

PARALLEL PROGRAMMING ON

General Block Min Max Criterion

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

ChuanChe Lee

September 2006

Parallel Programming on

General Block Min Max Criterion

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

ChuanChe Lee

September 2006

Approved by:

Dr. Keith Schubert, Chair, Computer Science Date

Dr. Ernesto Gomez

Dr. Richard Botting

© 2006 Lee, ChuanChe

iii

ABSTRACT

General Block Min Max Criterion (GBMM) is a pre-2D-

chopped robust estimation method designed by Dr. Schubert.

It may be applied on image clarification, pollution

detection … etc. This thesis tries to parallelize GBMM

method not only to speedup it, but also to see whether a

pre-chopped algorithm is suitable to be implemented in

checker-board method or not.

iv

ACKNOWLEDGMENTS

The support of God is gratefully acknowledged.

Trust in the LORD with all your heart, and lean not on

your own understanding; In all your ways acknowledge Him,

And He shall direct your paths. Do not be wise in your own

eyes; Fear the LORD and depart from evil. (Proverbs 3:5-7,

NRSV)

I would first thank Dr. Keith Schubert, my advisor, who

has encouraged me through my studies at California State

University, San Bernardino. He explained to me in detail his

dissertation so that I could start my master’s thesis. He

has also helped me to solve problems involving the machines

I have used to run my thesis program. He has given me

insights about how to design my thesis. I am grateful to Dr.

Schubert for all these and many other helps that I have

received from him.

Thanks also go to Dr. Ernesto Gomez, who has taught me

C++ so that I could resume coding in that language after

more than ten years’ suspension. Dr. Gomez has also helped

me with hardware, interface and software problems.

I would thank Dr. Richard Botting, who has taught me

concepts of programming languages and shown kind concern for

my health.

v

Thanks also go to Dr. Owen Murphy, who was one of my

committee members. He taught me computation theory and

algorithm. He explained to me in detail the structure of a

thesis proposal so that I could start writing my thesis.

I would thank Yenru Tzeng, my wife, who has taken care

of me and my two kids during my studies at California State

University, San Bernardino.

I would also thank Mr. Brian Finch, who has helped me

with English language problems for almost three years.

I am grateful to Dr. Raymond Klefstad, a Professor of

Electrical Engineering & Computer Science at University of

California, Irvine. Dr. Klefstad provided me with a chance

to use the Emulab as a backup cluster system.

DEDICATION

To my dear parents who have supported me both

mentally and financially.

v

TABLE OF CONTENTS

CHAPTER ONE BACKGROUND

1.1 Introduction................................... 1

1.2 Purpose of the Thesis.......................... 1

1.3 Context of the Problem......................... 2

1.4 Significance of the Thesis..................... 2

1.5 Assumptions.................................... 3

1.6 Limitations.................................... 3

1.7 Definition of Terms............................ 4

1.8 Organization of the Thesis..................... 4

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction................................... 6

2.2 The General Block Min Max Criterion............ 6

2.3 Cannon’s Algorithm............................. 8

2.4 The Householder QR Decomposition.............. 11

2.5 Parallel QR................................... 13

2.6 Summary....................................... 13

CHAPTER THREE METHODOLOGY

3.1 Introduction.................................. 14

3.2 Reduce Parallel Overhead...................... 14

3.2.1 Reduce Redundant Calculation
Parallel Overhead............................ 15

3.2.2 Reduce Communication Parallel
Overhead..................................... 15

3.3 General Methods............................... 16

3.3.1 Delete Unnecessary if.................. 16

vi

3.3.2 Loop Unrolling for parallel overhead
... 17

3.4 About Cannon’s Algorithm...................... 18

3.5 Multiplication................................ 19

3.5.1 Row-Vector Matrix multiplication....... 20

3.5.2 Diagonal-Matrix multiplication......... 20

3.6 The Transpose................................. 22

3.6.1 The Vector Transpose................... 22

3.6.2 The Matrix Transpose................... 23

3.7 The Householder QR Decomposition.............. 24

3.8 The Solving for x by QR....................... 26

3.9 The General Block Min Max..................... 28

3.10 The Main Test Program........................ 31

CHAPTER FOUR RESULTS

4.1 Introduction.................................. 32

4.2 Machine used.................................. 32

4.3 Numerical Result.............................. 33

4.3.1 Standard Matrix Multiplication......... 33

4.3.2 Strassen’s Algorithm................... 37

4.4 Result Analysis............................... 41

4.4.1 Small Image Clarification.............. 41

4.4.2 Speedup................................ 42

4.4.3 Pre Block-Chopped Algorithm............ 42

4.5 Summary....................................... 45

CHAPTER FIVE CONCULSION

vii

5.1 Introduction.................................. 46

5.2 Known Problems That Hinder the Parallel
Speedup... 46

5.2.1 Problems about implement QR............ 46

5.2.2 The Memory Allocation.................. 47

5.2.3 Using Better MPI functions............. 47

5.2.4 Adjust the threshold................... 48

5.3 Further Study................................. 48

viii

LIST OF TABLES

Table 1. Time needed for ten GBMM iterations for
vector size from 180 through 1380 for 1,
4, 9 and 16 processors........................ 34

Table 2. Speedup on 4, 9, 16 processors for vector
size from 180 through 1380.................... 36

Table 3. Time needed for ten GBMM iterations for
vector size from 180 through 1380 for 1,
4, 9 and 16 processors........................ 38

Table 4. Speedup on 4, 9, 16 processors for vector
size from 180 through 1380.................... 40

Table 5. Simply test the time spend on whole GBMM
(Time W) and on the last step of equation
(9) (Time 9) on 1, 4, 9, and 16 processes.
The ratio of the Time W to the Time 9 is
calculated and listed right to the
elements recording that test.................. 44

ix

LIST OF FIGURES

Figure 1. Initial distribution of blocks among 16
= 42 processes. 9

Figure 2. Initial shift of Cannon’s Algorithm so
that each process contains Ai,k and Bk,j
which are what matrix multiplication
requires..................................... 10

Figure 3. The way Cannon’s matrix multiplication
algorithm shifts. In C = A * B, sub-
matrix A needs a left shift while sub-
matrix B needs an up shift................... 11

Figure 4. The portion that each process contains
to perform the matrix diagonal-matrix
multiplication............................... 21

Figure 5. The portion that each process contains
to perform the diagonal-matrix matrix
multiplication............................... 22

Figure 6. Time needed for ten GBMM iterations for
vector size from 180 through 1380 for 1,
4, 9 and 16 processors....................... 35

Figure 7. Speedup on 4, 9, 16 processors for
vector size from 180 through 1380............ 37

Figure 8. Time needed for ten GBMM iterations for
vector size from 180 through 1380 for 1,
4, 9 and 16 processors....................... 39

Figure 9. Speedup on 4, 9, 16 processors for
vector size from 180 through 1380............ 41

Figure 10. A strange phenomenon about the
Megaflops drop on matrix multiplication.
The unit on x axis is the size of matrix,
on y is the Megaflops. No matter the
code is compiled with Linux gcc –O3
option or not, it drops...................... 50

1

CHAPTER ONE

BACKGROUND

1.1 Introduction

The content of Chapter One presents an overview of the

thesis. The contexts of the problem are discussed followed

by the purpose, significance of the thesis, and assumptions.

