this thesis is at the 

beginning of the GBMM subroutine where the deblur matrix is 

stored in the focused process before been scattered and 

transposed. 

In the matrix transpose subroutine, calculate local 

size first, and then allocate memories for both 

communication buffer and transposed sub matrix. The focused 

process calculates the rank of each process, gather 

corresponding sub matrix to a continuous RAM, scatters the 

corresponding part of the sub matrix to correct processes. 

Note that only the content of the sub matrix, **A, are 

transferred. The index of the **A, *A, are calculated at the 

time the memory is allocated because both the sent and the 

received sub matrices are of the same arrangement and the 

same size. Thus, eliminate the unnecessary communication 

which is a redundant CPO. 

The order to scatter the matrix is from the largest 

rank to the smallest rank, the focused one. This will save a 

memory block on the focused process and save the time to 

copy from transfer buffer to the working buffer. 
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Each process begins transposing its own sub matrix 

after it has received the values it required. Then, free up 

the transfer buffer. 

3.7 The Householder QR 
Decomposition 

In the Householder QR decomposition subroutine, it 

calculates local size first, and then allocates memories for 

r, R, v, and V, where V is the matrix that collects the 

reflection vectors (RV), v. The final step of the initial 

work is copy A into R. Because x is useless after equation 

(12) and is almost the same as v except for the first 

element, there is no x exist in RAM. The v totally handles 

all the functions x need. 

In implementing the loop of the Householder QR 

decomposition, it calculates the local size of k:m and k:n 

(see equation (11)), gets the rank, id_now, of the process 

which contains the current k, place the if-statement which 

judges the process coordinates outside the loop of partial-

squared-sum calculations to reduce the RCPO in loop, send 

the answer to the focused process, and sums the answer up to 

get the squared sum, n2, of the vector. The process whose 

rank is id_now calculates the square-root of n2 to get the 

2-norm of x. Change the value of the first element of v 

according to the equation (12). 
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About the equation (13), calculate the 2-norm of v 

through change of n2, broadcast the 2-norm of v to those who 

are in the same column of the focused process, the one whose 

rank is id_now, in the process 2-D mesh. Then the processes 

that contain the useful part of v normalize v. 

Now start dealing with the equation (14). Broadcast the 

useful part of v horizontally so that the distribution of v 

matches the condition that the row-vector matrix 

multiplication needs. If the process contains useful part of 

v, make a pointer array, *s, in which each element points to 

a special address of A so that **s is just the sub matrix 

that equation (14) requires. Multiply row vector v and the 

sub matrix, **s. Otherwise, make an array that all the 

elements value are zero which represent the answer of zero 

vector times a sub matrix. Do a sum-reduction in the 

processes that are in the same column of the focused process. 

Broadcast the result, v’, to processes that are in the same 

column of the focused process. Separate this column of 

processes into four groups according to the position that 

the process relates to the focused one so that there is no 

RCPO in the loop when doing the final part of equation (14), 

nkmkA :,:  = )'(2:,: vvA knkmk − . Copy the answer to the V matrix which 
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consists of the v. Free up memories, set the return pointer 

points to V. 

3.8 The Solving for x by QR 

Consider the linear equation Ax = b, where A is a 

matrix and b and x are vectors. The solution can be found by 

QR factorization of A, if A is not singular, as following: 

 A x =   b 

QR x =   b 

 R x = Q-1b 

Then, solve for x through the last equation by back-

substitution because R is a UTM (see section 2.4). And the 

Q-1b can be obtained by the equation (15) listed in section 

2.4. 

The parallel implementation of the equation (15) is 

preceded by calculation of local matrix size. Then, copy 

vector b to a temporary vector, qb, call QR decomposition 

function to get V and R, where V is the matrix that collects 

the reflection vectors (RV), v. 

