

SIMULATING SPATIAL PARTIAL DIFFERENTIAL EQUATIONS WITH

CELLULAR AUTOMATA

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Brian Paul Strader

December 2008

SIMULATING SPATIAL PARTIAL DIFFERENTIAL EQUATIONS WITH

CELLULAR AUTOMATA

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Brian Paul Strader

December 2008

Approved by:

Keith Evan Schubert, Chair, Department of
Computer Science and Engineering

Date

George Georgiou

Ernesto Gomez

c© 2008 Brian Paul Strader

ABSTRACT

Spatial partial differential equations are commonly used to describe systems

of biological entities, such as patterns of desert vegetation. These equations

can be transformed into cellular automata models, which have the benefit

of being easily simulated, highly parallelizable, and change the perspective

of the model from a global view to a local view. In this thesis I propose

two methods for transforming a subset of partial differential equations into

cellular automata models. The transformations are accomplished using dis-

cretization methods and the Forward and Backward Euler’s methods.

Stability and convergence for the new cellular automata models are then

explored for a subset of the models only containing linear terms. First

the theoretical bounds of stability of the models are found using the Z-

transform. Multiple simulations are then used to map out the areas where

the cellular automata models will converge to stable values based upon how

time and space are discretized. Stiffness of the cellular automata models is

also explored to determine whether or not it has an impact upon stability.

From this information, I provide a set of guidelines about what parameters

to pick, with respect to discretization. These guidelines will help a biologist

using one of the models to ensure that the simulations will converge to

stable values and that the simulations will run quickly.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Keith Schubert for his time, knowledge, and

patience while guiding me during this past year. I would also like to thank my

committee members, Dr. George Georgiou and Dr. Ernesto Gomez, as well as Jane

Curnutt, whose research my thesis is based upon, and my graduate coordinator Dr.

Josephine Mendoza. I would also like to thank my parents Raleigh and Rene Strader

as well as my brother Matthew Strader who had the unfortunate task of being my

editor.

iv

DEDICATION

This work is dedicated to my grandmother Carol Strader and my

grandfather Alphonse Pirot, who have inspired me with their quiet

strength and determination.

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . iv

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1 Purpose . 1

1.2 Significance . 2

1.3 Findings . 2

2. Literature Review . 5

2.1 Background . 5

2.2 Biology and Differential Equations 6

2.2.1 Population Growth . 6

2.2.2 Vegetation Patterns . 7

2.2.3 Morphogenesis . 8

2.3 Solving Partial Differential Equations 10

2.4 Cellular Automata . 11

2.4.1 Definition . 11

2.4.2 Applications . 13

vi

2.4.3 Connections with Other Models 14

2.4.4 Other Differential Equation to Cellular Automata Translation

Attempts . 16

3. Differential Equation Conversion . 17

3.1 Differential Equation Characteristics 17

3.2 Biological Equations . 18

3.2.1 Fick’s Law . 18

3.2.2 Random Walk . 19

3.2.3 Predator-Prey . 19

3.2.4 Another Predator-Prey Model 20

3.2.5 Desert Vegetation Patterns . 20

3.2.6 Morphogenesis . 20

3.3 Differential Equation General Form 21

3.4 Discretizing Partial Differential Equations 21

3.4.1 Forward Euler’s . 21

3.4.2 Solving Backward Euler’s . 22

4. Stability and Z-Transform of the General Linear Form 25

4.1 General Linear Equation Stability . 26

4.1.1 Linear Forward Euler’s Equation Stability 26

4.1.2 Linear Backward Euler’s Equation Stability 29

4.2 General Linear Equation Comparative Stability Analysis 31

5. Convergence Maps and Cellular Automata Simulation Results 33

5.1 Convergence Maps . 34

5.1.1 Convergence Map Construction and Cellular Automata Simu-

lation Methodology . 34

vii

5.1.2 Function Convergence Analysis and Convergence Values . . . 36

5.2 Convergence Boundaries . 38

5.2.1 Forward Euler’s Convergence Boundaries 39

5.2.2 Backward Euler’s Convergence Boundaries 40

5.2.3 a3 Vertical Boundary . 43

5.3 Boundary Errors . 46

5.3.1 Upper Boundary Error . 46

5.3.2 Lower Boundary Error . 47

5.4 Rate of Convergence . 49

5.5 Optimum Convergence Guidelines . 50

6. Conclusions . 57

6.1 Summary of Findings . 57

6.2 Future Work . 60

6.2.1 Scaling u . 60

6.2.2 Proofs for Observations A.3.1 and B.2.2 61

6.2.3 General Quadratic Form . 62

6.2.4 Variable and Dependent Coefficients 62

6.2.5 Long Run Stability and a3 . 63

6.2.6 Parallel Implementation . 64

6.2.7 Convergence Values and Simulation Errors 64

APPENDIX A: EXAMINING THE ZEROS CONSTRAINT 66

A.1 Eliminating Uj−1 and Uj+1 for Forward Euler’s 68

A.2 Second Pole Constraint . 70

A.2.1 Graphing Second Pole Constraint 71

A.3 Boundary Zero Constraint . 73

viii

A.3.1 Graphing the Boundary Zero Constraint When the Right Side

is Positive . 77

A.3.2 Graphing the Boundary Zero Constraint When the Right Side

is Negative . 78

A.3.3 Graphing the Boundary Zero Constraint When the Right Side

is Positive for Backward Euler’s 82

APPENDIX B: STIFFNESS . 87

B.1 Stiffness and Eigenvalues . 88

B.2 Gershgorin Circles . 90

APPENDIX C: SOURCE CODE . 97

C.1 Simulation Code . 98

C.2 Plotting Code . 104

References . 111

ix

LIST OF TABLES

5.1 Table depicts the largest ht value that converges along the lower bound-

ary of the convergence area within a convergence map for a changing

a3 parameter. 44

5.2 Table depicts the error value of the upper boundary. 47

5.3 Table depicts the error values between the lower theoretical boundary

and actual boundary. 48

x

LIST OF FIGURES

2.1 Images of Cyanobacteria fossils and two patterns created by cellular

automata. 14

2.2 Cellular automata simulation of biovermiculation growth on a cave wall

after many iterations. 15

5.1 Convergence map composed of 10,000 simulations with varying ht and

hx values for the Forward Euler’s function. 35

5.2 Convergence map composed of 10,000 simulations with varying ht and

hx values for the Backward Euler’s function. 35

5.3 Convergence map composed of simulations with varying ht and hx val-

ues for the Forward Euler’s function when a1 is negative. 37

5.4 Convergence map for the Forward Euler’s function also containing

boundary constraints in black. 40

5.5 Convergence map for the Backward Euler’s function also containing

boundary constraints in black. 42

5.6 Convergence maps for the Backward Euler’s function demonstrating

the a3 vertical boundary. 45

5.7 Convergence map for the Backward Euler’s function showing the speed

of convergence through color variation. 49

5.8 Convergence map for the Backward Euler’s function where the ma-

genta line represents those values that the guidelines would pick for

the following parameters: a1=1, a2=1, a3=0, and b1=1. 54

xi

5.9 Convergence map for the Backward Euler’s function where the ma-

genta line represents those values that the guidelines would pick for

the following parameters: a1=10, a2=1, a3=100, and b1=1. 55

5.10 Convergence map for the Backward Euler’s function where the ma-

genta line represents those values that the guidelines would pick for

the following parameters: a1=1, a2=0.1, a3=2.0, and b1=1. 56

xii

1. INTRODUCTION

1.1 Purpose

Throughout the history of computer science, different models and machines have

been used to determine what problems can be solved and how they can be measured.

Finite automata, push-down automata, and Turing Machines describe by their very

nature the limits of computability. Their usefulness lies in the fact that the most

complex CPUs, systems with terabytes of RAM, can be theoretically bound by a

piece of infinite tape and a set of states. In this thesis I investigate another model

relationship, cellular automata and spatial partial differential equations.

Spatial partial differential equations occur all over in the natural world. They have

been used in biology to model the behavior and patterns of organisms. The problem

with partial differential equations is that while they may naturally fit the situation,

they can be mathematically complex and difficult to solve. Cellular automata on

the other hand use very simple mathematical rules, usually addition, subtraction,

and conditional statements in order to create complex results. There are several

indications, as shown throughout this introduction, that cellular automata are related

to differential equations. In my thesis I will clearly define this relationship and show

how an important subset of spatial differential equations can be transformed into

cellular automata. I will also analyze what discretization sizes of space and time will

1

allow the cellular automata to converge to a stable solution in the quickest possible

simulation time.

1.2 Significance

If such rules could be derived, to allow for the creation of a cellular automata from

a differential equation, then it leads one to believe that the opposite may also be

possible. This means that a set of rules might be created which can turn a cellular

automata into a generalized differential equation. If this is the case, then this will give

biologists a powerful tool in describing the natural world. By creating a simple set of

rules, complex mathematical equations could be derived, saving scientists time and

effort to research their field rather than being bogged down into algebraic equations.

Such a tool would be able to take an image of a biological pattern and try to

connect it with a particular cellular automata. The cellular automata could then be

translated into a differential equation, which a biologist could then use to model the

biological pattern. My thesis would be a first step in creating the groundwork for

such a tool.

1.3 Findings

In this thesis I will show the following:

• Using a literature review of biological partial differential equations as a guide,

a general formula was derived to encompass most of the important aspects of

these equations. This is shown in Sections 3.2 and 3.3 on pages 18 and 21.

• Spatial partial differential equations can be converted into and simulated by cel-

2

lular automata using approximations and Backward and Forward Euler’s Meth-

ods, specifically in the case of the general biological formula found in the previous

item. This is shown in Section 3.4 on page 21.

• Using the Z-transform method on the newly constructed cellular automata model,

theoretical boundaries of stability for the model were found. This is shown for

the Forward Euler’s model in Section 4.1.1 on page 26 and for the Backward

Euler’s model in Section 4.1.2 on page 29.

• Convergence maps with respect to the parameters hx and ht (amounts in space

and time the partial differential equations are discretized by) were created show-

ing where the new cellular automata model converges and diverges. The theo-

retical boundaries of stability derived from the Z-transform are shown to closely

match the shape of the area of convergence. This also proves that the size of the

discretization for time and space can affect whether the new cellular automata

model will converge or diverge. The convergence maps are shown in Section 5.1

on page 34 and the measurement of error between the theoretical and actual

convergent boundaries are shown in Sections 5.2 and 5.3 on pages 38 and 46.

• Within the important area of convergence, the time to convergence is shorter the

closer the hx and ht parameters are to the lower boundary of the convergence

area. This is shown in Section 5.4 on page 49.

• A set of guidelines were created that can be used to determine the optimum

parameters hx and ht for convergence and simulation speed. This is shown in

Section 5.5 on page 50.

3

• An argument can be made that stiffness in not a problem for a portion of the

convergence area. This is shown in Appendix B on page 88.

4

2. LITERATURE REVIEW

In this chapter I will conduct a general survey of research that will have bearing

upon my topic. Section 2.1 on page 5 will briefly mention and cite the papers that

provide background material for this thesis. Section 2.2 on page 6 provides exam-

ples of differential equations that describe biological processes including Population

Growth (Section 2.2.1), Vegetation Patterns (Section 2.2.2), and Morphogenesis (Sec-

tion 2.2.3). Section 2.3 on page 10 discusses how partial differential equations can be

solved using discretization and approximation. Section 2.4 on page 11 explains how

cellular automata models work and their benefits (Section 2.4.1), their applications

(Section 2.4.2), their connections to differential equations and other models (Sec-

tion 2.4.3), and lastly other attempts to transform differential equations to cellular

automata (Section 2.4.4).

2.1 Background

There are several different examples of biological processes that are modeled by spa-

tial differential equations. Several articles have been written concerning the growth

patterns of vegetation in the desert[13] [6]. The biomass density of the vegetation

is modeled by a differential equation that takes into account dryness of the soil and

mortality of the plants. Turing also worked with modeling biological and chemi-

5

cal process with partial differential equations, explicitly in how morphogens move

throughout cells during morphogenesis [12].

The study of cellular automata really took off with Conway’s “game of life” [3].

Currently, a source that contains a wide range of research on cellular automata is

Stephen Wolfram’s A New Kind of Science [15]. It includes such topics as com-

putability, modeling nature with cellular automata, and trying to generally classify

types of cellular automata.

The basis for my thesis is work done by my advisor and several colleagues at CSUSB

on Patterned Growth in Extreme Environments [2]. The paper details how several

patterns created within nature that can be modeled by simple cellular automata

rules. The article, however, did not define any clear rules on creating the cellular

automata model from the patterns, which is what I will investigate in my research.

Other articles such as [4] did make some conversions rules from differential equations

to cellular automata, although somewhat specific to their particular situation.

2.2 Biology and Differential Equations

2.2.1 Population Growth

One basic area where it is easy to see how biology is related to differential equations

is population growth. If P is the size of a population, then the growth rate of the

population is described by the equation:

dP

dt
= kP (2.1)

6

where k is a growth constant. The equation itself is common sense, the rate a pop-

ulation of organisms will grow depends upon the current population size. What can

make differential equations tricky is solving for a variable like P without having any

derivatives left within the equation. In this case it is trivial, by simply separating the

variables, placing all the elements of t on one side and all the elements containing P

on the other and then integrating [11].∫
dP

P
=

∫
kdt (2.2)

P = Aekt (2.3)

Here A is some arbitrary constant of integration. The following examples however

cannot be solved so simply.

2.2.2 Vegetation Patterns

Certain patterns of vegetation within the deserts of Niger and Israel can be modeled

by partial differential equations [13]. Where n(x,t) computes the biomass density and

w(x,t) computes the water density:

∂n

∂t
=

yw

1 + σw
n− n2 − µn +∇2n (2.4)

∂w

∂t
= p− (1− ρn)w − w2n + δ∇2(w − βn)− v

∂(w − αn)

∂x
(2.5)

In equation 2.4, yw
1+σw

n describes plant growth with w standing for dry soil, −µn

describes mortality and being eaten by herbivores, and −n2 accounts for “saturation

due to limited nutrients.” For equation 2.5, p represents precipitation, (1 − ρn)w

represents evaporation, and −w2n represents transpiration.