Next, the limitations that apply to the thesis are reviewed.

Finally, definitions of terms are presented.

1.2 Purpose of the Thesis

The purpose of the thesis is to develop a parallel

implementation of the General Block Min Max Criterion (GBMM)

which is designed by Dr. Keith Schubert. [7] GBMM is a

robust estimationa method which tries to solve Ax = b where

A is a matrix, b and x are vectors, especially when A is

ill-conditionedb. This thesis not only tries to parallelize

a Robust estimation is “an estimation technique which is

insensitive to small departures from the idealized assumptions which

have been used to optimize the algorithm.” [11]

b A matrix is ill-conditioned if the condition number

(AAA ⋅= −1)(κ) is large. The condition number is a measurement of

whether a problem is good to digital computation. The condition number

“gives a bound on how inaccurate the solution x will be after

2

GBMM so that it will be performed more rapidly, but also

tries to see whether a pre block-chopped algorithm may

better fit the checker board decompositionc method or not.

1.3 Context of the Problem

The context of the problem is to address whether the

block decomposed structure can match the checker board

decomposition which is a widely used parallel method. Matrix

multiplication is notoriously time consuming, but is widely

used in many fields both in research and industry, such as

physics, chemistry, pollution detection, image clarification.

1.4 Significance of the Thesis

The significance of the thesis is, at least, twofold.

First of all, robust estimation and identification is

important in many ways as listed in previous sections. But

it usually takes time to calculate. The speedup is an

endless desire and a necessity, especially in scientific

usage. If we wish to clarify a video instantly for driving

in fog, the speed is definitely important in that situation.

Parallel computing is a good method to speedup.

approximate solution. Note that this is before the effects of round-off

error are taken into account.”

c Checker board decomposition is a widely used method in parallel

implication to get better speedup.

3

Secondly, whether the structure of an algorithm is an

important issue to parallel or not? As a pre-block-chopped

algorithm, GBMM is a good example to examine.

1.5 Assumptions

Although GBMM does not have the following assumptions,

this thesis adds some assumptions listed below:

1. The matrix A is chopped into equal size.

2. The number of processes used is a perfect square

number, say, 1, 4, 9, 16 … n2 …, etc.

3. All the number of partitions, q and p, and matrix

size, h and w, are multiple of n, the square root

of the number of processes used.

4. Assume none of the ψi in equation (6) listed in

section 2.2 is zero.

1.6 Limitations

During the development of the thesis, a number of

limitations were noted. These limitations are presented here.

This parallel implementation is based on Cannon’s

Algorithm which will be briefly introduced in 2.2; therefore,

the number of processes should be a perfect square number.

This is the reason why this thesis must have that assumption.

4

1.7 Definition of Terms

The following terms are defined as they apply to the

thesis.

CPO – Communication Parallel Overhead.

DM – Diagonal Matrix.

Focused process – The process which is doing more work than

the other processes. Usually, process 0 is the focused

process, but not always so.

GBMM – General Block Min Max. GBMM is a robust method

proposed by Dr. Schubert.

MPI – The Massage Passing Interface. MPI is a library

specification for message-passing, proposed as a

standard by a broadly based committee of vendors,

implementers, and users.

RCPO – Redundant Calculations Parallel Overhead.

1.8 Organization of the Thesis

This thesis is divided into five chapters. Chapter One

provides an introduction to the context of the problem,

purpose of the thesis, significance of the thesis,

limitations, and definitions of terms. Chapter Two is a

review of relevant literature. Chapter Three documents the

methodology used in this thesis. Chapter Four presents the

results from the research. Chapter Five gives the conclusion

5

of the thesis. Finally, the references for the thesis are

listed.

6

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Chapter Two presents discussion of the relevant

literature. Section 2.2 describes the GBMM method. Section

2.3 illustrates Cannon’s Algorithm. Section 2.4 gives an

introduction to the Householder QR decomposition. Section

2.5 mentions parallel QR decomposition. And a brief summary

is presented in section 2.6.

2.2 The General Block Min Max
Criterion

General Block Min Max Criterion (GBMM) is a robust

method provided by Dr. Schubert. This section describes

general ideas and equations that are used in this thesis.

The general (block) perturbation min max problem is

stated as

2

,

1,11

,,1,1,

,1,11,11,1

2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

++

qbq

b

ppqpqqq

pp

Eb

Eb

x

x

EAEA

EAEA
MM

L

MOM

L

 (1)

where

A is the coefficient of Ax = b, where A belongs to m*n

and b belongs to m.

7

q and p are block partition numbers of A on column and

row, respectively.

E is the errors in A.

Eb is the errors in b

The equations used in this thesis are listed below:

Mi = ii bxA −,* (2)

ζi,j =
i

jji

M
x,η

 (3)

φi = 1 +
i

ib
p

j
ji M

,

1
,

η
ζ +∑

=

 (4)

Φ = diag(φ1I, ..., φqI) (5)

ψj = ∑
=

q

i ji

iji

1 ,

2
,

ζ
ϕη

 (6)

Ψ = diag(ψ1I, ..., ψpI) (7)

where

jiji E ,, =η and ibib E ,, =η are the amount of uncertainty in

the matrix A and vector b, respectively.

I is the identity matrix.

Dr. Schubert provides a recursive method for GBMM. It

has two recursive formulas:

xi = Ψ-1 AT Φ (b - Axi-1) for big Ψ (8)

xi = (AT Φ A)-1 (AT Φ b - Ψxi-1) for small Ψ .. (9)

8

where AT is the transpose of A and Ψ-1 is the inverse of

Ψ.