In the main part of the equation (15), starts a loop 

from zero to number of processes used -1, n-1, as the index 

for columns of 2-D process mesh. Then, if the processes 

contain the value of the RVs, send the whole sub V matrix to 

the processes in the first column in corresponding row. 
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Start a loop from zero to the width of the local matrix 

minus one. Separate the processes in the first column into 

three groups according to what it contains about v: no valid 

v, partial v, or full v to calculate the partial )(2 :
*

mkkbv . 

Call MPI_Allreduce to get the sum of the partial )(2 :
*

mkkbv , 

the true )(2 :
*

mkkbv . Calculate the mkb :  = )2( :
*

: mkkkmk bvvb − . 

Broadcast the qb horizontally to match the parallel back-

substitution requires. 

The sequence of the back-substitution is listed below. 

The pretreatment includes calculating the local matrix size, 

allocating memories, making a copy of vector b so that the b 

will remain unchanged after this calculation and calculating 

the last equation am,n xn = bm. 

For the loop part, the outer loop runs from n-1 down to 

zero while the inner loop runs from local width minus one, 

w1, down to one. The two nested loops form the whole range 

of the width of the original matrix. Vertically broadcast 

the xm which has been pre-calculated in the pretreatment or 

previous iteration. Let all the processes on the same column 

of focused process calculate their own part of xn-1 = [(bm) – 

a*,nxn] / a*,n-1. After the inner loop, broadcast the xlowest_one 

vertically as the pre-calculated xn of the next iteration of 

the outer loop. If the focused process is not in the first 
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column of process 2-D mesh, send the x to the process left 

to itself. 

At the end of this function, free up the memory which 

stores the copy of vector b, return the calculated x. 

3.9 The General Block Min Max 

The main GBMM routine implements the equations (2) to 

(10) listed in section 2.2 to get the answer. It sets all 

the local global variablesh first to reduce the RCPL. Then, 

it distributes the deblur matrix, A, to each process as 

Cannon Algorithm’s matrix B and shift it as mentioned in 

section 3.4. The routine transpose it to each process, then, 

scatters the vector b, ηb, and the matrix η in checker-board 

style. Set all xi to 1 as the seed of the first iteration. 

Set the pointer to b transpose points to b by the fact that 

b transpose equals to b in process 0, the focused one. In 

other process, allocate memory for transposed vector of b 

for processes in the first column. Calculate the transposed 

coordinate and rank. Except for the focused one, all the 

processes in the first row send its own b to the 

corresponding processes in the first column. 

                     

h The global variables are set in the same gbmm.c file only to 

preserve some data security. 
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In the iteration part, the routine broadcasts x 

vertically if this is not the first iteration. Then it 

calculates Ax, calculates the equation (2), (3), Φ and Ψ. It 

frees up the memories used by equations (3) and (2). It 

transposes Φ to be horizontally distributed so that the 

distribution fits the requirement that the matrix DM 

multiplication requires. It frees up the memory used by Φ. 

It calculate the ATΦ. It frees up the memory used by the 

horizontal version of Φ. Then it calculates the norm of Ψ. 

It broadcasts the value horizontally so that each process 

has the norm of Ψ. The threshold to determine to use 

equation (8) or (9) is set to be 100. 

In the implementation of equation (8), the big Ψ 

version, the code starts with calculating the inverse of the 

ψi. Transpose the distribution of Ψ among processes from 

horizontally to verticallyj. Then calculate the Ψ-1 ATΦ. 

Transpose Ax from the first column to the first row. Let the 

processes in the first row calculate b - Ax and store it in 

Ax. Broadcast it vertically. Finally, use the matrix column-

                     

i See footnote e on section 2.4. 

j There is no need to transpose if the processes are on the 

diagonal, of course. 
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vector multiplication subroutine to calculate the new x, Ψ-1 

ATΦ (b - Ax). 