7

According to these equations, as p (precipitation) varies, so do the patterns of

the plants. Low precipitation leads to patches or spots of vegetation, which occurs

because the plants draw water form the areas around them to absorb enough water.

Higher precipitation levels create an interesting striped pattern that appears maze

like, because they draw less water from surrounding areas. Even higher levels create

uniform coverage with holes, similar in size to the patches of vegetation. These states

of vegetation, i.e. spotted, striped, uniform with holes, bare, and completely uniform,

are relatively stable. The fact that the states are stable is used by the authors to

explain desertification. If vegetation in the spotted state does not receive enough

precipitation over a period of time, the vegetation may fall to the completely bare

state. Once in this lower stable state, one large rainfall will not be able to bring the

vegetation back to the spotted vegetation state [13].

Several simulations were run using the vegetation models and several interesting

facts were confirmed. There are certain values of p (precipitation) where two stable

states can coexist. For example, simulations were run with the lower half receiving

enough p for the spotted state and the upper half receiving p for the striped state.

The result was a system that had the two patterns mix in the middle, especially if

perturbations from the initial uniform vegetative state were allowed [6].

2.2.3 Morphogenesis

Alan Turing explored modeling biological patterns in morphogenesis, which are caused

by morphogens. Morphogenesis is a category in developmental biology concerning

how cells form into structures. Morphogens are those molecules or substances that

8

direct the change in cells during morphogenesis. Morphogenesis attempts to describe

processes such as how a clump of zygote cells can form into specific structures, creat-

ing an embryo. Chemistry is also an important factor in morphogenesis, because it is

important to understand how the rate and ability for morphogens to diffuse through

cells depends upon chemical reactions. Morphogenesis can also be compared to the

previous vegetation sample, in that for both models a change in conditions (precipi-

tation or diffusion of morphogens) can take a homogeneous state (bare soil or zygote

cells) into complex structural patterns (labyrinth vegetation patterns or embryonic

biological structures) [12].

Turing created a model using differential equations for a ring of N homogeneous

cells, using X and Y to represent the amounts of 2 morphogens. A subscript r indicates

the amount of X or Y in a particular cell r. This results in the two following formulas:

dXr

dt
= f(Xr, Yr) + µ(Xr+1 − 2Xr + Xr−1) (2.6)

dYr

dt
= g(Xr, Yr) + ν(Yr+1 − 2Yr + Yr−1) (2.7)

For X and Y, the rate of change that is dependent upon chemical reactions is

depicted receptively through f(Xr, Yr) and g(Xr, Yr). The rate of change also depends

upon the diffusion of X and Y to the cells to the left or right in the ring of cells. This

is depicted by the functions by the functions µ(Xr+1 − 2Xr + Xr−1) and ν(Yr+1 −

2Yr + Yr−1).

Turing says that his simplified model, going from a homogeneous state to patterns,

is not very helpful, because in the real world one generally starts with a pattern and

has it evolve to another pattern. Although one would not be able to model every

9

pattern to another, digital computers might be able to aid in identifying the change

from certain special sub cases of patterns to other patterns.

2.3 Solving Partial Differential Equations

My research will be primarily dealing with partial differential equations because they

are the most difficult to solve and techniques used to solve partial differential can be

used on ordinary differential equations as well. The methods to solve partial differen-

tial equations that I will examine will be approximation methods, which discretize the

equation. This will help with converting differential equations to cellular automata

and back since cellular automata have rules applied to discrete areas.

One technique is to discretize the partial differential so that it is reduced to an

ordinary differential equation. An example showing how this can be done is in [9]

using the following wave equation:

1

c2
utt = uxx (2.8)

Say I want to solve the equation at points for x: x0, x1, ...xi, ... where h will be the

difference between xi and xi+1. I want to replace uxx to remove the variable x from

the equation and substitute it with xi. To do this I will use the three point formula,

which approximates derivatives:

f ′(x) =
f(x + h)− f(x− h)

2h
(2.9)

The second derivate can be approximated by replacing f(x) with f’(x) since the

second derivative is the derivative of the first derivative, and also using half of h.

10

I then use the three point formula and replace f(x) with f’(x). This gives the

following formulas once the substitution is made:

f ′′(x) =
f ′(x + h

2
)− f ′(x− h

2
)

h
(2.10)

=
f(x + h)− 2f(x) + f(x− h)

h2
(2.11)

I can now use this formula to replace uxx in the wave equation. Also note that

x + h = xi+1 and x− h = xi−1:

1

c2
utt(t, xi) =

u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

h2
(2.12)

u′′(t, xi) =
−2c2

h2
u(t, xi) +

c2

h2
(u(t, xi+1) + u(t, xi−1)) (2.13)

So now I have a set of ordinary differential equations for each xi, which can be

approximated by several methods. Equation 2.12 implies a possible link between

partial differential equations and cellular automata. The result for xi is determined

partially by xi−1 and xi+1, the points to the left and the right of the point I am

calculating. As you will see, the values in cellular automata are usually based upon

the values of their neighbors.

2.4 Cellular Automata

2.4.1 Definition

Cellular automata (CA) are simple models that create surprisingly complex results.

A CA is composed of a grid of cells. Each cell could contain a variety of things but

usually it contains a number or the cell is simply filled or empty. The value of the cell

is based upon a set of rules, which are usually based upon the neighboring cells. A

simulation using a CA begins with an initial state with some cells having values while

11

others are empty, having the equivalent value of zero. At each time period the set of

rules is applied to each cell to see what the new value of each cell will be. Over many

time periods the values within the cells will usually form some pattern, although it

may not be uniform.

A simple example of a CA that displays complex results is the original automata

that helped to spark current interest in subject, the “game of life”. In the “game of

life” each cell is either blank or filled in. A filled cell represents a living organism,

hence the name the “game of life.” Each cell has eight neighbors, those square cells

that immediately surround the cell, horizontally, vertically, or diagonally. The rules

to generate the next time period are as follows:

1. A cell that is filled will survive to the next round if it has two or three neighbors

that are filled.

2. A cell that is filled with four or above filled neighbors will die from over popu-

lation, or it will die from isolation if it has one or less filled neighbors.

3. A cell that is empty can be filled in if exactly three neighbors are filled, giving

birth to a new organism.

This simulation game is played by creating an initial state of filled cells that create

certain outcomes, such as stable cells that will stay filled every turn, or blinkers, cells

that continually loop in a cycle of filled and empty [3].

The cellular automata model has several benefits. CA are not only simple mathe-

matically, but they also are easy to simulate because they are already discrete. These

simulations are also easily parallelizable. Each node in a distributed computing net-

12

work can simulate a block of cells and pass results to each other about cell neighbors.

The “game of life” in fact is a common problem used to introduce parallel and dis-

tributed computing to students. The ability to parallelize a problem or simulation

is becoming a paramount concern as grid computing is now used to compute large

simulations. Another benefit of CA is that they provide a local view to a problem.

Cellular automata are constructed in terms of how a single cell interacts with its

neighbor cells over time as opposed to how the overall pattern can be manipulated.

2.4.2 Applications

Ironically simple variations of Conway’s “game of life” have been shown to create

similar patterns to actual organisms. The game as stated somewhat describes the

growth of desert vegetation in section 2.2.2 on page 7. The plants need some biomass

around them to help them grow, meaning they need some neighbors to continue to

live. Over population will occur if there are too many surrounding plants for the

level of precipitation, killing some plants off. Changing the number of neighbors it

takes to kill a cell in the “game of life” is like changing the level of precipitation

the system gets. More precipitation allows for more neighbors to coexist and less

neighbors coexist when water is running low in the area.

Another version of the “game of life” used to model biological patterns are that of

Cyanobacteria, which helped to create oxygen in the atmosphere in Earth’s ancient

past [2]. The rules used are the same as the “game of life” except that if the cell has

seven or more neighbors, it is killed rather than four or more. Also there is no death

by isolation. Additionally an extra rule of random death is added, where there is a

13

10% chance that a cell will randomly die and be empty in the next time period. These

rules will create an astonishingly similar pattern to the patterns left by Cyanobacteria

as fossils, which are shown in Figure 2.1 The top cellular automata pattern in the

figure was created in five time steps and the bottom in forty time steps.[2].

Fig. 2.1: Images of Cyanobacteria fossils and two patterns created by cellular automata.

Another biological occurrence that creates a complex pattern, biovermiculation

growth, has also been shown to be simulated by CA. Figure 2.2 [8] shows a CA

simulation of biovermiculation growth. They are found within cave walls and are

caused by bacteria, slime, clay and other minerals. As mentioned in [2] these patterns

are of interest because similar lifeforms may be able to live within the caves of Mars.

2.4.3 Connections with Other Models

Wolfram also points out an interesting connection between CA and partial differential

equations [15]. Wolfram tried to create a model for a continuous CA, that is, a CA

with no cells but an infinite amount of continuous points. Also the values of each

point are an amount of gray ranging from completely filled in, or black, to empty,

14

Fig. 2.2: Cellular automata simulation of biovermiculation growth on a cave wall after many iterations.

or white. Initially, it would seem difficult to develop rules for a continuous system.

Wolfram however shows that partial differential equations themselves could be used

as the rules for a continuous CA. The difference between what Wolfram has shown

and my proposed thesis is that I want to stay in the discrete realm. I want to find

out is there a way to transform the differential equations into a discrete form of rules.

CAs are also of direct importance to computer science. Wolfram shows implicitly

that one dimensional CAs with the right setup are equivalent to Turing machines

[15]. The type of CA used is a mobile automata, which has a place marker, and the

only cell that has the rules applied to it each time period is the marked cell. Each

cell in the one dimensional CA is either filled or not, representing a tape of binary

digits. Included in the state is also an arrow which serves as the marker. This arrow

represents the head of the Turing machine. For each transition the marker can either

15

move to the left or the right of the current cell. The arrow can also point either left,

right, or down to indicate additional states rather than just the cell being filled in or

empty.

2.4.4 Other Differential Equation to Cellular Automata Translation Attempts

Ever since Wolfram linked CAs and differential equations over a decade ago [14],

others have also tried to detail that link. A generic method for converting differential

equations was discovered by researchers at Beijing Polytechnic University [4], which

include:

1. Convert a differential equation in the form of dx
dt

= f(x, y) to a finite difference

equation x(t + 1) = x(t) + f(x(t), y(t)).

2. Replace all variables like x and y with discrete state variables used by the CA.

3. The transition function then becomes 1+f.

These steps were applied to differential equations that describe tumor growth. Some

of these steps are generic and I will attempt to produce a method in my thesis that is

more detailed, whether it be based upon these steps or a completely different process.

16

3. DIFFERENTIAL EQUATION CONVERSION

In this chapter I will first describe the general characteristics of biological differential

equations that can be simulated by cellular automata (CA). This is found in Section

3.1 on page 17. Next I will present a survey of biological equations that fit these

characteristics in Section 3.2 on page 18, some of which are explained in more detail

in Section 2.2 on page 6. The following section, Section 3.3 on page 21, will summarize

the biological differential equations into a couple generalized forms. Then in Section

3.4 on page 21, I will show how both Forward and Backward Euler’s methods can

be used to discretize the general differential equation forms so that it can be used as

rules for CA.

3.1 Differential Equation Characteristics

The class of differential equations that would be useful to simulate are those that

contain both time and spatial parameters, explicitly the partial differential equations

with respect to time that contain within their definitions gradient or Laplacian terms

with respect to space. Simply put, these equations explain how biological values

change with time depending upon how their spacial neighbors are changing. This is

also a rough definition of how CA rules work because they explain what is happening

within a particular cell as time changes according to the values of their neighbors.

17

For this document the general name of the biological functions that have these

characteristics will be u(t, x) where t is the position in time for the spacial position x.

I will be using subscripts to indicate different positions in time and space so u(ti, xj)

is equal to the value of a vector at position j at time i. For the function u to refer

to higher dimensions, extra position parameters can be tacked on for each dimension

(Ex: u(ti, xj, yk, zl)). To make some of the following equations easier to read I will

let ui,j = u(ti, xj).

The function f(t, x) will be the name of the differential equation of u(t, x) with

respect to time. In other words f(x, t) = ∂u
∂t

. Normally the function f(t, x) will not

actually have the terms x and t within the function but instead are passed in some

form of ui,j. Because of this I will simply use u as the parameter itself: f(ui,j). The

following section presents examples of biological equations that fit these characteris-

tics.

3.2 Biological Equations

This section contains a small survey of spatial biological equations in order to deter-

mine some general equation forms to be used.

3.2.1 Fick’s Law

Fick’s law is a differential equation for population density [10]:

∂P

∂t
= f(t, x, P) + d∇2

xP (3.1)

Here P represents population density. The equation says that populations in more

dense areas will move to less dense areas, depicted by d∇2
xP where d is a diffusion

18

constant. The function f(t, x, P) represents the reaction rate, where the size of the

population is changed due to non-density factors like birth or death.

In the most general case, f(t, x, P) = kP , which gives:

∂P

∂t
= kP + d∇2

xP (3.2)

3.2.2 Random Walk

The number of random walker entities at a specific location is described by [10]:

∂P

∂t
= D

∂2P

∂t2
− V

∂P

∂x
(3.3)

Here D is another diffusion constant of the movement in D ∂2P
∂t2

. The second term

V ∂P
∂x

allows for a bias within the random walk.

3.2.3 Predator-Prey

The following equations can be used to simulate predator and prey population using a

variation of the Lotka-Voltera equations “with self-limitation of the prey and Holling

II functional response” [7]:

∂ri

∂t
=

(
a− br − p

1 + r

)
ri + dri

∇2ri (3.4)

∂pi

∂t
=

(
r

1 + r
− c

)
pi + dpi

∇2pi (3.5)

Here ri and pi respectively refer to the predator and prey population i. Without the

subscript i, r and p refer to the total sum of the population for predators and prey.