The Stopping condition is suggested as

i

ii

x
xx 1−−

 ≤ δ for δ between 10-4 and 10-8 (10)

2.3 Cannon’s Algorithm

This thesis uses Cannon’s Algorithm to calculate the

matrix multiplication. The standard Cannon’s Algorithm

requires the number of processes to be a perfect square

number, n2. The processes are arranged in a 2-D mesh. Each

process contains an equal partition of the matrix A and B as

well. (See Figure 1) The number of iterations that the

algorithm requires in order to complete the whole

calculation is the square root of the number of processes,

2n =n. Before all the iterations, both A and B need an

initial shift to start the calculation. (See Figure 2) After

each iteration, all of the processes need to transfer their

own portion of A to their left processes, and the leftmost

processes needs to send its own portion of A to the

rightmost processes. Not only A but also B requires shifts

as well. The difference is that B needs an up shift. (See

Figure 3) After all the iterations, both A and B need a

9

final shift to restore all the partitions of A and B to the

arrangement that existed before Cannon’s Algorithm began.

In each iteration, each process does a serial matrix

multiplication on the sub matrix the process has now. The

sum of all the iterations in a process is the answer of the

sub matrix that each process is responsible for.

Figure 1. Initial distribution of blocks among 16 = 42

processes.

10

Figure 2. Initial shift of Cannon’s Algorithm so that each

process contains Ai,k and Bk,j which are what matrix

multiplication requires.

11

Figure 3. The way Cannon’s matrix multiplication algorithm
shifts. In C = A * B, sub-matrix A needs a left shift while

sub-matrix B needs an up shift.

2.4 The Householder QR
Decomposition

This thesis uses QR Decomposition instead of matrix

inversion to calculate the matrix inversed in equation (9)e.

d Dr. Schubert uses Singular Value Decomposition (SVD) to compute

the matrix inverse. SVD is more stable than QR but, of course, more

complicated than QR.

12

The result obtained through the use of QR factorization is

more stable than the one obtained from the inverse.

QR decomposition forms an orthogonal projector of A on

Q, so that A = QR where Q is an orthogonal matrix and R is

an upper triangular matrix (UTM).

The idea to use QR instead of the inverse is due to the

fact that if

 A = QR,

then

 Ax = b,

which becomes

 QRx = b.

From the above, we can easily obtain

 Rx = Q-1b.

Because the only operator of x is the UTM R, it is very easy

to solve for x.

This thesis use Householder QR Factorization to compute

the QR decomposition. The implementation of the Householder

QR Factorization Algorithm in this thesis can be written as

e In the case of the diagonal matrix, Ψ, the inverse matrix of Ψ,

Ψ -1 , can easily be calculated by inverting all the diagonal cells.

Therefore, equation (8) needs neither inverse nor QR.

13

the following formulas, which closely resemble those used by

Math Lab:

for k = 1 to n

 x = kmkA ,: (11)

 kv = xexxsign +121)(...... (12)

 kv =
2

/ kk vv (13)

 nkmkA :,: =)(2 :,:
*

:,: nkmkkknkmk AvvA − (14)

And the Q-1b is obtained by the following formulas:

for k = 1 to n

 mkb : =)(2 :
*

: mkkkmk bvvb − (15)

2.5 Parallel QR

There are some parallel QR algorithms like [2], [4] [5]

or [9]. This thesis applies none of them. Nor does this

thesis use Givens rotation which is more easily parallelized

than Householder transformation. It just parallelize

Householder QR algorithm according to equation (11) through

(14) naively.

2.6 Summary

The literature important to the thesis was presented in

this chapter. For a full version, please refer to the

bibliography.

14

CHAPTER THREE

METHODOLOGY

3.1 Introduction

Chapter Three documents the methodologies used in this

thesis. The test code uses many speedup methods. The methods

listed here are directly related to the parallel programming.

This chapter introduces methods mainly by the order of

modules. Section 3.2 states reduce parallel overhead.

Section 3.3 mentions general methods used in this thesis.

Section 3.4 talks about speedup method used in Cannon’s

Algorithm. Section 3.5 discusses other matrix multiplication

used. Section 3.6 states how the transpose is designed.

Section 3.7 describes the Householder QR Decomposition.

Section 3.8 documents the implementation of solving linear

equation by QR decomposition. Section 3.9 explains how the

main GBMM subroutine goes. And finally, the main test

program is described in Section 3.10.

3.2 Reduce Parallel Overhead

Parallel overheads hinder the parallel speedup from

achieving the ideal value. The ideal speedup is just the

number of processors used. These include extra calculation

for parallel, communications between processes,

synchronizing the processes, etc. This thesis deals with two

15

kinds of parallel overheads only: redundant calculations

parallel overhead (RCPO) and communication parallel overhead

(CPO).

3.2.1 Reduce Redundant Calculation Parallel Overhead

Redundant calculations parallel overhead are some

calculations required in parallel program but not needed in

serial programs. For example, getting the number of process

used, knowing the ranking of this process, calculation of

which portion of data this process is using, etc.

In this thesis, some of these calculations include the

calculation of a process’s 2-D coordinates and ranking,

vertical ranking, horizontal ranking and local block size.

It uses global variables so that they are calculated one

time only in most cases.

3.2.2 Reduce Communication Parallel Overhead

Communication parallel overhead refers to the time

spent on communications between processes which are totally

unnecessary in serial programs.

There are many ways to reduce the CPO. In addition to

the checker-board decomposition, this thesis groups

information that need to communicate together to reduce the

latency.

16

Another method used in this thesis to reduce CPO is the

application of Cannon’s algorithm. See section 3.4 for

details.

3.3 General Methods

Some RCPO is not “calculations.” It maybe a simple if-

statement, especially if the if-statement is in a loop, it

may cause detectable timing. This section states how this

thesis deals with this kind of problem.

3.3.1 Delete Unnecessary if

Sometimes only the focused process has the correct

answer. For example, at the end of a subroutine, we may need

to write something like

if (id==y) return α;f

else return β;

Because only the id==y has the correct answer, α, letting

all processes return α saves an if-statement on the process

whose rank is y which is the focused process so that the

parallel overhead will be reduced a tiny bit.

For example, when calculating the 2-norm in a

subroutine, each process calculates the sum of the square of

f Unless explained, the programs or partial codes listed in this

document are C style.

17

each cell of the sub matrix it owns, and then does a sum

reduction to the focused process. The focused process does a

square root of the total sum, and then returns the answer,

which is the 2-norm. The standard way to code on the last

return should be

return id==y ? garbage : sqrt(norm);

The focused process can not start calculating the

square root until the last partial squared sum has been

received which is a short time later than the last message

had been sent. Therefore, though this will cause all

unfocused processes in the same communication group an extra

square root calculation, but will save the focused process

an if-statement. Hence reduce the parallel overhead on

focused process a tiny bit.

3.3.2 Loop Unrolling for parallel overhead

Loop unrolling is frequently used to speedup serial

program. It expands loops in some ways to allow instruction

rescheduling, better register usage, or reduce overhead

instructions so that the speedup is achieved. [12]

Usually, when a program is parallelized, some extra if-

statement will be used which is a parallel overhead. If this

happened in a loop, it usually can be reduced by loop

unrolling. An example used in this research will be stated

in 3.4.