In the implementation of equation (9), the small Ψ 

version, the code begins with calculating the ATΦ b through 

matrix column-vector multiplication subroutine. Then the 

processes in first row calculate Ψx. Transpose the value of 

Ψx from stored in the first row of processes to the first 

column ones. Let the first column processes calculate the 

ATΦb - Ψx and store them in the same address of those who 

store ATΦb. Let all processes calculate ATΦ A. Use QR 

subroutine to solve for x in equation (9), x = (ATΦA)-1 (ATΦb 

- Ψxi-1). Free up ATΦb. 

No matter the norm of Ψ is big or small, now start 

dealing with the final parts: free up memories used in all 

processes. The processes in the first row copy new x, 

calculate equation (10), the 
i

ii

x
xx 1−−

 ≤ δ, and free up the 

unused memories and set pointer of x to new one. The process 

0 broadcasts the δ to all processes, increases the iteration 

counter. Finally, all processes check the condition of 

whether the next iteration is needed by check the δ and 

iteration counter. 
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After all iterations, free up all the memories used. 

Perform a gather action. Finally, free up the memory used by 

x. 

3.10 The Main Test Program 

The main test program is written as follows. It reads 

in the η and the ηb files. The 2-D numbers of partitions are 

written in the η file. The program generates a random matrix 

as an original “image” / vectors sources. Then, generates a 

random square matrix as the blur matrix. Blur the “image” by 

the blur matrix. The uncertainty bound of the blur matrix is 

bound by 20% of the maximum of each partition. Transpose the 

“image” so that the original column vectors are continuously 

stored in memory, that is, it is now row vectors which, in C, 

is stored continuously. Finally, it starts to deblur the 

vectors one by one and sets the time stamp just before and 

after the calling of the GBMM subroutine. 
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CHAPTER FOUR 

RESULTS 

4.1 Introduction 

Included in Chapter Four was a presentation of the 

results of the thesis. Section 4.2 states the hardware and 

software used. Section 4.3 lists the numerical result. 

Section 4.4 analysis the result. Finally, the summary of the 

research is stated. 

4.2 Machine used 

Raven is the machine that this thesis has used to run 

the programs. It is a cluster computer composed of thirteen 

Compaq ProLiant DL360 G2 computers. The ProLiant DL360 G2 

has dual Intel® Pentium© III 1.40GHz on board, L1 cache is 

128KB, L2 cache is 512KB on-die. Each computer has 512 MB of 

133MHz SDRAM 2:1 interleaved. Two Compaq NC 7780 Gigabit 

Ethernet NICs Embedded 10/100/1000 which are optimized for 

best latency, but only one of them is connected to the 

router. [14] The router used is D-Link DGS-3224TG, which is 

a 20-port managed layer 2 Gigabit Ethernet switching hub. 

The operation system used is Red Hat Linux 3.4.20-8smp with 

gcc version 3.2.2-5. MPI 1.2 is used as the interface. 
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4.3 Numerical Result 

This thesis is tested on Raven uses one, four, nine, 

and sixteen processors. The 2-D partition number, q and p, 

are always the same, namely, twelve and twelve, throughout 

the test listed in this document. The heights of the “image” 

used to test are multiple of 60 from 180 through 1380. The 

widths of the “image” used to test are all the same, namely, 

twelve. The δ in equation (10) in section 2.2 is set to be 

10-30 to cause a virtual infinite loop so that the number of 

iteration can be controlled. The serial part of the Cannon’s 

Algorithm is implemented in two different ways: the standard 

matrix multiplication and Strassen’s Algorithm. 

 

4.3.1 Standard Matrix Multiplication 

The number of “images” used is ten if the image height, 

h, is smaller than 660. It is six if h is 660, 720 or 780. 