19

3.2.4 Another Predator-Prey Model

The following is another predator-prey relationship where random fluctuations are of

the type white noise, allowing the Fokker-Planck equation to be used[1]:

∂P

∂t
=

∂

∂x
[a(x)P] +

1

2

∂2

∂x2
[b(x)P] (3.6)

where

a(x) = kx
1−

(
x
θ

)α

α
+ σ2x

2
(3.7)

b(x) = σ2x2 (3.8)

3.2.5 Desert Vegetation Patterns

These are equations that describe plant growth through biomass density n(x,t), and

water density w(x,t) as describes in detail in Section 2.2.2 [13]:

∂n

∂t
=

yw

1 + σw
n− n2 − µn +∇2n (3.9)

∂w

∂t
= p− (1− ρn)w − w2n + δ∇2(w − βn)− v

∂(w − αn)

∂x
(3.10)

3.2.6 Morphogenesis

Here X and Y represent the amounts of 2 morphogens within a ring of cells. A

subscript r indicates the amount X or Y corresponds to the particular cell r. This

results in the following two formulas[12]:

dXr

dt
= f(Xr, Yr) + µ(Xr+1 − 2Xr + Xr−1) (3.11)

dYr

dt
= g(Xr, Yr) + ν(Yr+1 − 2Yr + Yr−1) (3.12)

20

If the ring is thought of as continuous tissue, the equations become similar to ones

shown in previous subsections:

∂X

∂t
= a(X − h) + b(Y − k) +

µ′

ρ2

∂2X

∂θ2
(3.13)

∂Y

∂t
= c(X − h) + d(Y − k) +

ν ′

ρ2

∂2X

∂θ2
(3.14)

Where θ describes the position of a cell by an angle within the ring of cells.

3.3 Differential Equation General Form

The following form best encapsulates the equations 3.2, 3.3, 3.4, 3.5, 3.9 and 3.10

from Section 3.2:

f(ui,j) =
∂u

∂t
= m(ui,j) +∇2

xn(ui,j) +∇xo(ui,j) (3.15)

In this form all of the terms that only contain ui,j are contained in m(ui,j). All of the

terms that have the Laplacian with respect to space applied to them are contained

in n(ui,j). The term o(ui,j) contains the elements within the formula that have the

gradient applied them.

3.4 Discretizing Partial Differential Equations

3.4.1 Forward Euler’s

A common and simple way to solve an ordinary differential equation by approximation

is by using Forward Euler’s Method, which is the following formula:

ui+1,j = ui,j + htf(ui,j) (3.16)

21

ht is defined as the interval between each ti value. f(ui,j) is the differential equation of

ui,j. I will substitute Equation 3.15 for f(ui,j) but first I must discretize the equation

by the space component, removing the gradient and Laplacian from the equation. The

terms ∇2
xn(ui,j) and ∇xo(ui,j) can be substituted using the 3 point formula (shown

in Section 2.3):

∇2
xn(ui,j) ≈

n(ui,j+1)− 2n(ui,j) + n(ui,j−1)

h2
x

(3.17)

∇xo(ui,j) ≈
o(ui,j+1)− o(ui,j−1)

2hx

(3.18)

Substituting these into equation 3.15 f(ui) gives:

f(ui,j) = m(ui,j) +
n(ui,j+1)− 2n(ui,j) + n(ui,j−1)

h2
x

+
o(ui,j+1)− o(ui,j−1)

2hx

(3.19)

If I substitute f(ui,j) into the Forward Euler equation I get:

ui+1,j = ui,j + ht

(
m(ui,j) +

n(ui,j+1)− 2n(ui,j) + n(ui,j−1)

h2
x

+
o(ui,j+1)− o(ui,j−1)

2hx

)
(3.20)

From this equation I can construct a cellular automata model. If I let u be the cells

within the cellular automata, then Equation 3.20 can be used as the simple rule to

change u from one time period to another. As with other CA models, the equation

includes the nearest neighbors of a particular cell within the CA rule. This model

is mathematically much simpler than the differential equation (Eq. 3.3) because the

rule only includes the operations addition, subtraction, multiplication, and division.

3.4.2 Solving Backward Euler’s

Forward Euler’s method is nice in that it is explicit and gives a direct equation, but it

can break down quickly as ht becomes large. The Backward Euler’s method, however,

22

is more stable as ht becomes large. It has a subtle difference from Forward Euler’s in

that ui+1,j is used within the formula itself:

ui+1,j = ui,j + htf(ui+1,j) (3.21)

I do not know what ui+1,j is equal to, but I can solve the last part of the equation in

terms of ui,j [5]. First I subtract ui,j from both sides of equation 3.21:

∆u = htf(ui,j + ∆u) (3.22)

Now I can change the right hand side of equation 3.21 with its first order Taylor

series. Then I solve for ∆u:

∆u = htf(u) + ht
∂f

∂ui,j

∆u (3.23)

∆u− ht
∂f

∂u
∆u = htf(ui,j) (3.24)

(1− ht
∂f

∂u
)∆u = htf(ui,j) (3.25)

∆u =
htf(ui,j)

1− ht
∂f
∂u

(3.26)

Now I add ui,j back into equation 3.26 to get back the Backward Euler’s equation in

terms of only ui,j:

ui+1,j = ui,j +
htf(ui,j)

1− ht
∂f(u)

∂u

∣∣∣
i,j

(3.27)

Now all I have to do is substitute in f(ui,j) from equation 3.19:

ui+1,j = ui,j +
ht

(
m(ui,j) +

n(ui,j+1)−2n(ui,j)+n(ui,j−1)

h2
x

+
o(ui,j+1)−o(ui,j−1)

2hx

)
1− ht

∂
∂u

(
m(u) + n(u)−2n(u)+n(u)

h2
x

+ o(u)−o(u)
2hx

) ∣∣∣
i,j

(3.28)

= ui,j + (3.29)

ht

(
m(ui,j) +

n(ui,j+1)−2n(ui,j)+n(ui,j−1)

h2
x

+
o(ui,j+1)−o(ui,j−1)

2hx

)
1− ht

∂m(u)
∂u

∣∣∣
i,j

+

∂n(u)
∂u

∣∣∣
i,j+1

−2
∂n(u)

∂u

∣∣∣
i,j

+
∂n(u)

∂u

∣∣∣
i,j−1

h2
x

+

∂o(u)
∂u

∣∣∣
i,j+1

− ∂o(u)
∂u

∣∣∣
i,j−1

2hx


23

Although this formula may seem complicated, it reduces greatly if both n(u) and

o(u) contain u’s with a degree less than two. In this case, the two fractions in the

denominator containing n(u) and o(u) become zero when I take the partial derivative.

This gives the equation:

ui+1,j = ui,j +
ht

(
m(ui,j) +

n(ui,j+1)−2n(ui,j)+n(ui,j−1)

h2
x

+
o(ui,j+1)−o(ui,j−1)

2hx

)
1− ht

∂m(u)
∂u

∣∣∣
i,j

(3.30)

This equation can also be used as a rule of a CA for u cells. This equation does

include partial differentiation, but once m(u), n(u), and o(u) have been substituted

into the formula, the partial derivative can be evaluated, giving a formula with only

addition, subtraction, multiplication, and division.

24

4. STABILITY AND Z-TRANSFORM OF THE GENERAL LINEAR FORM

In this chapter, I discuss the stability of the Euler functions found in the previous

chapter. In Section 4.1 on page 26 I present a general form of the biological equations

that only include linear terms of u that I refer to in the rest of the document as the

general linear form. In subsection 4.1.1, I use a Z-transform to find out what values

are stable for the general linear equation form using Forward Euler’s method. Then in

Subsection 4.1.2, I use the same process on the Backward Euler’s equation I created.

In both Subsections 4.1.1 and 4.1.2, I find the stability of equations by first ma-

nipulating the formula so that the u variables can be transformed easily. Next I

preform the Z-transform and solve for Uj, the u variable after it has gone through the

Z-transform. With the resulting formula I find the poles and zeros for the z variable.

If given some function that looks like f(z)
g(z)

, the zeros of the function are the z values

where f(z) = 0 and the poles of the function are the values of z that make g(z) = 0.

The poles of the function describe the Region Of Convergence, the area where z exists.

If the Region of Convergence contains the unit circle on the complex plane, then the

equation will be stable. Therefore, by setting the poles to less than one (the radius

of the unit circle), the inequalities will become constraints on stability.

In Section 4.2 on page 31, I will then compare the resulting poles and zeros from

Subsections 4.1.1 and 4.1.2 to show that the modified Backward Euler’s (Eq. 3.30) is

25

theoretical more stable than the modified Forward Euler’s (Eq. 3.20), although this

does not hold true in practice as shown in the next chapter.

4.1 General Linear Equation Stability

For the remainder of this thesis I will be focusing on a particular subset of the general

partial differential equation form, one that uses linear terms with respect to u. I will

use the following equation to represent the general linear form and parse it into the

format of Equation 3.15:

f(u) = a1u + b1 +∇2
x(a2u) +∇x(a3u) (4.1)

I can assign parts of the equations to the following functions:

m(u) = a1u + b1 (4.2)

n(u) = a2u (4.3)

o(u) = a3u (4.4)

Now I plug these substitutions into the final Forward and Backward Euler’s equations

and compare their stability.

4.1.1 Linear Forward Euler’s Equation Stability

If I substitute equations 4.2, 4.3, and 4.4 into equation 3.20 I get:

ui+1,j = ui,j + ht

(
a1ui,j + b1 +

a2ui,j+1 − 2a2ui,j + a2ui,j−1

h2
x

+

a3ui,j+1 − a3ui,j−1

2hx

)
(4.5)

26

Now I will multiply by the necessary values so that 2h2
x is the common denominator

for the fractions:

ui+1,j = ui,j + ht

(
2a1h

2
xui,j

2h2
x

+
2b1h

2
x

2h2
x

+

(2)(a2ui,j+1 − 2a2ui,j + a2ui,j−1)

2h2
x

+
(hx)(a3ui,j+1 − a3ui,j−1)

2h2
x

)
(4.6)

Then I bring out a 1
2h2

x
and multiply the left term by 2h2

x

2h2
x

to get:

ui+1,j =
2h2

xui,j

2h2
x

+
ht

2h2
x

(
2a1h

2
xui,j + 2b1h

2
x+

(2)(a2ui,j+1 − 2a2ui,j + a2ui,j−1) + (hx)(a3ui,j+1 − a3ui,j−1)) (4.7)

=
ht

2h2
x

(
2h2

xui,j

ht

+ 2a1h
2
xui,j + 2h2

xb1+

(2)(a2ui,j+1 − 2a2ui,j + a2ui,j−1) + (hx)(a3ui,j+1 − a3ui,j−1)) (4.8)

=
ht

2h2
x

((
2h2

x

ht

+ 2a1h
2
x − 4a2

)
(ui,j) + (2a2 − a3hx)(ui,j−1)+

(2a2 + a3hx)(ui,j+1) + 2b1h
2
x

)
(4.9)

Now I take the Z-Transform and solve for Uj to get the following equation, eliminating

the i index:

Uj =
ht

2h2
x

((
2h2

x

ht

+ 2a1h
2
x − 4a2

)
(z−1Uj) + (2a2 − a3hx)(z

−1Uj−1)+

(2a2 + a3hx)(z
−1Uj+1) + 2b1h

2
x

)
(4.10)

I will gather all of the Uj terms on the left side of the equation:(
1− ht

2h2
x

(
2h2

x

ht

+ 2a1h
2
x − 4a2

)
(z−1)

)
Uj =

ht

2h2
x

((2a2 − a3hx)(z
−1Uj−1) +

(2a2 + a3hx)(z
−1Uj+1) + 2b1h

2
x) (4.11)

Then I divide by the coefficients of Uj to solve for Uj:

Uj =

ht

2h2
x
((2a2 − a3hx)(z

−1Uj−1) + (2a2 + a3hx)(z
−1Uj+1) + 2b1h

2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

) (4.12)

27

Now I need to find the poles and zeros of the resulting equation. First I will change

the z−1 to 1
z
, and then multiply the entire fraction by by z

z
:

Uj =

ht

2h2
x

(
(2a2 − a3hx)(Uj−1)

1
z

+ (2a2 + a3hx)(Uj+1)
1
z

+ 2b1h
2
x

)(
1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
1
z

) (4.13)

=

ht

2h2
x
((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1) + 2b1h

2
xz)(

z − ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)) (4.14)

The equation will remain stable as long as the absolute value of the poles and zeros

are less than one. To find the zeros, I set the numerator of Equation 4.14 equal to

zero and solve for z. The resulting zero value for z must be less than 1 in order for

the equation to be stable, which gives the following condition for stability:

1 >
∣∣∣ −1

2b1h2
x

((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1))
∣∣∣ (4.15)

Unfortunately, this constraint contains Uj−1 and Uj+1 which change with each time

step, and therefore, they are not constant. In Appendix A on page 67, I will substitute

these values with constant approximations to see if the new constraints help to further

describe the stability of the Linear Forward Euler equation.