18

3.4 About Cannon’s Algorithm

As briefly noted in 2.3, Cannon’s Algorithm needs to

shift both A and B on each iteration. The B in GBMM is a

const matrix, see equation (9). Keeping all the square root

of the number of process, n, portions of Bg required for

each process in each process will reduce the time needed for

communication, hence save n times of the communication of

one over n2 portion of B. Though it wastes a little bit more

than n times of RAM in each process, it speedups

dramatically.

The way this thesis uses the advantage of constant

matrix B in Cannon’s Algorithm is as follows. The whole

matrix B is cut into n columns and scattered to all

processes from process 0. A three dimensional array, ***A,

is used to hold the n portions the process requires. Not

only the content of the ***A is all the value it needs, but

also the order of the content is prearranged to what it will

be used in Cannon’s Algorithm. That is, the A[0] in each

process contains the portion for the first iteration of

Cannon’s multiplication this process requires, A[1] the

second, … A[n-1] contains the last one required in Cannon’s

Algorithm.

g This will reduce the scalability of this algorithm.

19

The preorder treatment for the initial shift in

Cannon’s algorithm is done by exchanging the pointer *A, not

by switch the content of ***A so that the parallel overhead

will be reduced. The preordered treatment helps each process

to use just the A[i] to compute in the ith iteration of

Cannon’s Algorithm. The processes need not to consider which

sub 2-D array to use in this iteration. Not only no

communication is performed for B, but also no tedious

computation is executed.

The way the memory is allocated in ***A is the same as

C arranged 3-D array to get better locality in each sub 2-D

array, **a, which is what really used in our algorithm.

About the serial multiplication part of Cannon’s

Algorithm, this thesis use both naively O(n3) standard

matrix multiplication method and O(nlog27) ≈ O(n2.80735)

Strassen’s Algorithm to implement it. [10]

3.5 Multiplication

Many kinds of matrix multiplication are used in this

thesis, not just the matrix multiplication mentioned in the

previous section. Matrix diagonal-matrix (DM) multiplication,

DM matrix multiplication, row-vector matrix multiplication

row-vector column-vector multiplication and matrix column-

vector multiplication are also used.

20

Among them, only the matrix column-vector

multiplication, DM matrix multiplication and matrix DM

multiplication are implemented in ways that parallel speedup

may easily be detected.

During calculations, sub-matrices and sub-vectors are

distributed among processes. We do not need to gather them

to a focused process and redistributed them. This is

especially the case when, if we are lucky, the distributed

answers are distributed in the way the following calculation

needs -- there will be no CPO in this case.

3.5.1 Row-Vector Matrix multiplication

Let whole 2-D mesh processes contain corresponding sub

matrix. Let each row of processes contain a full set of the

row vector as figure 4 for matrix DM multiplication. After

calculation, each row of processes has a set of the answer.

3.5.2 Diagonal-Matrix multiplication

A DM is a matrix with the property that the values of

the entries that are not on the diagonal are zero. Therefore,

we can use an one-Dimensional array to store the value of

whole DM.

The sequence the DM matrix and matrix DM multiplication

is implemented as follows. Let whole 2-D mesh processes

contain corresponding sub matrix. Let each row of processes

contain a full set of the diagonal of the DM as figure 4 for

21

matrix DM multiplication. Let each column of processes

contain a full set of the diagonal of the DM as figure 5 for

DM matrix multiplication. Thus, each process contains all

the values it needs to calculate the matrix DM or DM matrix

multiplication of its own portion.

Figure 4. The portion that each process contains to perform
the matrix diagonal-matrix multiplication.

22

Figure 5. The portion that each process contains to perform
the diagonal-matrix matrix multiplication.

Thus, there will be no CPO if the DM was stored as the

multiplication demanded before the multiplication begins.

3.6 The Transpose

Both the vector and matrix may need to be transposed.

The vector or matrix may be in focused process before the

transpose is required or the vector or matrix has been

scattered in processes already. Though this will have four

different situations, the thesis used only two of them:

vector transpose when the vector has been scattered and

matrix transpose when the matrix is in the focused process

only.

3.6.1 The Vector Transpose

In this thesis, all vectors are stored as one-

dimensional array. It depends on the function to interpret

whether it is a column vector, row vector, or, even the

diagonal of a DM.

Before entering the subroutine, all vectors had been

row wise or column wise scattered among processes already.

In the subroutine, calculate local size first, and then

allocate memory for transposed vector. If the process is on

the diagonal of the process 2-D mesh, copy the original

values to the memory prepared for transposed vector.

23

Otherwise, calculate the rank of the destination process,

send to and receive from the destination process the vector.

Return the pointer points to the transposed vector.

3.6.2 The Matrix Transpose

The only one transpose happens in this thesis is at the

beginning of the GBMM subroutine where the deblur matrix is

stored in the focused process before been scattered and

transposed.

In the matrix transpose subroutine, calculate local

size first, and then allocate memories for both

communication buffer and transposed sub matrix. The focused

process calculates the rank of each process, gather

corresponding sub matrix to a continuous RAM, scatters the

corresponding part of the sub matrix to correct processes.

Note that only the content of the sub matrix, **A, are

transferred. The index of the **A, *A, are calculated at the

time the memory is allocated because both the sent and the

received sub matrices are of the same arrangement and the

same size. Thus, eliminate the unnecessary communication

which is a redundant CPO.

The order to scatter the matrix is from the largest

rank to the smallest rank, the focused one. This will save a

memory block on the focused process and save the time to

copy from transfer buffer to the working buffer.

24

Each process begins transposing its own sub matrix

after it has received the values it required. Then, free up

the transfer buffer.

3.7 The Householder QR
Decomposition

In the Householder QR decomposition subroutine, it

calculates local size first, and then allocates memories for

r, R, v, and V, where V is the matrix that collects the

reflection vectors (RV), v. The final step of the initial

work is copy A into R. Because x is useless after equation

(12) and is almost the same as v except for the first

element, there is no x exist in RAM. The v totally handles

all the functions x need.

In implementing the loop of the Householder QR

decomposition, it calculates the local size of k:m and k:n

(see equation (11)), gets the rank, id_now, of the process

which contains the current k, place the if-statement which

judges the process coordinates outside the loop of partial-

squared-sum calculations to reduce the RCPO in loop, send

the answer to the focused process, and sums the answer up to

get the squared sum, n2, of the vector. The process whose

rank is id_now calculates the square-root of n2 to get the

2-norm of x. Change the value of the first element of v

according to the equation (12).