It is five if h is 840, 900, 960 or 1080. It is four if h is 

1020 or 1200. It is three if h is 1140 or 1260. It is two if 

h is 1320 or 1380. The result of the time needed and the 

corresponding graph are listed below. 
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Size   Proc. 1 4 9 16 

180  0.532 4.760 4.095 6.015 
240  2.153 7.242 6.431 6.812 
300  5.658 9.483 8.172 8.526 
360  12.374 11.220 10.425 10.325 
420  22.357 14.229 12.602 12.271 
480  37.283 17.794 14.773 14.149 
540  56.412 29.470 17.133 16.280 
600  77.887 36.044 19.777 18.303 
660  105.033 55.879 22.973 21.012 
720  137.464 66.949 28.255 24.308 
780  177.919 93.987 35.999 29.239 
840  223.167 110.904 48.308 34.469 
900  277.959 145.708 62.328 41.158 
960  571.489 178.777 83.245 45.703 

1020  409.968 214.258 97.979 61.006 
1080  489.306 257.634 119.555 73.932 
1140  573.724 297.162 142.294 92.600 
1200  682.590 351.683 173.309 97.441 
1260  785.533 398.219 198.378 132.042 
1320  893.648 463.022 230.760 147.963 
1380  1020.838 520.903 267.046 173.182 

Table 1. Time needed for ten GBMM iterations for vector size 

from 180 through 1380 for 1, 4, 9 and 16 processors. 
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Figure 6. Time needed for ten GBMM iterations for vector 

size from 180 through 1380 for 1, 4, 9 and 16 processors. 

According to the time recorded, the speedup, which is 

the ratio between the sequential execution time and the 

parallel execution time is calculated, listed and plotted 

below. 
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Size   Proc. 4 9 16 

180 0.112 0.130 0.088 
240 0.297 0.335 0.316 
300 0.597 0.692 0.664 
360 1.103 1.187 1.199 
420 1.571 1.774 1.822 
480 2.095 2.524 2.635 
540 1.914 3.293 3.465 
600 2.161 3.938 4.255 
660 1.880 4.572 4.999 
720 2.053 4.865 5.655 
780 1.893 4.942 6.085 
840 2.012 4.620 6.474 
900 1.908 4.460 6.753 
960 3.197 6.865 12.504 

1020 1.913 4.184 6.720 
1080 1.899 4.093 6.618 
1140 1.931 4.032 6.196 
1200 1.941 3.939 7.005 
1260 1.973 3.960 5.949 
1320 1.930 3.873 6.040 
1380 1.960 3.823 5.895 

Table 2. Speedup on 4, 9, 16 processors for vector size from 

180 through 1380. 
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Figure 7. Speedup on 4, 9, 16 processors for vector size 

from 180 through 1380. 

 

4.3.2 Strassen’s Algorithm 

The number of “images” used is all the same, namely, 

two, in testing the speedup if the serial part of Cannon’s 

Algorithm is implemented in Strassen’s Algorithm. The result 

of the time needed and the corresponding graph are listed 

below. 
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Size   Proc 1 4 9 16 
180 0.532 4.606 4.000 5.959 
240 1.358 7.298 6.440 6.776 
300 3.267 9.394 8.257 8.444 
360 6.722 10.993 10.376 10.306 
420 11.834 13.047 12.712 12.260 
480 19.712 15.305 16.838 14.142 
540 28.973 20.062 16.876 16.373 
600 42.901 26.185 18.956 18.303 
660 57.960 36.535 21.293 20.717 
720 76.145 45.340 24.477 24.114 
780 97.243 60.519 29.637 27.665 
840 122.503 73.044 38.079 31.230 
900 167.043 93.323 47.200 35.660 
960 229.045 124.835 61.374 39.901 

1020 242.863 137.547 71.824 49.590 
1080 266.533 161.112 88.637 57.717 
1140 362.473 193.199 102.805 70.793 
1200 391.721 226.431 127.123 96.325 
1260 449.664 258.130 141.275 97.704 
1320 506.156 297.431 163.541 108.862 
1380 582.519 335.688 187.471 128.020 

Table 3. Time needed for ten GBMM iterations for vector size 

from 180 through 1380 for 1, 4, 9 and 16 processors. 
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Figure 8. Time needed for ten GBMM iterations for vector 

size from 180 through 1380 for 1, 4, 9 and 16 processors. 