Next I need to find the poles of Equation 4.14 by setting the denominator equal

to zero and solving for z. That z value must also be less than one for the equation

to be stable, which gives the following condition for stability:

1 >
∣∣∣ ht

2h2
x

(
2h2

x

ht

+ 2a1h
2
x − 4a2

) ∣∣∣ (4.16)

>
∣∣∣1 + a1ht −

2a2ht

h2
x

∣∣∣ (4.17)

28

4.1.2 Linear Backward Euler’s Equation Stability

Now I do the same operations on the Backward Euler’s formula, Equation 3.30, by

first substituting in m(u), n(u), and o(u):

ui+1,j = ui,j +
ht

1− ht
∂(a1u+b1)

∂u

∣∣∣
i,j

(a1ui,j + b1+

a2ui,j+1 − 2a2ui,j + a2ui,j−1

h2
x

+

a3ui,j+1 − a3ui,j−1

2hx

)
(4.18)

= ui,j +
ht

1− a1ht

(a1ui,j + b1+

a2ui,j+1 − 2a2ui,j + a2ui,j−1

h2
x

+

a3ui,j+1 − a3ui,j−1

2hx

)
(4.19)

Again I will make 2h2
x the common denominator, and then I bring out a 1

2h2
x

and

multiply the left term by 2h2
x

2h2
x

to get:

ui+1,j =
2h2

xui,j

2h2
x

+
ht

2h2
x(1− hta1)

(2a1h
2
xui,j + 2b1h

2
x +

(2hx)(a2ui,j+1 +−2a2ui,j + a2ui,j−1) + (h2
x)(a3ui,j+1 − a3ui,j−1)) (4.20)

=
2h2

x(1− a1ht)ui,j

2h2
x(1− a1ht)

+
ht

2h2
x(1− a1ht)

(2a1h
2
xui,j + 2b1h

2
x +

(a2ui,j+1 +−2a2ui,j + a2ui,j−1)(2hx) + (a3ui,j+1 − a3ui,j−1)(h
2
x)) (4.21)

=
ht

2h2
x(1− a1ht)

(
2h2

x(1− a1ht)ui,j

ht
+ 2a1h

2
xui,j + 2b1h

2
x+

(a2ui,j+1 +−2a2ui,j + a2ui,j−1)(2hx) + (a3ui,j+1 − a3ui,j−1)(h
2
x)

)
(4.22)

=
ht

2h2
x(1− a1ht)

((
2h2

x(1− a1ht)

ht

+ 2a1h
2
x − 4a2

)
(ui,j) + (2a2 − a3hx)(ui,j−1)+

(2a2 + a3hx)(ui,j+1) + 2b1h
2
x

)
(4.23)

29

Now I will take the Z-Transform and solve for Uj, again removing the index i from

the equation:

Uj =
ht

2h2
x(1− a1ht)

((
2h2

x(1− a1ht)

ht

+ 2a1h
2
x − 4a2

)
(z−1Uj)+

(2a2 − a3hx)(z
−1Uj−1) + (2a2 + a3hx)(z

−1Uj+1) + 2b1h
2
x

)
(4.24)

I will gather all of the Uj terms on the left side of the equation:(
1− ht

2h2
x(1− a1ht)

(
2h2

x(1− a1ht)

ht

+2a1h
2
x − 4a2

)
(z−1)

)
Uj =

ht

2h2
x(1− hta1)

((2a2 − a3hx)(z
−1Uj−1) +

(2a2 + a3hx)(z
−1Uj+1) + 2b1h

2
x) (4.25)

Then I divide by the coefficients of Uj to solve for Uj:

Uj =

ht

2h2
x(1−a1ht)

((2a2 − a3hx)(z
−1Uj−1) + (2a2 + a3hx)(z

−1Uj+1) + 2b1h
2
x)(

1− ht

2h2
x(1−a1ht)

(
2h2

x(1−a1ht)
ht

+ 2a1h2
x − 4a2

)
(z−1)

) (4.26)

I then multiply by z
z

and find the poles and zeros:

Uj =

ht

2h2
x(1−a1ht)

((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1) + 2b1h
2
xz)(

z − ht

2h2
x(1−a1ht)

(
2h2

x(1−a1ht)
ht

+ 2a1h2
x − 4a2

)) (4.27)

Again, I can find the zeros by setting the numerator of Equation 4.27 equal to zero

and solving for z. The resulting zero value for z must be less than one in order for

the equation to be stable, which gives the following condition for stability for the

Backward Euler’s equation:

1 >
∣∣∣ −1

2b1h2
x

((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1))
∣∣∣ (4.28)

Again I run into the problem of the nonconstant Uj−1 and Uj+1 values. As mentioned

before, I attempt to address this issue in Appendix A on page 67.

30

Next I find the poles of Equation 4.27 to find the second stability condition by

setting the denominator equal to zero and solving for z. That z value must also be

less than one for the equation to be stable, which gives the following condition for

stability:

1 >
∣∣∣ ht

1− a1ht

(
1− a1ht

ht
+ a1 −

2a2

h2
x

) ∣∣∣ (4.29)

>
∣∣∣1 +

a1ht

1− a1ht

− 2a2ht

(1− a1ht)h2
x

∣∣∣ (4.30)

4.2 General Linear Equation Comparative Stability Analysis

Now I compare the stability constraints found for both the Backward and Forward

Euler’s functions.

For the constraint created by the zeros, both formulas had the same constraint

(Equations 4.15 and 4.28):

1 >
∣∣∣ −1

2b1h2
x

((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1))
∣∣∣ (4.31)

In this equation, ht does not appear to affect its stability at all. This is incorrect,

however, because the ht value is a part of the Uj−1 and Uj+1, so this effect is hidden. As

for hx, if hx does become large, the h2
x in the denominator will overwhelm everything

else and make the entire right side of the formula small, keeping it stable.

For the constraints created by the poles, the Forward Euler constraint from Equa-

tion 4.17 is:

1 >
∣∣∣1 + a1ht −

2a2ht

h2
x

∣∣∣ (4.32)

and the constraint from the Backward Euler poles (Equation 4.30) is:

1 >
∣∣∣1 +

a1ht

1− a1ht

− 2a2ht

(1− a1ht)h2
x

∣∣∣ (4.33)

31

These two formulas show that there needs to be a balancing of ht and ht

h2
x

in order

for the formula to remain stable. In both formulas the second term contains the ht

term and if it becomes large it can make the whole formula become larger than 1.

The third term, however, contains a ht

h2
x

term, which means that as hx shrinks smaller,

the term becomes larger. The third term is negative and as a result if ht becomes

large and h2
x becomes smaller at the same rate, the second and third terms will cancel

each other out. The outcome will be that the overall formula is smaller than 1.

The difference between these two formulas show why the Backward Euler’s formula

in general will be more stable than the Forward Euler’s formula as ht gets large.

For the second constraint, both terms are divided by 1− a1ht so that as ht becomes

large, the terms will be divided by a larger denominator, creating a smaller result and

allowing simulations to be more stable as they last longer. If ht is small, then there is

little difference between the two Euler’s formulas because the two terms in Backward

Euler’s will be divided by a number close to 1. Therefore, I would recommend from

this information to use the Backward Euler’s formula, because it is more stable when

ht is big and there is no cost to stability when ht is small. However, as will be shown

in Section B.2 on page 90, a1ht at maximum is 0.1, meaning both formulas are nearly

the same even if ht becomes large.

32

5. CONVERGENCE MAPS AND CELLULAR AUTOMATA SIMULATION

RESULTS

In this chapter I analyze convergence maps, graphs that show the areas of convergence

for my CA models, based upon how space and time are discretized (the sizes of

hx and ht). In Section 5.1, on page 34, I define how the CA simulations are run

to create the convergence maps, and I make some observations about the maps.

Then in Section 5.2, on page 38, I graph the theoretical stability constraints from

Section 4.2 and show they form the boundaries of convergence. I also identify a

third boundary not explained by the theoretical stability constraints that I refer to as

the a3 vertical boundary because it draws a distinct nearly vertical line in the maps

between convergence and divergence and because its position is based upon the a3

parameter. In Section 5.3, on page 46, I calculate the error between the theoretical

stability boundaries and the actual convergence map boundaries. In Section 5.4, on

page 49, I show that the speed of the CA simulation is faster when the discretization

parameters are closer to the lower convergence boundary. Finally in Section 5.5, on

page 50, I use this information to propose a set of guidelines to help pick hx and ht.

33

5.1 Convergence Maps

5.1.1 Convergence Map Construction and Cellular Automata Simulation

Methodology

In this section there are several graphs depicting convergence maps, normally using

ht and hx as parameters. The maps were constructed by running either the Forward

or Backward Euler’s functions (Eqs. 4.5 and 4.19) within Scilab for the general

linear form, until one of three conditions were met. The first condition was that the

values converged, which for my tests meant that
∣∣∣∣∣∣ui+1 − ui

∣∣∣∣∣∣
2

< 10−10. The second

was that u was going to diverge, through the condition
∣∣∣∣∣∣ui+1 − ui

∣∣∣∣∣∣
2

> 1010. The

final condition was that the Euler’s formula being tested went through four thousand

iterations without meeting either the first or second conditions. In the convergence

maps that follow, if the Scilab program ended due to convergence, a blue dot is placed

on the map for corresponding ht and hx values used in the program. Similarly, green

was used for ht and hx values that diverged, and red was used for those values that

neither converged or diverged in the maximum number of iterations allotted.

The maps were created by running the Euler’s functions using u0 = [1 2 3 4 5]. The

left and right boundary cells (ui,0 and ui,6) were set as value zero and do not change

from one time period to another. The Scilab code used to run the CA simulations

are found in Section C.1 on page 98. The Scilab code to plot the simulation data is

in Section C.2 on page 104.

34

Fig. 5.1: Convergence map composed of 10,000 simulations with varying ht and hx values for the Forward

Euler’s function.

Fig. 5.2: Convergence map composed of 10,000 simulations with varying ht and hx values for the Backward

Euler’s function.

35

5.1.2 Function Convergence Analysis and Convergence Values

The first convergence map in Figure 5.1 is of the Forward Euler’s Linear equation

with a1=10, a2=1, a3=1, and b1=1, to give a basic idea of how the parameters ht

and hx affect the convergence. Figure 5.2 shows a convergence map of the Backward

Euler’s function with the same parameters. The obvious difference being the upper

right quadrant of the Backward Euler’s converges while the Forward Euler’s does not.

I will analyze the Euler’s functions by dividing the convergence maps into four major

quadrants.

The first quadrant is the upper right corner where both ht and hx become large.

The values of u do not converge. In the linear Forward Euler’s equation (Eq. 4.5), the

last two terms go to zero, because they are divided by a form of hx, which becomes

large. This leaves the equation: ui+1,j = ui,j +ht (a1ui,j + b1). With a1 being positive,

htb1 will be continually added, which is the likely cause for this quadrant to diverge.

The situation is different for the Backward Euler’s equation for this quadrant,

because the entire upper right quadrant will converge. The size of hx creates a similar

situation to the Forward Euler’s equation, making the right most two terms go to zero.

The difference in the Backward Euler’s formula is that the ht term becomes ht

1−a1ht
.

Because ht is also large, this term effectively becomes 1. This leaves the equation:

ui+1,j = ui,j + a1ui,j + b1. Simulations have shown that ui,j will converge at the

value − b1
a1

for the entire quadrant. This is possibly just an artifact of using Backward

Euler’s.

For the second quadrant, where ht is small and hx is large, both the Backward and

Forward Euler’s equations will diverge if a1 is positive. With ht being close to zero,

36

it is a similar situation to the first quadrant, except that it takes a much longer time

to diverge. If a1 is negative however, ui,j will converge to − b1
a1

. A convergence map

with a1 as negative is shown in Figure 5.3.

Fig. 5.3: Convergence map composed of simulations with varying ht and hx values for the Forward Euler’s

function when a1 is negative.

The third quadrant, where both ht and hx are small, is split into two halves on

both Backward and Forward Euler’s equations. The upper left half of this quadrant

converges while the lower right does not. The half that does converge represents

the balance necessary between ht and hx as mentioned within Section 4.2. The line

separating the two halves between convergence and divergence has a slope of ch2
x for

some constant c. The value of c is examined in Section B.2 on page 90 in Table B.1.

For the rest of this thesis I will be focused upon the third quadrant area of con-

vergence. This is due to the values that are converged upon in the area appear to be

37

of importance. The convergence values are nearly the same, given the same hx value,

even with different ht values. In other words the manner in which space is discretized

affects the outcome of the convergence values but how time is discretized does not.

The rest of the third quadrant and the entire fourth quadrant in the bottom right

of the map do not converge, most likely for the same reason. As ht becomes big and

hx becomes small, the last two terms divided by hx become very large. Because ht is

also large, it cannot be used to slow down the growth of those last two factors. Also

because the terms are linear and u0’s values are very close to each other, the last two

terms are near zero in the numerator and therefore are not that big. However, the

last cell of u (ui,5) is next to the boundary cell (ui,6), which always has the value zero,

which means the terms no longer cancel each other out in the second to last term:

a2ui,j+1−2a2ui,j+a2ui,j−1

h2
x

. In other words, for the last value of u, the quantities a2ui,j−1

and a2ui,j are nearly the same and cancel out, but a2ui,j+1 = 0, leaving
−a2ui,j

h2
x

. This

term then grows exponential because h2
x is very small. The absolute value of the last

term in u will grow towards infinity in these areas.

5.2 Convergence Boundaries

Now I will find the theoretical boundaries of the convergence map by taking the

inequalities in Equations 4.32 and 4.33 and setting them equal to one. By solving these

equations for hx in terms of ht I can graph this boundary on top of our convergence

maps.

38

5.2.1 Forward Euler’s Convergence Boundaries

First, for the Forward Euler’s poles equation I begin with:

1 =
∣∣∣1 + a1ht −

2a2ht

h2
x

∣∣∣ (5.1)

In order to eliminate the absolute value, I will solve for two different equations, first

assuming the right side is positive and second that it is negative. First I assume the

right side is positive to obtain the first constraint:

1 = 1 + a1ht −
2a2ht

h2
x

(5.2)

a1ht =
2a2ht

h2
x

(5.3)

h2
x =

2a2ht

a1ht

(5.4)

hx =

√
2a2ht

a1ht

(5.5)

=

√
2a2

a1

(5.6)

The second constraint assumes the right side is negative:

1 = −1− a1ht +
2a2ht

h2
x

(5.7)

2 + a1ht =
2a2ht

h2
x

(5.8)

h2
x =

2a2ht

2 + a1ht

(5.9)

hx =

√
2a2ht

2 + a1ht

(5.10)

This gives the following two boundary equations for Forward Euler’s:

hx =

√
2a2

a1

(5.11)

and

hx =

√
2a2ht

2 + a1ht

(5.12)

39

Figure 5.4 is a convergence map of a Forward Euler’s function with these two

constraints.

Fig. 5.4: Convergence map for the Forward Euler’s function also containing boundary constraints in black.