25

About the equation (13), calculate the 2-norm of v

through change of n2, broadcast the 2-norm of v to those who

are in the same column of the focused process, the one whose

rank is id_now, in the process 2-D mesh. Then the processes

that contain the useful part of v normalize v.

Now start dealing with the equation (14). Broadcast the

useful part of v horizontally so that the distribution of v

matches the condition that the row-vector matrix

multiplication needs. If the process contains useful part of

v, make a pointer array, *s, in which each element points to

a special address of A so that **s is just the sub matrix

that equation (14) requires. Multiply row vector v and the

sub matrix, **s. Otherwise, make an array that all the

elements value are zero which represent the answer of zero

vector times a sub matrix. Do a sum-reduction in the

processes that are in the same column of the focused process.

Broadcast the result, v’, to processes that are in the same

column of the focused process. Separate this column of

processes into four groups according to the position that

the process relates to the focused one so that there is no

RCPO in the loop when doing the final part of equation (14),

nkmkA :,: =)'(2:,: vvA knkmk − . Copy the answer to the V matrix which

26

consists of the v. Free up memories, set the return pointer

points to V.

3.8 The Solving for x by QR

Consider the linear equation Ax = b, where A is a

matrix and b and x are vectors. The solution can be found by

QR factorization of A, if A is not singular, as following:

 A x = b

QR x = b

 R x = Q-1b

Then, solve for x through the last equation by back-

substitution because R is a UTM (see section 2.4). And the

Q-1b can be obtained by the equation (15) listed in section

2.4.

The parallel implementation of the equation (15) is

preceded by calculation of local matrix size. Then, copy

vector b to a temporary vector, qb, call QR decomposition

function to get V and R, where V is the matrix that collects

the reflection vectors (RV), v.

In the main part of the equation (15), starts a loop

from zero to number of processes used -1, n-1, as the index

for columns of 2-D process mesh. Then, if the processes

contain the value of the RVs, send the whole sub V matrix to

the processes in the first column in corresponding row.

27

Start a loop from zero to the width of the local matrix

minus one. Separate the processes in the first column into

three groups according to what it contains about v: no valid

v, partial v, or full v to calculate the partial)(2 :
*

mkkbv .

Call MPI_Allreduce to get the sum of the partial)(2 :
*

mkkbv ,

the true)(2 :
*

mkkbv . Calculate the mkb : =)2(:
*

: mkkkmk bvvb − .

Broadcast the qb horizontally to match the parallel back-

substitution requires.

The sequence of the back-substitution is listed below.

The pretreatment includes calculating the local matrix size,

allocating memories, making a copy of vector b so that the b

will remain unchanged after this calculation and calculating

the last equation am,n xn = bm.

For the loop part, the outer loop runs from n-1 down to

zero while the inner loop runs from local width minus one,

w1, down to one. The two nested loops form the whole range

of the width of the original matrix. Vertically broadcast

the xm which has been pre-calculated in the pretreatment or

previous iteration. Let all the processes on the same column

of focused process calculate their own part of xn-1 = [(bm) –

a*,nxn] / a*,n-1. After the inner loop, broadcast the xlowest_one

vertically as the pre-calculated xn of the next iteration of

the outer loop. If the focused process is not in the first

28

column of process 2-D mesh, send the x to the process left

to itself.

At the end of this function, free up the memory which

stores the copy of vector b, return the calculated x.

3.9 The General Block Min Max

The main GBMM routine implements the equations (2) to

(10) listed in section 2.2 to get the answer. It sets all

the local global variablesh first to reduce the RCPL. Then,

it distributes the deblur matrix, A, to each process as

Cannon Algorithm’s matrix B and shift it as mentioned in

section 3.4. The routine transpose it to each process, then,

scatters the vector b, ηb, and the matrix η in checker-board

style. Set all xi to 1 as the seed of the first iteration.

Set the pointer to b transpose points to b by the fact that

b transpose equals to b in process 0, the focused one. In

other process, allocate memory for transposed vector of b

for processes in the first column. Calculate the transposed

coordinate and rank. Except for the focused one, all the

processes in the first row send its own b to the

corresponding processes in the first column.

h The global variables are set in the same gbmm.c file only to

preserve some data security.

29

In the iteration part, the routine broadcasts x

vertically if this is not the first iteration. Then it

calculates Ax, calculates the equation (2), (3), Φ and Ψ. It

frees up the memories used by equations (3) and (2). It

transposes Φ to be horizontally distributed so that the

distribution fits the requirement that the matrix DM

multiplication requires. It frees up the memory used by Φ.

It calculate the ATΦ. It frees up the memory used by the

horizontal version of Φ. Then it calculates the norm of Ψ.

It broadcasts the value horizontally so that each process

has the norm of Ψ. The threshold to determine to use

equation (8) or (9) is set to be 100.

In the implementation of equation (8), the big Ψ

version, the code starts with calculating the inverse of the

ψi. Transpose the distribution of Ψ among processes from

horizontally to verticallyj. Then calculate the Ψ-1 ATΦ.

Transpose Ax from the first column to the first row. Let the

processes in the first row calculate b - Ax and store it in

Ax. Broadcast it vertically. Finally, use the matrix column-

i See footnote e on section 2.4.

j There is no need to transpose if the processes are on the

diagonal, of course.

30

vector multiplication subroutine to calculate the new x, Ψ-1

ATΦ (b - Ax).

In the implementation of equation (9), the small Ψ

version, the code begins with calculating the ATΦ b through

matrix column-vector multiplication subroutine. Then the

processes in first row calculate Ψx. Transpose the value of

Ψx from stored in the first row of processes to the first

column ones. Let the first column processes calculate the

ATΦb - Ψx and store them in the same address of those who

store ATΦb. Let all processes calculate ATΦ A. Use QR

subroutine to solve for x in equation (9), x = (ATΦA)-1 (ATΦb

- Ψxi-1). Free up ATΦb.

No matter the norm of Ψ is big or small, now start

dealing with the final parts: free up memories used in all

processes. The processes in the first row copy new x,

calculate equation (10), the
i

ii

x
xx 1−−

 ≤ δ, and free up the

unused memories and set pointer of x to new one. The process

0 broadcasts the δ to all processes, increases the iteration

counter. Finally, all processes check the condition of

whether the next iteration is needed by check the δ and

iteration counter.

31

After all iterations, free up all the memories used.

Perform a gather action. Finally, free up the memory used by

x.