According to the time recorded, the speedup is 

calculated, listed and plotted below. 
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Size   Proc. 4 9 16 

180 0.115 0.133 0.089 
240 0.186 0.211 0.200 
300 0.348 0.396 0.387 
360 0.611 0.648 0.652 
420 0.907 0.931 0.965 
480 1.288 1.171 1.394 
540 1.444 1.717 1.770 
600 1.638 2.263 2.344 
660 1.586 2.722 2.798 
720 1.679 3.111 3.158 
780 1.607 3.281 3.515 
840 1.677 3.217 3.923 
900 1.790 3.539 4.684 
960 1.835 3.732 5.740 

1020 1.766 3.381 4.897 
1080 1.654 3.007 4.618 
1140 1.876 3.526 5.120 
1200 1.730 3.081 4.067 
1260 1.742 3.183 4.602 
1320 1.702 3.095 4.650 
1380 1.735 3.107 4.550 

Table 4. Speedup on 4, 9, 16 processors for vector size from 

180 through 1380. 
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Figure 9. Speedup on 4, 9, 16 processors for vector size 

from 180 through 1380. 

 

4.4 Result Analysis 

4.4.1 Small Image Clarification 

The parallel speedup effect begins when the vector size 

is larger than 350 and 450 when using standard and 

Strassen’s Algorithm, respectively which are both larger 

than the NTSC VCD image size, 320 * 240. This gives a hint 

that unless a parallel speedup algorithm whose speedup 

threshold is apparently smaller than, say, 280 appears, it 
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is useless trying to use parallel method to get better 

speedup on application of small images. 

4.4.2 Speedup 

The speedup “looks” good on both algorithms when vector 

size is smaller than, say, 750. According to Amdahl effect 

which says that “for a fixed number of processors, speedup 

is usually an increasing function of the problem size,” the 

curve should not bend down or stay around 2.0, 4.5 and 6.5 

on 4, 9 and 16 processors respectively for a standard 

algorithm and around 1.7, 3.2 and 4.2 for Strassen’s 

Algorithm on 4, 9 and 16 processors respectively. The reason 

for that may be that the Ethernet cards on the Raven are 

optimized for latency but the algorithms used in this thesis 

are all designed for optimized on bandwidth. 

 

4.4.3 Pre Block-Chopped Algorithm 

The implementation of equations (5) and (7) does not 

use the fact that the value in Φ and Ψ are not totally 

different. Instead of having different values of the number 

of the height and width of the deblur matrix, they have only 

the number of the partitions, q and p, different values, 

respectively. Making use of that fact to implement the 

equations (5) and (7), especially the equations (8) and (9) 
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where DM multiplication is dealt with, in parallel may get a 

little bit speedup. 

But by simply benchmark each step of GBMM, the ratio of 

the time spent on the final step of equation (9), the 

solving x = Ω-1 β, to the time spent on the whole GBMM is 

huge. It ranges from 0.29 to 0.46 on serial version. It 

ranges from 0.58 to 0.96 (the average is 0.664) on four 

processes test. On nine and sixteen processes test, it 

ranges from 0.64 to 0.91 (average 0.732) and 0.65 to 0.91 

(average 0.781), respectively. (See Table 5) This shows that 

the final step of equation (9) is the bottle neck of the 

speedup in this implementation of GBMM, especially the more 

processes is used, the more the average of the ratio is. 

The fact that more than half of the time is spent on 

solving x = Ω-1 β, especially the more processes is used, 

the more the average of the ratio is, tells us that unless 

there exist an parallel algorithm which can make good use of 

the pre-chopped characteristic to solve x = Ω-1 β, or there 

exist an parallel algorithm that can fast and accurate to 

solve x = Ω-1 β, the pre-chopped nature in GBMM does not 

lead to easily parallel speedup through checker-broad 

decomposition method. 