5.2.2 Backward Euler’s Convergence Boundaries

Now for the Backward Euler’s equation I have the constraint:

1 =
∣∣∣1 +

a1ht

1− a1ht

− 2a2ht

(1− a1ht)h2
x

∣∣∣ (5.13)

40

Again I will break up the absolute value into two constraints with one constraint

having a positive right side and one having a negative right side. First when the right

side is positive side:

1 = 1 +
a1ht

1− a1ht

− 2a2ht

(1− a1ht)h2
x

(5.14)

a1ht

1− a1ht

=
2a2ht

(1− a1ht)h2
x

(5.15)

h2
x =

2a2ht

a1ht

(5.16)

hx =

√
2a2ht

a1ht

(5.17)

=

√
2a2

a1

(5.18)

Now, the second constraint with the right side set as negative becomes:

1 = −1− a1ht

1− a1ht

+
2a2ht

(1− a1ht)h2
x

(5.19)

2 +
a1ht

1− a1ht

=
2a2ht

(1− a1ht)h2
x

(5.20)

(1− a1ht)h
2
x =

2a2ht

2 + a1ht

1−a1ht

(5.21)

=
2a2ht

2(1−a1ht)
1−a1ht

+ a1ht

1−a1ht

(5.22)

=
2a2ht

2(1−a1ht)+a1ht

1−a1ht

(5.23)

=
2a2ht(1− a1ht)

2(1− a1ht) + a1ht

(5.24)

h2
x =

2a2ht

2(1− a1ht) + a1ht

(5.25)

hx =

√
2a2ht

2− a1ht

(5.26)

This gives the following two boundary equations for Backward Euler’s:

hx =

√
2a2

a1

(5.27)

41

hx =

√
2a2ht

2− a1ht

(5.28)

As you can see, the first constraint is a straight line and is the same for both

Euler’s equations. The difference is with the second constraint, which comes with an

extra (1−a1ht) term for the Backward Euler’s equation. When ht is small, the entire

term becomes close to one. When this is the case, it is the same second constraint

as the Forward Euler’s second constraint. The change happens when ht becomes big.

When it does, the term will cause the second constraint to shoot off towards infinity.

Where the function goes to infinity is the boundary between the first and second

quadrant, allowing the first quadrant to converge for the Backward Euler’s function,

where it does not for the Forward Euler’s function.

Figure 5.5 is a convergence map of a Backward Euler’s function with these two

constraints.

Fig. 5.5: Convergence map for the Backward Euler’s function also containing boundary constraints in black.

42

5.2.3 a3 Vertical Boundary

For both the Forward and Backward Euler’s functions, a third boundary is made

visible by varying the a3 parameter. This parameter is not part of the poles constraint,

and when it is changed it seems to create a near vertical line parallel to the hx axis

that is a boundary between the convergent and divergent areas. The boundary may

not be a completely flat line because it appears to bevel in some instances, but only

slightly. Because the poles constraint cannot account for the vertical divide, there

must be some other inherent behavior creating what I will refer to in the rest of this

thesis as the a3 vertical boundary.

Table 5.1 contains the rightmost ht value that converges for the specified a3 value.

This table demonstrates how changing a3 can increase or decrease the amount of

simulations that can converge with respect to ht. The a3 vertical boundary starts

in the middle of the area depicted by the pole constraints when a3 is zero. As a3

increases, it slides closer to the right where the two pole constraints touch, (or in

the case of Forward Euler’s where they nearly touch) and once it reaches the tipping

point, the a3 vertical boundary begins to slide back in the other direction. It appears

to be an even function because the ht value for a3 is equal to −a3. Table 5.1 shows

this behavior with a changing a3 parameter. Figure 5.6, on page 45, illustrates the

behavior with three example maps that are varied by a3, at values one, ten, and fifty.

In Appendices A and B, on pages 67 and 88, I look at different possible reasons for

the a3 vertical boundary. Although I cannot find any explanations for the a3 vertical

boundary, I did find Observation A.3.1, on page 80, and Observation B.2.2, on page

94, which will be helpful in approximating the ht value of the a3 vertical boundary.

43

a1 a2 a3 b1 max(ht)

10 1 −100 1 0.0004922

10 1 −10 1 0.0326085

10 1 −5 1 0.0271738

10 1 1 1 0.0109205

10 1 5 1 0.0271738

10 1 10 1 0.0326085

10 1 50 1 0.0017637

10 1 100 1 0.0004922

10 1 500 1 0.0000185

10 1 1000 1 0.0000042

Tab. 5.1: Table depicts the largest ht value that converges along the lower boundary of the convergence area

within a convergence map for a changing a3 parameter.

44

Fig. 5.6: Convergence maps for the Backward Euler’s function demonstrating the a3 vertical boundary.

45

In Section A.3.2, I state Observation A.3.1, which says that where the upper zeros

boundary constraint crosses the lower poles constraint approximates where the a3

vertical boundary is located. The approximation is not very good until the a3 vertical

boundary recedes back past its initial point, when a3 = 0. Observation B.2.2 gives

an approximate location for the initial ht value of the a3 vertical boundary at 0.1
a1

. So

the initial value 0.1
a1

can be used as an approximation until the intersection point of

the zeros constraint and lower poles constraint is less than 0.1
a1

. If it is less, then the

intersection point can be used as an approximation. Either way, the approximation

point will be multiplied by a safety buffer to ensure it is in the area of convergence.

From the tests I have done, 60% is a good size for the safety buffer and will be used

in my guidelines to pick ht and hx in Section 5.5 on page 50.

5.3 Boundary Errors

The following section will quantify the error for both the upper and lower theoretical

boundaries compared against the real convergence map boundaries. The boundaries

will only be measured for quadrant three, when both ht and hx are small, since that

is where the interesting convergence area is at. The error was quantified for the

Backward Euler’s function but not the Forward Euler’s function since for quadrant

three they are nearly the same function and therefore have the same error.

5.3.1 Upper Boundary Error

Since the upper boundaries are straight horizontal lines, I can find the exact error for

the upper boundaries. Table 5.2 provides that information for some of the simulations

46

done. The error value is calculated by subtracting the value with the largest hx that

converges from the theoretical upper limit value
√

2a2

a1
and by then dividing that by

the largest hx that converges.

a1 a2 a3 b1 Err%

10 1 1 1 233.47566

100 1 1 1 201.18792

10 100 1 1 214.4662

10 1 100 1 156.51974

−10 1 100 1 UNDEF

Tab. 5.2: Table depicts the error value of the upper boundary.

5.3.2 Lower Boundary Error

Table 5.3 shows the average error for the lower theoretical boundary and the actual

lower convergence boundary. The lower error is found by subtracting the actual con-

vergence boundary by the theoretical boundary and dividing that by the theoretical

boundary value. Notice that for variances of a1 and a2 the error appears to be a

constant.

This table points to the fact that the error between the theoretical boundary and

the actual boundary is approximately 45.6%, the average of the table values except

where a3 varies. The reason it varies for a3 is that the end slightly dips down at the

a3 vertical boundary, but remains the same height for the rest of the lower boundary.

47

a1 a2 a3 b1 Avg Err%

0.1 1 0 1 46.42427

1 1 0 1 45.55027

10 1 0 1 46.38067

100 1 0 1 45.82837

1 0.01 0 1 45.24517

1 0.1 0 1 45.54375

1 10 0 1 45.23557

1 100 0 1 44.89877

1 1000 0 1 45.54375

1 1 0.1 1 45.70477

1 1 10 1 42.35140

1 1 40 1 39.14158

Tab. 5.3: Table depicts the error values between the lower theoretical boundary and actual boundary.

48

Calculating the error on this boundary is probably the most important, because, as

seen in the next section, ht and hx combinations closest to the true lower boundary will

converge faster. In Section 5.5, I will use this information to make recommendations

on how to pick ht and hx for optimum convergence.

5.4 Rate of Convergence

Fig. 5.7: Convergence map for the Backward Euler’s function showing the speed of convergence through

color variation.

Now that I have defined the area of convergence, another important aspect for

practical concerns is how long it takes for a simulation to converge. Figure 5.7 shows

49

those points in quadrant three of the convergence map that do converge. Their color

has been altered slightly to show the points’ colors range from red to blue. The pure

red points took the longest to converge (about 3000 iterations) and the pure blue

points converged quickly (about 200 iterations). From this information we can make

a few recommendations.

The figure shows that as hx becomes larger or as ht becomes smaller it takes longer

for those data points to converge. Therefore it is recommend that for the fastest speed,

simulations should use ht and hx values closest to the lower boundary. They should

not be on the boundary, however, because points directly on the boundary can do odd

things and may take a long time to converge. This is due to the fact they are so close

to the divergent section of the maps and the points are caught between converging

or diverging.

5.5 Optimum Convergence Guidelines

In this section I will present guidelines on how to choose hx and ht so that the CA

will converge and take the least number of iterations. As noted in Section 5.4, the

closer the values hx and ht are to the lower boundary, the faster they will converge.

So I will pick hx using a modified form of the lower boundary equation, which is

scaled by the error found in Section 5.3.2 to make sure it will be in the convergence

area. To pick ht, I will pick a value that is to the left of the a3 vertical boundary

that I was able to describe with the intersection of the lower poles constraint and the

upper zeros constraint and its constant initial value in Section 5.2.3. From this data

I have created the following guidelines in the form of an algorithm in Listing 5.1 to

50

choose the best hx and ht values for convergence and speed. It should be noted that

there is no theoretical proof given that the values suggested by the guidelines will

converge, but they have been developed from observations of many simulations and

are included to help those who wish to use the CA models I have created.

In the algorithm, lowerPoleHt(hx) is a predefined function for the lower pole con-

straint for either the Backward or Forward Euler’s Equation that outputs the corre-

sponding ht parameter given hx. For Forward Euler’s it is defined as the following by

solving Equation 5.12, on page 39, for ht:

lowerPoleHt(hx) =
2h2

x

2a2 − a1h2
x

(5.29)

For Backward Euler’s it is defined as the following by solving Equation 5.28, on page

42, for ht:

lowerPoleHt(hx) =
2h2

x

2a2 + a1h2
x

(5.30)

The function lowerPoleHx(ht) is a function that given ht will return hx for the lower

pole constraint. For Forward Euler’s it is defined as the following from Equation 5.12,

on page 39:

lowerPoleHx(ht) =

√
2a2ht

2 + a1ht

(5.31)

For Backward Euler’s it is defined as the following from Equation 5.28, on page 42:

lowerPoleHx(ht) =

√
2a2ht

2− a1ht

(5.32)

The function upperZeroHt(hx) is a predefined function for the upper zero boundary

constraint for either the Backward or Forward Euler’s Equation that outputs the

corresponding ht parameter given hx.

51

For Forward Euler’s it is defined as the following equation from Equation A.80, on

page 82:

upperZeroHt(hx) =
4h2

x

2a2 − |a3|hx − 2a1h2
x

(5.33)

For Backward Euler’s it is defined as the following from Equation A.102, on page 85:

upperZeroHt(hx) =
4h2

x

2a2 − |a3|hx

(5.34)

Also in the algorithm, the lower poles boundary is raised by 60%, which is greater

than the 46.2% found in Section 5.3, to make sure the recommendation is within the

area of convergence. Also by multiplying the maximum ht value by 60% will ensure

it is within the area of convergence, as mentioned in Section 5.2.3. I will search for

the intersection from 10−15 times the initial max ht value to 103 times the max ht

value, which should be well past where the constraints could intersect. Figures 5.8,

5.9 and 5.10 give examples of what parameters would be picked using the algorithm.

These figures were plotted by using code in Listing C.8 on page 108.

Listing 5.1: Guidelines for picking ht and hx so that they will converge and the simulation speed will be

relatively fast. Functions used in the algorithm are defined in Section 5.5. The algorithm code

is in the Scilab language.

// r e tu rn s ht , hx pa i r that w i l l converge qu i ck ly g iven

//a1 , a2 , and a3 c o e f f i c e n t s .

upSearch = (0 . 1/ a1)∗10ˆ (3) ;

lowSearch = (0 . 1/ a1)∗10ˆ(−15);

mu l t i p l i e r = 1 . 1 ;

s a f e t yBu f f e r = . 6 0 ;

s a f e t yBu f f e r 2 = 1 . 6 ;

52

h t I n t e r s e c t = −1;

h t I n i t =0.1/a1 ;

// p ick htMax

curHx = lowSearch ;

whi l e (curHx < upSearch) // search f o r i n s t e r s e c t i o n

i f (upperZeroHt (hx) − lowerPoleHt (hx) < 0) then

h t I n t e r s e c t = lowerPoleHt (hx) ;

break ;

end

curHx = curHx ∗ mu l t i p l i e r ;

end

i f ((h t I n t e r s e c t == −1) | | // they didn ’ t i n t e r s e c t

(h t I n i t < h t I n t e r s e c t)) // h t I n i t i s lower

htMax= h t I n i t ;

e l s e

htMax = h t I n t e r s e c t ;

end

htMax = htMax ∗ s a f e t yBu f f e r ;

// here user chooses ht such that ht <= htMax

53

ht = user Input () ;

//now use new ht to get cor re spond ing hx

hx = sa f e t yBu f f e r 2 ∗ lowerPoleHx (ht) ;

Fig. 5.8: Convergence map for the Backward Euler’s function where the magenta line represents those values

that the guidelines would pick for the following parameters: a1=1, a2=1, a3=0, and b1=1.

54

Fig. 5.9: Convergence map for the Backward Euler’s function where the magenta line represents those values

that the guidelines would pick for the following parameters: a1=10, a2=1, a3=100, and b1=1.

55

Fig. 5.10: Convergence map for the Backward Euler’s function where the magenta line represents those

values that the guidelines would pick for the following parameters: a1=1, a2=0.1, a3=2.0, and

b1=1.

56

6. CONCLUSIONS

6.1 Summary of Findings

For this thesis I researched techniques used to simulate spatial partial differential

equations with the cellular automata model, which may be beneficial to biologists. In

Chapter 2 on page 5, I began with a literature review. I gave a few in depth examples

of how biological equations can be modeled by partial differential equations (Section

2.2). In Section 2.3 I introduced some methods that could be used to discretize

partial differential equations so they could be translated into a cellular automata

model. Then I defined a cellular automata model in Section 2.4 and showed the

advantages of using this model as opposed to using partial differential equations.

In Chapter 3 on page 17, I gave two methods, using the Forward and Backward

Euler’s methods, for converting a subset of partial differential equations into cellular

automata. In Section 3.1, I explicitly defined the terms used to describe partial

differential equations. In Section 3.2, I surveyed several biological partial differential

equations defined in terms of both space and time. From these equations I found

a general form that describes most of these biological equations, which is listed in

Section 3.3 on page 21. The general form was defined in Equation 3.15 on page 21:

∂u

∂t
= m(ui,j) +∇2

xn(ui,j) +∇xo(ui,j) (6.1)

57

I then used discretization methods to solve the general differential equation form.