3.10 The Main Test Program

The main test program is written as follows. It reads

in the η and the ηb files. The 2-D numbers of partitions are

written in the η file. The program generates a random matrix

as an original “image” / vectors sources. Then, generates a

random square matrix as the blur matrix. Blur the “image” by

the blur matrix. The uncertainty bound of the blur matrix is

bound by 20% of the maximum of each partition. Transpose the

“image” so that the original column vectors are continuously

stored in memory, that is, it is now row vectors which, in C,

is stored continuously. Finally, it starts to deblur the

vectors one by one and sets the time stamp just before and

after the calling of the GBMM subroutine.

32

CHAPTER FOUR

RESULTS

4.1 Introduction

Included in Chapter Four was a presentation of the

results of the thesis. Section 4.2 states the hardware and

software used. Section 4.3 lists the numerical result.

Section 4.4 analysis the result. Finally, the summary of the

research is stated.

4.2 Machine used

Raven is the machine that this thesis has used to run

the programs. It is a cluster computer composed of thirteen

Compaq ProLiant DL360 G2 computers. The ProLiant DL360 G2

has dual Intel® Pentium© III 1.40GHz on board, L1 cache is

128KB, L2 cache is 512KB on-die. Each computer has 512 MB of

133MHz SDRAM 2:1 interleaved. Two Compaq NC 7780 Gigabit

Ethernet NICs Embedded 10/100/1000 which are optimized for

best latency, but only one of them is connected to the

router. [14] The router used is D-Link DGS-3224TG, which is

a 20-port managed layer 2 Gigabit Ethernet switching hub.

The operation system used is Red Hat Linux 3.4.20-8smp with

gcc version 3.2.2-5. MPI 1.2 is used as the interface.

33

4.3 Numerical Result

This thesis is tested on Raven uses one, four, nine,

and sixteen processors. The 2-D partition number, q and p,

are always the same, namely, twelve and twelve, throughout

the test listed in this document. The heights of the “image”

used to test are multiple of 60 from 180 through 1380. The

widths of the “image” used to test are all the same, namely,

twelve. The δ in equation (10) in section 2.2 is set to be

10-30 to cause a virtual infinite loop so that the number of

iteration can be controlled. The serial part of the Cannon’s

Algorithm is implemented in two different ways: the standard

matrix multiplication and Strassen’s Algorithm.

4.3.1 Standard Matrix Multiplication

The number of “images” used is ten if the image height,

h, is smaller than 660. It is six if h is 660, 720 or 780.

It is five if h is 840, 900, 960 or 1080. It is four if h is

1020 or 1200. It is three if h is 1140 or 1260. It is two if

h is 1320 or 1380. The result of the time needed and the

corresponding graph are listed below.

34

Size Proc. 1 4 9 16

180 0.532 4.760 4.095 6.015
240 2.153 7.242 6.431 6.812
300 5.658 9.483 8.172 8.526
360 12.374 11.220 10.425 10.325
420 22.357 14.229 12.602 12.271
480 37.283 17.794 14.773 14.149
540 56.412 29.470 17.133 16.280
600 77.887 36.044 19.777 18.303
660 105.033 55.879 22.973 21.012
720 137.464 66.949 28.255 24.308
780 177.919 93.987 35.999 29.239
840 223.167 110.904 48.308 34.469
900 277.959 145.708 62.328 41.158
960 571.489 178.777 83.245 45.703

1020 409.968 214.258 97.979 61.006
1080 489.306 257.634 119.555 73.932
1140 573.724 297.162 142.294 92.600
1200 682.590 351.683 173.309 97.441
1260 785.533 398.219 198.378 132.042
1320 893.648 463.022 230.760 147.963
1380 1020.838 520.903 267.046 173.182

Table 1. Time needed for ten GBMM iterations for vector size

from 180 through 1380 for 1, 4, 9 and 16 processors.

35

Figure 6. Time needed for ten GBMM iterations for vector

size from 180 through 1380 for 1, 4, 9 and 16 processors.

According to the time recorded, the speedup, which is

the ratio between the sequential execution time and the

parallel execution time is calculated, listed and plotted

below.

36

Size Proc. 4 9 16

180 0.112 0.130 0.088
240 0.297 0.335 0.316
300 0.597 0.692 0.664
360 1.103 1.187 1.199
420 1.571 1.774 1.822
480 2.095 2.524 2.635
540 1.914 3.293 3.465
600 2.161 3.938 4.255
660 1.880 4.572 4.999
720 2.053 4.865 5.655
780 1.893 4.942 6.085
840 2.012 4.620 6.474
900 1.908 4.460 6.753
960 3.197 6.865 12.504

1020 1.913 4.184 6.720
1080 1.899 4.093 6.618
1140 1.931 4.032 6.196
1200 1.941 3.939 7.005
1260 1.973 3.960 5.949
1320 1.930 3.873 6.040
1380 1.960 3.823 5.895

Table 2. Speedup on 4, 9, 16 processors for vector size from

180 through 1380.

37

Figure 7. Speedup on 4, 9, 16 processors for vector size

from 180 through 1380.

4.3.2 Strassen’s Algorithm

The number of “images” used is all the same, namely,

two, in testing the speedup if the serial part of Cannon’s

Algorithm is implemented in Strassen’s Algorithm. The result

of the time needed and the corresponding graph are listed

below.

38

Size Proc 1 4 9 16
180 0.532 4.606 4.000 5.959
240 1.358 7.298 6.440 6.776
300 3.267 9.394 8.257 8.444
360 6.722 10.993 10.376 10.306
420 11.834 13.047 12.712 12.260
480 19.712 15.305 16.838 14.142
540 28.973 20.062 16.876 16.373
600 42.901 26.185 18.956 18.303
660 57.960 36.535 21.293 20.717
720 76.145 45.340 24.477 24.114
780 97.243 60.519 29.637 27.665
840 122.503 73.044 38.079 31.230
900 167.043 93.323 47.200 35.660
960 229.045 124.835 61.374 39.901

1020 242.863 137.547 71.824 49.590
1080 266.533 161.112 88.637 57.717
1140 362.473 193.199 102.805 70.793
1200 391.721 226.431 127.123 96.325
1260 449.664 258.130 141.275 97.704
1320 506.156 297.431 163.541 108.862
1380 582.519 335.688 187.471 128.020

Table 3. Time needed for ten GBMM iterations for vector size

from 180 through 1380 for 1, 4, 9 and 16 processors.

39

Figure 8. Time needed for ten GBMM iterations for vector

size from 180 through 1380 for 1, 4, 9 and 16 processors.

According to the time recorded, the speedup is

calculated, listed and plotted below.