 

Size CPU 1 4 9 16 
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 Time W Time 9 Ratio Time W Time 9 Ratio Time T Time 9 Ratio Time W Time 9 Ratio

180 0.023 0.05 0.46 0.363 0.38 0.96 0.280 0.37 0.76 0.476 0.53 0.90

240 0.067 0.23 0.29 0.586 0.62 0.95 0.499 0.56 0.89 0.463 0.53 0.87 

300 0.182 0.56 0.32 0.741 0.83 0.89 0.463 0.51 0.91 0.768 0.87 0.88 

360 0.450 1.26 0.36 1.059 1.20 0.88 0.811 0.89 0.91 0.949 1.08 0.88 

420 0.856 2.25 0.38 1.249 1.59 0.79 1.022 1.20 0.85 1.071 1.24 0.86 

480 1.494 3.74 0.40 1.437 1.87 0.77 1.204 1.38 0.87 1.335 1.53 0.87 

540 2.248 5.60 0.40 1.778 2.88 0.62 1.365 1.61 0.85 1.548 1.71 0.91 

600 3.241 7.81 0.41 2.514 3.88 0.65 1.557 1.90 0.82 1.732 1.96 0.88 

660 4.453 10.54 0.42 3.333 5.85 0.57 1.796 2.34 0.77 1.887 2.21 0.85 

720 5.925 13.79 0.43 4.252 7.09 0.60 1.994 2.76 0.72 1.967 2.40 0.82 

840 9.811 22.39 0.44 6.779 11.55 0.59 3.356 5.09 0.66 2.842 3.55 0.80 

900 12.314 27.76 0.44 8.732 15.02 0.58 4.081 6.27 0.65 2.982 4.10 0.73 

960 19.089 57.36 0.33 10.597 18.17 0.58 5.541 8.44 0.66 3.360 4.53 0.74 

1020 18.845 41.34 0.46 12.819 21.97 0.58 6.505 10.15 0.64 4.158 6.12 0.68 

1080 22.267 48.99 0.45 14.766 25.87 0.57 7.834 12.25 0.64 5.262 7.59 0.69 

1140 26.346 57.73 0.46 17.372 30.05 0.58 9.164 14.45 0.63 6.478 9.63 0.67 

1200 31.098 68.47 0.45 20.155 35.19 0.57 10.917 17.24 0.63 7.093 10.17 0.70 

1260 35.922 78.48 0.46 23.227 40.31 0.58 12.889 20.32 0.63 9.054 13.57 0.67 

1320 41.142 90.28 0.46 26.742 46.73 0.57 15.007 23.72 0.63 9.973 15.34 0.65 

1380 46.442 102.46 0.45 30.203 52.51 0.58 17.290 27.38 0.63 11.868 17.98 0.66 

Average 0.413 0.664 0.732 0.781

Table 5. Simply test the time spend on whole GBMM (Time W) 

and on the last step of equation (9) (Time 9) on 1, 4, 9, 

and 16 processes. The ratio of the Time W to the Time 9 is 

calculated and listed right to the elements recording that 

test. 
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4.5 Summary 

Neither deblur small images nor the advantage of the 

pre-chopped structure of GBMM can be achieved by the 

parallel methods used in this research. 
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CHAPTER FIVE 

CONCULSION 

5.1 Introduction 

Chapter Five presents the conclusion of the thesis. 

Lastly, the Chapter concludes with a summary 

5.2 Known Problems That Hinder 
the Parallel Speedup 

There are some known problems that hinder the parallel 

speedup. Section 5.2.1 describes problems in the 

implementation of QR decomposition. Section 5.2.2 states the 

memory allocation problem. Section 5.2.3 suggests using 

better MPI functions. 

5.2.1 Problems about implement QR 

As described in section 4.4.3, the final step of the 

equation (9), the solving x = Ω-1 β, is the bottle neck of 

the parallel speedup in this implementation of GBMM. 

Therefore, if we want to improve instead of re-design the 

algorithms used in this research, it is the QR and solve-

through-QR that one should first put the effort to. 