Section 3.4.1 used the Forward Euler’s method and Section 3.4.2 used the Backward

Euler’s method. The result of using discrete solvers were rules that can be used by

CA to simulate the general form of the partial differential equation. The Forward

Euler’s method resulted in Equation 3.20 on page 22:

ui+1,j = ui,j + ht

(
m(ui,j) +

n(ui,j+1)− 2n(ui,j) + n(ui,j−1)

h2
x

+
o(ui,j+1)− o(ui,j−1)

2hx

)
(6.2)

The Backward Euler’s method resulted in the following equation (Eq. 3.30, page 24):

ui+1,j = ui,j +
ht

(
m(ui,j) +

n(ui,j+1)−2n(ui,j)+n(ui,j−1)

h2
x

+
o(ui,j+1)−o(ui,j−1)

2hx

)
1− ht

∂m(u)
∂u

∣∣∣
i,j

(6.3)

In Chapter 4 on page 25, I found where the Forward and Backward Euler’s methods

were stable for the general linear differential equation form. I did this by first defining

the general linear form, taking the general form found in Section 3.3 and defining the

coefficients so that they were only composed of linear terms of u. The resulting

equation was (Eq. 4.1, page 26):

f(u) = a1u + b1 +∇2
x(a2u) +∇x(a3u) (6.4)

In Section 4.1.1, I then used the equation created from the Forward Euler’s method on

the general linear form and performed a Z-transform to find the poles of the equation.

This resulted in the poles constraint equation (Eq. 4.17, page 28):

1 >
∣∣∣1 + a1ht −

2a2ht

h2
x

∣∣∣ (6.5)

and the zeros constraint equation(Eq. 4.15, page 28):

1 >
∣∣∣ −1

2b1h2
x

((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1))
∣∣∣ (6.6)

58

In Section 4.1.2, I used the Z-transform method on the Backward Euler’s equation

to find its constraints on stability. The zeros cosntraint was the same as the zeros

constraint for Forward Euler’s, but the poles constraint was the following(Eq. 4.30,

page 31):

1 >
∣∣∣1 +

a1ht

1− a1ht

− 2a2ht

(1− a1ht)h2
x

∣∣∣ (6.7)

Finally in Section 4.2, I compared the two constraint equations for both Forward and

Backward Euler’s methods.

In Chapter 5, on page 33, I ran multiple simulations of the Forward and Backward

General Linear formulas to map the areas of convergence with respect to space and

time discretization sizes. In Section 5.1, I defined how I ran the CA simulations and

gave some general descriptions of the graphs and the resulting convergence values.

I found that the third quadrant, where hx and ht are small, contained an area of

convergence that had interesting final convergence values. In Section 5.2, I graphed

the boundaries found by the Z-transform constraints in Chapter 4, which formed the

shape of the convergence area I was focused upon. I then found the average error

between the theoretical constraints I graphed and the actual area of convergence in

Section 5.3. In Section 5.4, I showed that the time to convergence was faster the

closer the ht,hx pair was to the lower constraint.

In the appendices I attempted to explain a third convergence boundary I discov-

ered. I called it the a3 vertical boundary because it formed a vertical line in the ht and

hx graphs and moved left or right depending upon the a3 parameter. In Appendix A,

I examined the zeros constraint and I tried to substitute in constant values for Uj+1

and Uj−1 in order to graph the zeros boundary. In Appendix B I examined whether

59

stiffness could be the cause of the vertical a3 boundary. I determined that stiffness is

not a concern for a particular area of the convergence area.

Ultimately the two most important results of this thesis were the ability to convert

a subset of partial differential equations to CA and the guidelines for convergence

and simulation speed of the general linear form (Section 5.5, page 50). The guidelines

came from two observations made in Appendices A and B. Observation A.3.1 on

page 80 stated that the intersection between the lower poles constraint and the upper

zeros constraint can be used to approximate the ht value of the a3 vertical boundary.

Observation B.2.2 on page 94 stated that the maximum value of ht will be 0.1
a1

. The

resulting guidelines are shown in Listing 5.1 on page 52. Code to plot the values that

are picked by the guidelines is in Listing C.8 on page 108.

6.2 Future Work

The following subsections define new related problems that were brought to my at-

tention as a result of this thesis.

6.2.1 Scaling u

In this thesis I kept the initial value of u constant at [1 2 3 4 5] in order to see how

changing the parameters a1, a2, a3, and b1 would affect convergence. A problem that

needs to be investigated is how increasing the number of values in u could affect the

area of convergence.

60

I am using the value zero as boundary values in my CA simulations. Because u is

so small the boundaries may be having more of an affect on the final outcome than

it would when it is used in practice with possibly hundreds of values.

In one convergence map I created I did extend u to fifteen values with a1 = 1,

a2 = 1, a3 = 0. There were many more red points, which was to be expected because

it should in general take more iterations for a fifteen value vector to converge that

a five value vector. What was a little unexpected was that more points diverged as

well, so the largest ht was a little greater than 10−2 instead of 10−1 as predicted by

Observation B.2.2 on page 94. This effect may indicate that the fifteen element vector

is the same length as the five element vector. This means a smaller hx is needed to

converge for the fifteen element vector, and a correspondingly smaller ht is needed to

converge to keep the balance between the two. The correlation between number of

initial u values and the maximum ht and hx values should be researched.

6.2.2 Proofs for Observations A.3.1 and B.2.2

In this thesis I made a couple of observations based upon repeated simulations. Ob-

servation A.3.1 on page 80 indicates that where the lower poles constraint and upper

zeros boundary constraint cross may be the cause of vertical a3 boundary. This may

be a coincidence and that both the intersection and the boundary simply change at

the same rate as a3. Another possibility is that is that the intersection is causing

some instability and causing points after it to diverge. The observation needs to be

researched to see if this can be proven or disproven.

61

Observation B.2.2 on page 94 indicates that when a3 = 0, the maximum ht value

will be about 0.1
a1

. Although I saw this many times in different simulations, I was

unable to give any theoretical reason why this was so. Also as discussed in Section

6.2.1, this Observation did not hold true with a larger data set. The Observation needs

to be further research to understand the correlation between a1 and the maximum ht

using multiple data sets to see if a more complex pattern emerges.

6.2.3 General Quadratic Form

In Chapters 4 and 5, I examined a general linear form of the partial differential

equations subset. The most applicable form to the biological equations, however, is

the general quadratic form, which contains a u2 term. Explicitly the general quadratic

form would like:

f(u) = d1u
2 + a1u + b1 +∇2

x(a2u) +∇x(a3u) (6.8)

Using the same techniques I used in this thesis with this equation (the Z-transform

for stability analysis and creating convergence maps) would help with the eventual

creation of software that can automatically determine the best hx and ht for many

more biological equations than can be done currently with the general linear form.

6.2.4 Variable and Dependent Coefficients

In the general linear form I assume that a1, a2, and a3 are constants that do not

change from one time step to another. This however is not always the case. Not only

may these parameters change over time, but their values may be dependent upon

other simultaneous CA or differential equations.

62

The desert vegetation pattern equations are a perfect example of partial differential

equations that are interdependent:

∂n

∂t
=

yw

1 + σw
n− n2 − µn +∇2n (6.9)

∂w

∂t
= p− (1− ρn)w − w2n + δ∇2(w − βn)− v

∂(w − αn)

∂x
(6.10)

The equation for the biomass variable n contains the variable water w which changes

with time. Similarly the equation for w depends upon the value of n. This means the

area of convergence will also be dynamic and finding how the area will change will be

critical to know how to simulate these equations properly.

6.2.5 Long Run Stability and a3

During my research I was unable to explain and predict with theory the a3 vertical

boundary. I tried several different avenues in Appendices A and B, but in the end I

used observations to describe the constraint. Understanding why a3 has such an effect

on convergence is important and should be investigated further. One possible reason

is that the long term stability of the simulation is affected greatly by this parameter.

Most computer simulations can last for a large number of iterations, but at some

point tend to go inexplicable haywire and unstable even after stability appears to

have been achieved. It may be possible that the a3 parameter is greatly affecting the

length of time that the simulation can go before it naturally goes unstable, cutting

the simulation time too short before it can converge on a value. The current area of

convergence should be tested to determine in general what this length of time is and

how a3 may be affecting it.

63

6.2.6 Parallel Implementation

As mentioned earlier, an advantage of the cellular automata model is that it lends

itself to data parallelism. The grid of cells in the CA can be split up between pro-

cessors and network nodes. The ability to parallelize a scientific simulation in order

for it to take advantage of grid computing is critical for large scale simulations. An

efficient means of parallelizing the models I have proposed should be explored.

6.2.7 Convergence Values and Simulation Errors

Another problem that should be looked into is the correlation between the general

linear parameters and the final values of convergence. As noted in Section 5.1.2, on

page 36, the area of convergence in the third quadrant has converges to values of

interest. In this area simulations that use the same hx parameter will have nearly

the same convergence values, which means how time is discretized does not matter

but how space is discretized does. The correlation between size discretization and the

convergence values should be studied. Also, I have noticed that b1 does not seem to

affect the area of convergence, but it has an impact on the convergence values.

In my thesis I only studied the CA simulations in one space dimension. Biological

Equations need to use two and possible three dimensions in order to be properly

simulated. This will add extra discretization parameters like hy and hz that need to

be studied to see how they will affect the area of convergence.

Lastly, now that I have established areas of converge for linear terms, the accuracy

of the CA model I have created needs to be compared against the actual partial

differential equation model. The error between the two needs to be quantified so that

64

a biologist using the CA models know for how many iterations the CA will be reliable.

Once this is done a program can be made to help simulate CA models for biologists.

65

APPENDIX A

EXAMINING THE ZEROS CONSTRAINT

66

In subsection 4.1.1, it was shown that for the general Linear Forward Euler’s

Equation (Eq. 4.5),

ui+1,j = ui,j + ht

(
a1ui,j + b1 +

a2ui,j+1 − 2a2ui,j + a2ui,j−1

h2
x

+

a3ui,j+1 − a3ui,j−1

2hx

)
(A.1)

that there will be one poles constraint (Eq. 4.17) and one zeros constraint (Eq. 4.15).

The zeros constraint is shown below:

1 >
∣∣∣ −1

2b1h2
x

((2a2 − a3hx)(Uj−1) + (2a2 + a3hx)(Uj+1))
∣∣∣ (A.2)

The problem is that this constraint cannot be graphed or solved in terms of hx or ht

in order to see how the stability constraints affect the convergence area because of the

two non-constant values Uj−1 and Uj+1. Therefore I need to substitute these values

with constant approximations, which is shown in the first section of this appendix.

This leads to two further constraints developed within this appendix. In Section

A.2, on page 70, I will find a second pole constraint that is extremely similar to the

original pole constraint found in Equation 4.17. In Section A.3, on page 73, I will

develop the zero constraint in terms of the boundary values of ui to attempt to explain

the vertical a3 boundary found in Chapter 5. It should be noted that the efforts to

replace Uj−1 and Uj+1 ultimately fail to explain the vertical a3 constraint. However

in Section A.3.2 on page 78, an observation is made that can be used to describe the

boundary.

67

A.1 Eliminating Uj−1 and Uj+1 for Forward Euler’s

Now I need to substitute the values Uj−1 and Uj+1 to try to find a constraint with

only constants. I can use the previous equation for Uj (Eq. 4.12, page 27) for this

substitution. This would, however, result in the values Uj−2 and Uj+2 being part of

the equation. Since I am just trying to estimate for these values, I will set both of

these values to zero so that the equation will only be in terms of Uj and other constant

values. Therefore the substitutions for these equations are the following:

Uj−1 =

ht

2h2
x
((2a2 + a3hx)(z

−1Uj) + 2b1h
2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

) (A.3)

and

Uj+1 =

ht

2h2
x
((2a2 − a3hx)(z

−1Uj) + 2b1h
2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

) (A.4)

Now I will substitute these into the two terms that contain Uj−1 and Uj+1 in the

previous equation. I am only going to change those two terms at the moment, in

order to cancel terms and clean them up before putting them into the final equation.

Also I will define c1 = z−2ht

(2h2
x)

(
1− ht

2h2
x

(
2h2

x
ht

+2a1h2
x−4a2

)
(z−1)

) , for readability:

(2a2 − a3hx)(z
−1Uj−1)+ (A.5)

(2a2 + a3hx)(z
−1Uj+1) = (2a2 − a3hx) (c1((2a2 + a3hx)Uj+

2b1h
2
x)

)
+

(2a2 + a3hx) (c1((2a2 − a3hx)Uj+

2b1h
2
x)

)
(A.6)

= 8a2
2c1Uj − 2a2

3h
2
xc1Uj + 8a2b1h

2
xc1 (A.7)

= c1(8a
2
2 − 2a2

3h
2
x)Uj + 8a2b1h

2
xc1 (A.8)

68

I substitute in the result of Equation A.8 back into Equation 4.12 for the terms

(2a2 − a3hx)(z
−1Uj−1) + (2a2 + a3hx)(z

−1Uj+1). I then solve for Uj again:

Uj =

ht

2h2
x
(c1(8a

2
2 − 2a2

3h
2
x)Uj + 8a2b1h

2
xc1 + 2b1h

2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

) (A.9)

I again gather Uj terms on the left side:

(1− (A.10)

ht

2h2
x
(c1(8a

2
2 − 2a2

3h
2
x))(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

)
 Uj =

ht

2h2
x
(8a2b1h

2
xc1 + 2b1h

2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

)
Now divide by the coefficient of Uj and clean things up:

Uj =

ht

2h2
x
(8a2b1h

2
xc1 + 2b1h

2
x)

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)− ht

2h2
x
(c1)(8a2

2 − 2a2
3h

2
x)

(A.11)

Now I substitute c1 back in and manipulate the terms so that the exponents of z are

all positive to find the poles and the zeros of the equation. Also, because the same

set of terms are repeated, I am going to let c2 = ht

2h2
x

(
2h2

x

ht
+ 2a1h

2
x − 4a2

)
. This gives:

Uj =

ht

2h2
x
((8a2b1h

2
x)

(
z−2ht

(2h2
x)(1−c2(z−1))

)
+ 2b1h

2
x)

1− c2(z−1)− ht

2h2
x

(
z−2ht

(2h2
x)(1−c2(z−1))

)
(8a2

2 − 2a2
3h

2
x)

(A.12)

=

ht

2h2
x
((8a2b1h

2
x)

(
z−1ht

(2h2
x)(1−c2(z−1))

)
+ 2b1h

2
xz)

z − c2 − ht

2h2
x

(
z−1ht

(2h2
x)(1−c2(z−1))

)
(8a2

2 − 2a2
3h

2
x)

(A.13)

=

ht

2h2
x
((8a2b1h

2
x)

(
ht

(2h2
x)(z−c2)

)
+ 2b1h

2
xz)

z − c2 − ht

2h2
x

(
ht

(2h2
x)(z−c2)

)
(8a2

2 − 2a2
3h

2
x)

(A.14)

=

ht

2h2
x
(
(

8a2b1hth2
x

(2h2
x)(z−c2)

)
+ 2b1h

2
xz)

z − c2 −
(

h2
t (8a2−2a2

3h2
x)

(4h4
x)(z−c2)

) (A.15)

=

ht

4h4
x

(8a2b1hth
2
x + 4b1h

4
x (z2 − c2z))(

z − c2 −
(

h2
t (8a2

2−2a2
3h2

x)

(4h4
x)(z−c2)

))
(z − c2)

(A.16)

69

From this equation I can come up with three constraints, one from the numerator

of the equation and two constraints from the two factors in the denominator. The

factor (z − c2) will actually lead to the original poles constraint I found previously

(Eq. 4.17). Therefore I will focus on the other denominator factor to obtain the pole

value and our second pole constraint.