40

Size Proc. 4 9 16

180 0.115 0.133 0.089
240 0.186 0.211 0.200
300 0.348 0.396 0.387
360 0.611 0.648 0.652
420 0.907 0.931 0.965
480 1.288 1.171 1.394
540 1.444 1.717 1.770
600 1.638 2.263 2.344
660 1.586 2.722 2.798
720 1.679 3.111 3.158
780 1.607 3.281 3.515
840 1.677 3.217 3.923
900 1.790 3.539 4.684
960 1.835 3.732 5.740

1020 1.766 3.381 4.897
1080 1.654 3.007 4.618
1140 1.876 3.526 5.120
1200 1.730 3.081 4.067
1260 1.742 3.183 4.602
1320 1.702 3.095 4.650
1380 1.735 3.107 4.550

Table 4. Speedup on 4, 9, 16 processors for vector size from

180 through 1380.

41

Figure 9. Speedup on 4, 9, 16 processors for vector size

from 180 through 1380.

4.4 Result Analysis

4.4.1 Small Image Clarification

The parallel speedup effect begins when the vector size

is larger than 350 and 450 when using standard and

Strassen’s Algorithm, respectively which are both larger

than the NTSC VCD image size, 320 * 240. This gives a hint

that unless a parallel speedup algorithm whose speedup

threshold is apparently smaller than, say, 280 appears, it

42

is useless trying to use parallel method to get better

speedup on application of small images.

4.4.2 Speedup

The speedup “looks” good on both algorithms when vector

size is smaller than, say, 750. According to Amdahl effect

which says that “for a fixed number of processors, speedup

is usually an increasing function of the problem size,” the

curve should not bend down or stay around 2.0, 4.5 and 6.5

on 4, 9 and 16 processors respectively for a standard

algorithm and around 1.7, 3.2 and 4.2 for Strassen’s

Algorithm on 4, 9 and 16 processors respectively. The reason

for that may be that the Ethernet cards on the Raven are

optimized for latency but the algorithms used in this thesis

are all designed for optimized on bandwidth.

4.4.3 Pre Block-Chopped Algorithm

The implementation of equations (5) and (7) does not

use the fact that the value in Φ and Ψ are not totally

different. Instead of having different values of the number

of the height and width of the deblur matrix, they have only

the number of the partitions, q and p, different values,

respectively. Making use of that fact to implement the

equations (5) and (7), especially the equations (8) and (9)

43

where DM multiplication is dealt with, in parallel may get a

little bit speedup.

But by simply benchmark each step of GBMM, the ratio of

the time spent on the final step of equation (9), the

solving x = Ω-1 β, to the time spent on the whole GBMM is

huge. It ranges from 0.29 to 0.46 on serial version. It

ranges from 0.58 to 0.96 (the average is 0.664) on four

processes test. On nine and sixteen processes test, it

ranges from 0.64 to 0.91 (average 0.732) and 0.65 to 0.91

(average 0.781), respectively. (See Table 5) This shows that

the final step of equation (9) is the bottle neck of the

speedup in this implementation of GBMM, especially the more

processes is used, the more the average of the ratio is.

The fact that more than half of the time is spent on

solving x = Ω-1 β, especially the more processes is used,

the more the average of the ratio is, tells us that unless

there exist an parallel algorithm which can make good use of

the pre-chopped characteristic to solve x = Ω-1 β, or there

exist an parallel algorithm that can fast and accurate to

solve x = Ω-1 β, the pre-chopped nature in GBMM does not

lead to easily parallel speedup through checker-broad

decomposition method.

Size CPU 1 4 9 16

44

 Time W Time 9 Ratio Time W Time 9 Ratio Time T Time 9 Ratio Time W Time 9 Ratio

180 0.023 0.05 0.46 0.363 0.38 0.96 0.280 0.37 0.76 0.476 0.53 0.90

240 0.067 0.23 0.29 0.586 0.62 0.95 0.499 0.56 0.89 0.463 0.53 0.87

300 0.182 0.56 0.32 0.741 0.83 0.89 0.463 0.51 0.91 0.768 0.87 0.88

360 0.450 1.26 0.36 1.059 1.20 0.88 0.811 0.89 0.91 0.949 1.08 0.88

420 0.856 2.25 0.38 1.249 1.59 0.79 1.022 1.20 0.85 1.071 1.24 0.86

480 1.494 3.74 0.40 1.437 1.87 0.77 1.204 1.38 0.87 1.335 1.53 0.87

540 2.248 5.60 0.40 1.778 2.88 0.62 1.365 1.61 0.85 1.548 1.71 0.91

600 3.241 7.81 0.41 2.514 3.88 0.65 1.557 1.90 0.82 1.732 1.96 0.88

660 4.453 10.54 0.42 3.333 5.85 0.57 1.796 2.34 0.77 1.887 2.21 0.85

720 5.925 13.79 0.43 4.252 7.09 0.60 1.994 2.76 0.72 1.967 2.40 0.82

840 9.811 22.39 0.44 6.779 11.55 0.59 3.356 5.09 0.66 2.842 3.55 0.80

900 12.314 27.76 0.44 8.732 15.02 0.58 4.081 6.27 0.65 2.982 4.10 0.73

960 19.089 57.36 0.33 10.597 18.17 0.58 5.541 8.44 0.66 3.360 4.53 0.74

1020 18.845 41.34 0.46 12.819 21.97 0.58 6.505 10.15 0.64 4.158 6.12 0.68

1080 22.267 48.99 0.45 14.766 25.87 0.57 7.834 12.25 0.64 5.262 7.59 0.69

1140 26.346 57.73 0.46 17.372 30.05 0.58 9.164 14.45 0.63 6.478 9.63 0.67

1200 31.098 68.47 0.45 20.155 35.19 0.57 10.917 17.24 0.63 7.093 10.17 0.70

1260 35.922 78.48 0.46 23.227 40.31 0.58 12.889 20.32 0.63 9.054 13.57 0.67

1320 41.142 90.28 0.46 26.742 46.73 0.57 15.007 23.72 0.63 9.973 15.34 0.65

1380 46.442 102.46 0.45 30.203 52.51 0.58 17.290 27.38 0.63 11.868 17.98 0.66

Average 0.413 0.664 0.732 0.781

Table 5. Simply test the time spend on whole GBMM (Time W)

and on the last step of equation (9) (Time 9) on 1, 4, 9,

and 16 processes. The ratio of the Time W to the Time 9 is

calculated and listed right to the elements recording that

test.

45

4.5 Summary

Neither deblur small images nor the advantage of the

pre-chopped structure of GBMM can be achieved by the

parallel methods used in this research.

46

CHAPTER FIVE

CONCULSION

5.1 Introduction

Chapter Five presents the conclusion of the thesis.