In the implementation of QR decomposition, there are 

many chances that only part of the processes in the same 

column as the focused process need to have the value from 

the focused one. For example, the upper part of the process 

may not need to be involved in the communication when k is 
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larger than the height of the matrix over the square root of 

the number of process, n. The program broadcasts the value 

to all processes in the same column by using standard 

broadcast function, MPI_Bcast, in stead of designing a 

suitable and fast algorithm to send messages only to the 

ones that need the value in all the implementation similar 

to that. 

Of course, one may re-design these two algorithms, QR 

and solve through QR, through better parallel QR algorithm 

such as Given’s rotation. This should get better parallel 

speedup. 

5.2.2 The Memory Allocation 

There are too many memory allocations and frees used in 

this implementation. Calculate the total memory needed in 

the beginning of GBMM subroutine and allocate it one time at 

the beginning of the GBMM main subroutine, calculate all the 

pointers point to different and suitable address should both 

speedup the serial version and reduce some parallel overhead. 

Hence, the parallel speedup should be a little bit more than 

this version. 

5.2.3 Using Better MPI functions 

MPI has more than four sets of send / receive functions: 

standard (MPI_Send), nonblocking (MPI_Isend), synchronous 

(MPI_Issend) and user-specified buffer (MPI_Bsend). For most 
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of the algorithms used in this research are suitable to use 

specified send / receive functions such as user-specified 

function or synchronous function. The MPI send / receive 

functions used in this research are all basic ones: MPI_Send 

and MPI_Recv. For example, using user-specified buffering 

may reduce time for copying the content. 

5.2.4 Adjust the threshold 

Though equation (8), the big Ψ version, is rarely used 

in practice, the test code sets threshold to be 100, which 

is found to be somewhat too large. The result is that none 

of the more than 8000 test samplesk run on equation (8). 

They all run on equation (9). 

Equation (8) is faster than Equation (9). It does not 

need to calculate QR decomposition. The inversion of the 

diagonal cells can be fully parallelized so that its 

parallel speedup is more than Equation (9). Therefore, the 

average parallel speedup of GBMM should be a little bit 

higher. 

5.3 Further Study 

There are many ways to do further studies. For accuracy, 

use singular value decomposition (SVD) instead of QR to 

                     

k About 3000 of the test samples are done during the program test. 

They are not listed in chapter 4. 
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solve the problem. For speed, try to use even find faster 

parallel speedup method to solve x = A-1 b. For matching the 

design, use parallel computer whose Ethernet cards are tuned 

for bandwidth and retest this algorithm. 

The reason for the outlying point on the one process 

version at size 960 is still unknown. It had been run many 

times during more than two months on three different 

Pentium-based computers. It seems to be something related to 

the problem about matrix multiplication. It was found that 

the more the matrix size is related to power of two, the 

slower it seems to be. The experiments show that the average 

Megaflops is around 180 on the test machine, but it drops to 

around 40 when size is 256, 384, 448, 512, 576, 640, 704, 

768, 832, 896, 960, 1024 or 1088. It drops to around 120 

when size is 320, 448, 544, or 608. It drops down to around 

90 when size is 800, 864. (See Figure 10) 

960 is the only test size of GBMM in this research that 

hits on one of the slow point. So it shows a big outlying 

point there. 
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Figure 10. A strange phenomenon about the Megaflops drop on 

matrix multiplication. The unit on x axis is the size of 

matrix, on y is the Megaflops. No matter the code is 

compiled with Linux gcc –O3 option or not, it drops. 

One more thing can be suggested here for further 

research. In fact, about 150 of the more than 8000 samples 

(less than 1.875%) take long run time on four, nine, or 

sixteen processes for unknown reason. Twelve of them are 

around six times long and others are about twice as long. 

They are all grouped in “images”, which means that it should 

be related to the deblur matrix. But by inspecting the code, 
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all the if-statement are related to process rank, none of 

them are related to matrix or vector value. 
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