A.2 Second Pole Constraint

I will obtain this second pole constraint by setting the factor z− c2−
(

h2
t (8a2

2−2a2
3h2

x)

(4h4
x)(z−c2)

)
,

from the denominator of Equation A.16, equal to zero and solving for z. The con-

straint I create will be that z value set to less than one:

0 = z − c2 −
(

h2
t (8a

2
2 − 2a2

3h
2
x)

(4h4
x) (z − c2)

)
(A.17)

= z(4h4
x) (z − c2)− c2(4h

4
x) (z − c2)− h2

t (8a
2
2 − 2a2

3h
2
x) (A.18)

= 4h4
xz

2 − 8h4
xc2z + 4h4

xc
2
2 − h2

t (8a
2
2 − 2a2

3h
2
x) (A.19)

Using the quadratic equation I then get the following for z:

z =
8h4

xc2 ±
√

64h8
xc

2
2 − 16h4

x(4h
4
xc

2
2 − h2

t (8a
2
2 − 2a2

3h
2
x))

8h4
x

(A.20)

= c2 ±
√

64h8
xc

2
2 − 16h4

x(4h
4
xc

2
2 − h2

t (8a
2
2 − 2a2

3h
2
x)) (A.21)

= c2 ±
√

128h4
xh

2
t a

2
2 − 32h6

xh
2
t a

2
3 (A.22)

= c2 ± 4hth
2
x

√
8a2

2 − 2h2
xa

2
3 (A.23)

=
ht

2h2
x

(
2h2

x

ht

+ 2a1h
2
x − 4a2

)
± 4hth

2
x

√
8a2

2 − 2h2
xa

2
3 (A.24)

= 1 + a1ht −
2a2ht

h2
x

± 4hth
2
x

√
8a2

2 − 2h2
xa

2
3 (A.25)

(A.26)

70

This gives the final poles constraint that we can now graph against the original poles

constraint:

1 >
∣∣∣1 + a1ht −

2a2ht

h2
x

± 4hth
2
x

√
8a2

2 − 2h2
xa

2
3

∣∣∣ (A.27)

A.2.1 Graphing Second Pole Constraint

The second poles constraint for Forward Euler’s is Equation A.27:

1 >
∣∣∣1 + a1ht −

2a2ht

h2
x

± 4hth
2
x

√
8a2

2 − 2h2
xa

2
3

∣∣∣ (A.28)

I again produce two constraints from the absolute value, one from when the right side

is positive and one from when its negative. One might be tempted to say I have four

constraints because of the ±, but when I square the right most factor to solve for hx,

it will not matter whether the factor is positive or negative. So now I will first solve

for the constraint when the right side is positive and set it equal to one:

1 = 1 + a1ht −
2a2ht

h2
x

±

4hth
2
x

√
8a2

2 − 2h2
xa

2
3 (A.29)

−a1ht +
2a2ht

h2
x

= ±4hth
2
x

√
8a2

2 − 2h2
xa

2
3 (A.30)

a2
1h

2
t −

4a2a1h
2
t

h2
x

+
4a2

2h
2
t

h4
x

= 16h2
t h

4
x(8a

2
2 − 2h2

xa
2
3) (A.31)

a2
1 −

4a2a1

h2
x

+
4a2

2

h4
x

= 16h4
x(8a

2
2 − 2h2

xa
2
3) (A.32)

a2
1 −

4a2a1

h2
x

+
4a2

2

h4
x

= 128h4
xa

2
2 − 32h6

xa
2
3 (A.33)

32a2
3h

10
x − 128a2

2h
8
x + a2

1h
4
x − 4a2a1h

2
x + 4a2

2 = 0 (A.34)

From Equation A.34 I see that ht has completely canceled out leaving only hx. This

means that if I were to graph the equation with our convergence maps from Chapter

71

5, the result would be a horizontal line. However I am looking for a constraint that

is vertical to explain the a3 vertical constraint. Therefore I will stop developing this

equation since it is not useful.

Next I will set the right side of Equation A.28 to be negative and make it equal to

1. Then I will solve for ht to get another constraint:

1 = −1− a1ht +
2a2ht

h2
x

∓

4hth
2
x

√
8a2

2 − 2h2
xa

2
3 (A.35)

2 + a1ht −
2a2ht

h2
x

= ∓4hth
2
x

√
8a2

2 − 2h2
xa

2
3(A.36)

4 + 4a1ht −
8a2ht

h2
x

+ a2
1h

2
t −

4a1a2h
2
t

h2
x

+
4a2

2h
2
t

h4
x

= 128h4
xa

2
2 − 32h6

xa
2
3 (A.37)

32a2
3h

10
x − 128a2

2h
8
x + (4 + 4a1ht + a2

1h
2
t)h

4
x −

(8a2ht + 4a1a2h
2
t)h

2
x + 4a2

2h
2
t = 0 (A.38)

(a2
1h

4
x − 4a1a2h

2
x + 4a2

2)h
2
t +

(4a1h
4
x − 8a2h

2
x)ht +

32a2
3h

10
x − 128a2

2h
8
x + 4h4

x = 0 (A.39)

Now I solve using the quadratic equation for ht and get the following:

ht =
−d2 ±

√
d2

2 − 4d1d3

2d1

(A.40)

where

d1 = a2
1h

4
x − 4a1a2h

2
x + 4a2

2 (A.41)

d2 = 4a1h
4
x − 8a2h

2
x (A.42)

d3 = 32a2
3h

10
x − 128a2

2h
8
x + 4h4

x (A.43)

72

When graphed this equation provides little extra information about the shape of

the convergence maps because the second pole constraint is so similar to the original.

It does vary slightly when a3 is close to zero, but not enough to explain the a3 vertical

constraint seen in the convergence maps as a3 becomes large. Figures A.1 and A.2

show the equation graphed with a3=100 and a3=1.

Fig. A.1: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new pole constraints in magenta at a3=100.

A.3 Boundary Zero Constraint

Another area I investigated concerning the substituting of Uj−1 and Uj+1 was the

newly created zeros boundary. Unfortunately, the numerator of Equation A.16 does

not include the term a3 at all, meaning the zeros constraint would also not contain a3.

Since the vertical a3 constraint is what I am trying to explain, the zeros constraint

would not help at all.

73

Fig. A.2: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new pole constraints in magenta at a3=1.

However, since I use zero as the boundary value for u in our simulations, for the

left most cell of u, Uj−1 = 0, and for the rightmost cell of u, Uj+1 = 0. If I take

this into account then an extra term is not canceled out when substituting in for

(2a2 − a3hx)(z
−1Uj−1)(2a2 + a3hx)(z

−1Uj+1). For the left cell, I get an extra 2a3b1h
3
x

term and for the right most cell an extra −2a3b1h
3
x term. Therefore if I add in an extra

±2a3b1h
3
xc1 term and halve the coefficients of the rest of the substitution terms (since

Uj−1 = 0 or Uj+1 = 0, the other terms coefficients no longer double from addition) I

get the following:

Uj =

ht

2h2
x
(c1(4a

2
2 − a2

3h
2
x)Uj + 4a2b1h

2
xc1 ± 2a3b1h

3
xc1 + 2b1h

2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

) (A.44)

74

I again gather Uj terms on the left side of the equations to solve for Uj like before:

(1− (A.45)

ht

2h2
x
(c1(4a

2
2 − a2

3h
2
x))(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

)
 Uj =

ht

2h2
x
(4a2b1h

2
xc1 ± 2a3b1h

3
xc1 + 2b1h

2
x)(

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

)
Now divide by the coefficient of Uj and clean things up:

Uj =

ht

2h2
x
(4a2b1h

2
xc1 ± 2a3b1h

3
xc1 + 2b1h

2
x)

1− ht

2h2
x

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)− ht

2h2
x
(c1)(4a2

2 − a2
3h

2
x)

(A.46)

Now I substitute c1 back in and manipulate the terms so that the exponents of z

are all positive to find the poles and the zeros of the equation. Also, because the same

set of terms are repeated, I am going to let c2 = ht

2h2
x

(
2h2

x

ht
+ 2a1h

2
x − 4a2

)
. This gives:

75

Uj =

ht

2h2
x

(
(4a2b1h

2
x)

(
z−2ht

(2h2
x)(1−c2(z−1))

)
± 2a3b1h

3
x

(
z−2ht

(2h2
x)(1−c2(z−1))

))
1− c2(z−1)− ht

2h2
x

(
z−2ht

(2h2
x)(1−c2(z−1))

)
(4a2

2 − a2
3h

2
x)

+

ht

2h2
x
(2b1h

2
x)

1− c2(z−1)− ht

2h2
x

(
z−2ht

(2h2
x)(1−c2(z−1))

)
(4a2

2 − a2
3h

2
x)

(A.47)

=

ht

2h2
x

(
(4a2b1h

2
x)

(
z−1ht

(2h2
x)(1−c2(z−1))

)
± 2a3b1h

3
x

(
z−1ht

(2h2
x)(1−c2(z−1))

))
z − c2 − ht

2h2
x

(
z−1ht

(2h2
x)(1−c2(z−1))

)
(4a2

2 − a2
3h

2
x)

+

ht

2h2
x
(2b1h

2
xz)

z − c2 − ht

2h2
x

(
z−1ht

(2h2
x)(1−c2(z−1))

)
(4a2

2 − a2
3h

2
x)

(A.48)

=

ht

2h2
x
((4a2b1h

2
x)

(
ht

(2h2
x)(z−c2)

)
± 2a3b1h

3
x

(
ht

(2h2
x)(z−c2)

)
+ 2b1h

2
xz)

z − c2 − ht

2h2
x

(
ht

(2h2
x)(z−c2)

)
(4a2

2 − a2
3h

2
x)

(A.49)

=

ht

2h2
x
(
(

4a2b1hth2
x

(2h2
x)(z−c2)

)
±

(
2a3b1h3

xht

(2h2
x)(z−c2)

)
+ 2b1h

2
xz)

z − c2 −
(

h2
t (4a2−a2

3h2
x)

(4h4
x)(z−c2)

) (A.50)

=

ht

4h4
x

(4a2b1hth
2
x ± 2a3b1h

3
xht + 4b1h

4
x (z2 − c2z))(

z − c2 −
(

h2
t (4a2

2−a2
3h2

x)

(4h4
x)(z−c2)

))
(z − c2)

(A.51)

=

b1ht

2h2
x

(2a2ht ± a3hxht + 2h2
x (z2 − c2z))(

z − c2 −
(

h2
t (4a2

2−a2
3h2

x)

(4h4
x)(z−c2)

))
(z − c2)

(A.52)

To find the zeros constraint I will set the numerator equal to zero and solve for z:

0 =
b1ht

2h2
x

(
2a2ht ± a3hxht + 2h2

x

(
z2 − c2z

))
(A.53)

= (2a2ht ± a3hxht + 2h2
x(z

2 − c2z)) (A.54)

76

Using the quadratic equation I get the following constraint by setting the z value

to less than 1:

1 >
∣∣∣−d2 ±

√
d2

2 − 4d1d3

2d1

∣∣∣ (A.55)

where

d1 = 2h2
x (A.56)

d2 = −2h2
xc2 (A.57)

d3 = 2a2ht ± a3hxht (A.58)

A.3.1 Graphing the Boundary Zero Constraint When the Right Side is Positive

First I will graph the zeros constraint when the right side is positive and rearrange

the equation so that things cancel out before I substitute the d variables back in:

1 =
−d2 ±

√
d2

2 − 4d1d3

2d1

(A.59)

2d1 + d2 = ±
√

d2
2 − 4d1d3 (A.60)

4d2
1 + 4d1d2 + d2

2 = d2
2 − 4d1d3 (A.61)

4d2
1 + 4d1d2 = −4d1d3 (A.62)

d1 + d2 = −d3 (A.63)

77

I will substitute back in the d variables and the c2 variable. Then I solve for hx to

graph the equation:

2h2
x − 2h2

xc2 = −2a2ht ∓ a3hxht (A.64)

2h2
x − ht(

2h2
x

ht

+ 2a1h
2
x − 4a2) = −2a2ht ∓ a3hxht (A.65)

2h2
x − 2h2

x − 2a1h
2
xht + 4a2ht = −2a2ht ∓ a3hxht (A.66)

−2a1h
2
x + 4a2 = −2a2 ∓ a3hx (A.67)

(A.68)

To solve for hx, I can use the quadratic equation again:

hx =
−a3 ±

√
a2

3 + 48a1a2

−4a1

(A.69)

When I graph these horizontal lines, a couple do not show within the graphs

because they are negative. Unfortunately, these horizontal lines do not show why

there is a vertical a3 constraint. Figures A.3 and A.4 show the equation graphed with

a3=100 and a3=1. The lines spread out as a3 grows large but seem to have no bearing

on the a3 vertical constraint.

A.3.2 Graphing the Boundary Zero Constraint When the Right Side is Negative

Next I will graph the zeros constraint (Eq. A.55) when the right side is negative and

rearrange the equation so that things cancel out before I substitute the d variables

back in:

78

Fig. A.3: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new zeros constraints in magenta and yellow at a3=100.