Lastly, the Chapter concludes with a summary

5.2 Known Problems That Hinder
the Parallel Speedup

There are some known problems that hinder the parallel

speedup. Section 5.2.1 describes problems in the

implementation of QR decomposition. Section 5.2.2 states the

memory allocation problem. Section 5.2.3 suggests using

better MPI functions.

5.2.1 Problems about implement QR

As described in section 4.4.3, the final step of the

equation (9), the solving x = Ω-1 β, is the bottle neck of

the parallel speedup in this implementation of GBMM.

Therefore, if we want to improve instead of re-design the

algorithms used in this research, it is the QR and solve-

through-QR that one should first put the effort to.

In the implementation of QR decomposition, there are

many chances that only part of the processes in the same

column as the focused process need to have the value from

the focused one. For example, the upper part of the process

may not need to be involved in the communication when k is

47

larger than the height of the matrix over the square root of

the number of process, n. The program broadcasts the value

to all processes in the same column by using standard

broadcast function, MPI_Bcast, in stead of designing a

suitable and fast algorithm to send messages only to the

ones that need the value in all the implementation similar

to that.

Of course, one may re-design these two algorithms, QR

and solve through QR, through better parallel QR algorithm

such as Given’s rotation. This should get better parallel

speedup.

5.2.2 The Memory Allocation

There are too many memory allocations and frees used in

this implementation. Calculate the total memory needed in

the beginning of GBMM subroutine and allocate it one time at

the beginning of the GBMM main subroutine, calculate all the

pointers point to different and suitable address should both

speedup the serial version and reduce some parallel overhead.

Hence, the parallel speedup should be a little bit more than

this version.

5.2.3 Using Better MPI functions

MPI has more than four sets of send / receive functions:

standard (MPI_Send), nonblocking (MPI_Isend), synchronous

(MPI_Issend) and user-specified buffer (MPI_Bsend). For most

48

of the algorithms used in this research are suitable to use

specified send / receive functions such as user-specified

function or synchronous function. The MPI send / receive

functions used in this research are all basic ones: MPI_Send

and MPI_Recv. For example, using user-specified buffering

may reduce time for copying the content.

5.2.4 Adjust the threshold

Though equation (8), the big Ψ version, is rarely used

in practice, the test code sets threshold to be 100, which

is found to be somewhat too large. The result is that none

of the more than 8000 test samplesk run on equation (8).

They all run on equation (9).

Equation (8) is faster than Equation (9). It does not

need to calculate QR decomposition. The inversion of the

diagonal cells can be fully parallelized so that its

parallel speedup is more than Equation (9). Therefore, the

average parallel speedup of GBMM should be a little bit

higher.

5.3 Further Study

There are many ways to do further studies. For accuracy,

use singular value decomposition (SVD) instead of QR to

k About 3000 of the test samples are done during the program test.

They are not listed in chapter 4.

49

solve the problem. For speed, try to use even find faster

parallel speedup method to solve x = A-1 b. For matching the

design, use parallel computer whose Ethernet cards are tuned

for bandwidth and retest this algorithm.

The reason for the outlying point on the one process

version at size 960 is still unknown. It had been run many

times during more than two months on three different

Pentium-based computers. It seems to be something related to

the problem about matrix multiplication. It was found that

the more the matrix size is related to power of two, the

slower it seems to be. The experiments show that the average

Megaflops is around 180 on the test machine, but it drops to

around 40 when size is 256, 384, 448, 512, 576, 640, 704,

768, 832, 896, 960, 1024 or 1088. It drops to around 120

when size is 320, 448, 544, or 608. It drops down to around

90 when size is 800, 864. (See Figure 10)

960 is the only test size of GBMM in this research that

hits on one of the slow point. So it shows a big outlying

point there.

50

Figure 10. A strange phenomenon about the Megaflops drop on

matrix multiplication. The unit on x axis is the size of

matrix, on y is the Megaflops. No matter the code is

compiled with Linux gcc –O3 option or not, it drops.

One more thing can be suggested here for further

research. In fact, about 150 of the more than 8000 samples

(less than 1.875%) take long run time on four, nine, or

sixteen processes for unknown reason. Twelve of them are

around six times long and others are about twice as long.

They are all grouped in “images”, which means that it should

be related to the deblur matrix. But by inspecting the code,

51

all the if-statement are related to process rank, none of

them are related to matrix or vector value.

52

REFERENCES

[1] L. E. Cannon, “A Cellular Computer to Implement the
Kalman Filter Algorithm”, Ph.D. thesis. Montana State
University, 1969.

[2] Rotella F., Zambettakis I., “Block Householder
Transformation for Parallel QR Factorization”, Applied
Mathematics Letters, May 1999, vol. 12, no. 4, pp. 29-
34(6), Ingenta.

[3] H. F. Jordan and G. Alaghband, “Fundamentals of
Parallel Processing”, Prentice Hall, Upper Saddle River,
NJ, 2003.

[4] Lu, Mi; Liu, Kunlin, “Parallel algorithm for
Householder Transformation with applications to ill-
conditioned problems”, International Journal of
Computer Mathematics, v 64, n 1-2, 1997, p 89-101,
Compendex.

[5] Shietung Peng; Stanislav Sedukhin; Igor Sedukhin,
“Householder bidiagonalization on parallel computers
with dynamic ring architecture”, Parallel Algorithms /
Architecture Synthesis, 1997. Proceedings. Second Aizu
International Symposium , 17-21 March 1997, pp. 182 -
191, IEEE Explore.

[6] M. J. Quinn, “Parallel Programming in C with MPI and
OpenMP”, McGraw-Hill, New York, NY, 2003.

[7] K. E. Schubert, “A New Look at Robust Estimation and
Identification”, UCSB, 2003.

[8] J. C. Cabaleiro; F. F. Rivera; O. G. Plata; E. L.
Zapata, “Parallel algorithm for Householder's
tridiagonalization of a symmetric matrix”, Cybernetics
and Systems, v 23, n 3-4, May-Aug, 1992, p 345-357,
Compendex.

[9] E. Elmroth and F. G. Gustavson. “Applying recursion to
serial and parallel QR factorization leads to better
performance”, IBM Journal of Research and Development,
Emerging analytical techniques. vol. 44, No. 4, p. 605-
624, 2000.
http://www.research.ibm.com/journal/rd/444/elmroth.html

53

[10] V. Strassen, “Gaussian Elimination Is Not Optimal”,
Numerical Mathematics, V. 13 1969, pp. 354-356

[11] Eric W. Weisstein, “Robust Estimation.” From MathWorld-
-A Wolfram Web Resource.
http://mathworld.wolfram.com/RobustEstimation.html

[12] http://en.wikipedia.org/wiki/Loop_unrolling

[13] http://www.dlink.com

[14] http://www.hp.com