Fig. A.4: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new zeros constraints in magenta and yellow at a3=1.

79

1 =
d2 ∓

√
d2

2 − 4d1d3

2d1

(A.70)

2d1 − d2 = ∓
√

d2
2 − 4d1d3 (A.71)

4d2
1 − 4d1d2 + d2

2 = d2
2 − 4d1d3 (A.72)

4d2
1 − 4d1d2 = −4d1d3 (A.73)

d1 − d2 = −d3 (A.74)

Now I will substitute back in the d variables and then the c2 variable. Then I solve

for ht to graph the equation:

2h2
x + 2h2

xc2 = −2a2ht ∓ a3hxht (A.75)

2h2
x + ht(

2h2
x

ht

+ 2a1h
2
x − 4a2) = −2a2ht ∓ a3hxht (A.76)

2h2
x + 2h2

x + 2a1h
2
xht − 4a2ht = −2a2ht ∓ a3hxht (A.77)

4h2
x = 2a2ht ∓ a3hxht − 2a1h

2
xht (A.78)

ht =
4h2

x

2a2 ∓ a3hx − 2a1h2
x

(A.79)

When I graph these constraints you can see that they are nearly parallel to the

lower poles constraint. With respect to the a3 parameter, as it increases, the two zeros

constraints spread apart. What is interesting is that once the upper zeros constraint

begins to intersect the lower poles constraint, the point they intersect approximates

where the vertical a3 constraint appears. The approximation appears to be better

as a3 increases. It is noted in the Observation A.3.1. Figures A.5 and A.6 show the

equation graphed with a3=100 and a3=1, demonstrating the spreading of the two

zero boundary constraints.

80

Observation A.3.1. The ht value where the lower pole constraint and the upper zero

boundary constraint intersect appears to converge to the greatest ht value of the lower

boundary for the actual convergence area (the ht value of the a3 vertical boundary) as

a3 increases.

The place where the poles and zeros cross may be causing instability and cause the

divergence, however, this is beyond the scope of this thesis and will be left for others

to prove. I will use this information to approximate for the a3 vertical boundary’s

ht value. From observations I have made the intersection appears to be a good

approximation once the a3 vertical boundary has receded to a ht value less than its

initial value. This information will be used in Section 5.2.3 on page 43.

Fig. A.5: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new boundary zeros constraints in magenta at a3=100.

To use the zero constraint intersection point as an estimation tool, I want to always

pick the upper constraint. When the ∓ is − and a3 is positive, it will be the upper

81

Fig. A.6: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new boundary zeros constraints in magenta at a3=1.

zeros constraint. When ∓ is + and a3 is negative is the upper limit. In order to

make sure I always choose the upper limit, I will make the ∓ subtraction and put the

absolute value operator around a3 to get:

ht =
4h2

x

2a2 − |a3|hx − 2a1h2
x

(A.80)

A.3.3 Graphing the Boundary Zero Constraint When the Right Side is Positive for

Backward Euler’s

In this section I develop the same equation used in Section A.3.2, the zeros constraint

for the boundary values of u, but I will do so for the Backward Euler’s Equation.

This is because I found that the equation was useful for approximating the a3 vertical

boundary and we now need a version for Backward Euler’s.

82

Some of the algebra steps will be skipped because they are exactly the same equa-

tions as the Forward Euler’s for the most part, but with a couple extra 1
1−a1ht

terms.

I will begin with an equation similar to Equation A.44 on page 74, but it includes

the 1
1−a1ht

terms if Backward Euler’s is used instead from Equation 4.26 on page 30.

Here c1 = z−2ht

(2h2
x)(1−a1ht)

(
1− ht

2h2
x(1−a1ht)

(
2h2

x
ht

+2a1h2
x−4a2

)
(z−1)

) :

Uj =

ht

2h2
x(1−a1ht)

(c1(4a
2
2 − a2

3h
2
x)Uj + 4a2b1h

2
xc1 ± 2a3b1h

3
xc1 + 2b1h

2
x)(

1− ht

2h2
x(1−a1ht)

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)

) (A.81)

When I solve for Uj I get:

Uj =

ht

2h2
x(1−a1ht)

(4a2b1h
2
xc1 ± 2a3b1h

3
xc1 + 2b1h

2
x)

1− ht

2h2
x(1−a1ht)

(
2h2

x

ht
+ 2a1h2

x − 4a2

)
(z−1)− ht

2h2
x(1−a1ht)

(c1)(4a2
2 − a2

3h
2
x)

(A.82)

Now I substitute c1 back in and manipulate the terms so that the exponents of z are

all positive to find the poles and the zeros of the equation. Also, because the same

set of terms are repeated, I am going to let c2 = ht

2h2
x(1−a1ht)

(
2h2

x

ht
+ 2a1h

2
x − 4a2

)
. This

gives:

Uj =

ht

2h2
x(1−a1ht)

(4a2b1h
2
x)

(
z−2ht

(2h2
x)(1−a1ht)(1−c2(z−1))

)
1− c2(z−1)− ht

2h2
x(1−a1ht)

(
z−2ht

(2h2
x)(1−a1ht)(1−c2(z−1))

)
(4a2

2 − a2
3h

2
x)

+

ht

2h2
x(1−a1ht)

(±2a3b1h
3
x

(
z−2ht

(2h2
x)(1−a1ht)(1−c2(z−1))

)
+ 2b1h

2
x)

1− c2(z−1)− ht

2h2
x(1−a1ht)

(
z−2ht

(2h2
x)(1−a1ht)(1−c2(z−1))

)
(4a2

2 − a2
3h

2
x)

(A.83)

After some manipulation I get:

Uj =

b1ht

2h2
x(1−a1ht)2

(2a2ht ± a3hxht + 2h2
x(1− a1ht) (z2 − c2z))(

z − c2 −
(

h2
t (4a2

2−a2
3h2

x)

(4h4
x)(1−a1ht)2(z−c2)

))
(z − c2)

(A.84)

To find the zeros constraint I will set the numerator equal to zero and solve for z:

0 =
b1ht

2h2
x(1− a1ht)2

(
2a2ht ± a3hxht + 2h2

x(1− a1ht)
(
z2 − c2z

))
(A.85)

= 2a2ht ± a3hxht + 2h2
x(1− a1ht)

(
z2 − c2z

)
(A.86)

83

Using the quadratic equation I get the following constraint by setting the z value to

less than 1:

1 >
∣∣∣−d2 ±

√
d2

2 − 4d1d3

2d1

∣∣∣ (A.87)

where

d1 = 2h2
x − 2a1hth

2
x (A.88)

d2 = −2h2
xc2 + 2a1hth

2
xc2 (A.89)

d3 = 2a2ht ± a3hxht (A.90)

Now I will solve for ht when the right side is negative, which gives the zeros constraints

that cross the pole constraints. I first rearrange the equation so that things cancel

out before I substitute the d variables back in:

1 =
d2 ∓

√
d2

2 − 4d1d3

2d1

(A.91)

2d1 − d2 = ∓
√

d2
2 − 4d1d3 (A.92)

4d2
1 − 4d1d2 + d2

2 = d2
2 − 4d1d3 (A.93)

4d2
1 − 4d1d2 = −4d1d3 (A.94)

d1 − d2 = −d3 (A.95)

84

Now I will substitute back in the d variables and then the c2 variable. Then I will

solve for ht to graph the equation:

2h2
x − 2a1hth

2
x + 2h2

xc2 − 2a1hth
2
xc2 = −2a2ht ∓ a3hxht (A.96)

2h2
x − 2a1hth

2
x + 2h2

x(1− a1ht)c2 = −2a2ht ∓ a3hxht (A.97)

2h2
x − 2a1hth

2
x + 2h2

x + 2a1hth
2
x − 4a2ht = −2a2ht ∓ a3hxht (A.98)

4h2
x − 2a2ht = ∓a3hxht (A.99)

4h2
x = ∓a3hxht + 2a2ht (A.100)

ht =
4h2

x

2a2 ∓ a3hx

(A.101)

When I graph this equation you can see that, similar to the Forward Euler’s zeros

constraint, it crosses the lower poles boundary near the a3 vertical boundary when a3

is high. This confirms Observation A.3.1 for the Backward Euler’s formula. Figures

A.7 and A.8 show the zero constraints for the Backward Euler’s formula, including

the intersection between the zeros constraint and the lower poles constraint in Figure

A.7. From the graph I found that when the ∓ is − and a3 is positive, it will be the

upper zeros constraint. When ∓ is + and a3 is negative is the upper limit. In order

to make sure I always choose the upper limit, I will make the ∓ subtraction and put

the absolute value operator around a3 to get:

ht =
4h2

x

2a2 − |a3|hx

(A.102)

85

Fig. A.7: Convergence map for the Backward Euler’s function showing the original pole constraints in black

and the new boundary zeros constraints in magenta at a3=100.

Fig. A.8: Convergence map for the Forward Euler’s function showing the original pole constraints in black

and the new boundary zeros constraints in magenta at a3=1.

86

APPENDIX B

STIFFNESS

87

In subsection 4.1.1 it was shown that for the general Linear Forward Euler’s Equa-

tion (Eq. 4.5)

ui+1,j = ui,j + ht

(
a1ui,j + b1 +

a2ui,j+1 − 2a2ui,j + a2ui,j−1

h2
x

+

a3ui,j+1 − a3ui,j−1

2hx

)
(B.1)

that the parameter a3 creates what appears to be a vertical constraint on stability, a

boundary between the areas of convergence and divergence. I tried to explain this in

Appendix A on page 67 by examining the zeros constraint further, but this did not

yield in any explanations. In this appendix I turned toward the concept of stiffness

to see if it could explain this a3 vertical constraint. From this I was able to actually

show the opposite, that stiffness could not be the cause of this behavior for a portion

of the convergence area. What follows are the proofs and concepts on the subject of

stiffness.

B.1 Stiffness and Eigenvalues

A stiff equation is one where the scaling of terms can cause the equation to become

unstable. The stiffness of an equation is quantified best by using eigenvalues. If the

equation can be manipulated so that it is in the from of Ax + c = b where x, c, and

b are column vectors and A is a square matrix, then the greater difference in the

absolute values of the eigenvalues of A, the greater likelihood that the equation will

be stiff.

So, to first observe the eigenvalues of our Linear Forward Euler’s Equation, I have

to manipulate it into the form Ax + c = b. To do so let, the number of elements

within u be n. The variable i will continue to be the index variable for time and j

88

the index variable for space, which will be between 1 and n. I can then form the

following matrix-vector equation:

ui+1,1

ui+1,2

ui+1,3

...

ui+1,n−1

ui+1,n


=



t2 t3 0 · · · · · · · · · · · · · · · · · ·

t1 t2 t3 0
.

...

0 t1 t2 t3
.

...

...
. .

...

...
. 0 t1 t2 t3

· · · · · · · · · · · · · · · 0 0 t1 t2





ui,1

ui,2

ui,3

...

ui,n−1

ui,n


+



htb1

htb1

htb1

...

htb1

htb1


(B.2)

where the t variables are defined as:

t1 = ht

(
a2

h2
x

− a3

2hx

)
(B.3)

t2 = 1 + hta1 −
2a2ht

h2
x

(B.4)

t3 = ht

(
a2

h2
x

+
a3

2hx

)
(B.5)

Although I can’t say exactly what the eigenvalues are from our A matrix, I can use

the Gershgorin Circle Theorem to find the area they are contained within. The theo-

rem states that for every row, the eigenvalue for the row must lie within a Gershgorin

Circle. This circle is on the complex plane, has a center at the diagonal value of the

row, and its radius is equal to the absolute value addition of all the other elements

of a row. In mathematical terms, the eigenvalue associated for row k lies within the

Gershgorin Circle with a center at Akk and has a radius equal to
∑
i6=k

|Aki|. The follow-

ing section proves that all of eigenvalues for A are contained within one Gershgorin

Circle and how that circle affects the stiffness of the equation as a3 changes.

89

B.2 Gershgorin Circles

Lemma B.2.1. The eigenvalues for the Linear Forward Euler’s Equation are con-

tained within the Gershgorin Circle centered at 1 + hta1 − 2a2ht

h2
x

and has a radius of∣∣∣ht

(
a2

h2
x
− a3

2hx

) ∣∣∣ +
∣∣∣ht

(
a2

h2
x

+ a3

2hx

) ∣∣∣.
Proof. From the matrix A that was created in the previous section I have three

different distinct rows and therefore three distinct circles:

The first circle is for rows 2 through n − 1 of A. These rows all have the same

diagonal value of 1+hta1− 2a2ht

h2
x

, and therefore by definition of the Gershgorin Circle

Theorem have a circle centered at the same value. The contents of the non-diagonal

entries of A for these rows are the same and when the absolute values of the entries

are added up, I get
∣∣∣ht

(
a2

h2
x
− a3

2hx

) ∣∣∣+ ∣∣∣ht

(
a2

h2
x

+ a3

2hx

) ∣∣∣, which by the theorem becomes

the radius of the circle.

The second circle is for row 1 of A, where the diagonal value is also 1+hta1− 2a2ht

h2
x

,

also has a circle center at the same value by the theorem. The radius of this circle is∣∣∣ht

(
a2

h2
x

+ a3

2hx

) ∣∣∣. It must therefore be contained or equal to a circle with a radius of∣∣∣ht

(
a2

h2
x
− a3

2hx

) ∣∣∣ +
∣∣∣ht

(
a2

h2
x

+ a3

2hx

) ∣∣∣ because the left term is equal to the radius of the

circle and the right term will make the radius either exactly the same or larger than

the radius of row 1’s circle.

The third circle for row n of A also has its diagonal value and center at 1 + hta1−

2a2ht

h2
x

. The radius of the circle, by the theorem, is
∣∣∣ht

(
a2

h2
x
− a3

2hx

) ∣∣∣. Using the same

argument for row 1’s circle, the radius of row n’s circle must be contained within the

circle with a radius of
∣∣∣ht

(
a2

h2
x
− a3

2hx

) ∣∣∣ +
∣∣∣ht

(
a2

h2
x

+ a3

2hx

) ∣∣∣, because the radius is equal

to the right term and the left term can only be zero or positive.

90

Therefore, since all of the circles have a center at 1 + hta1 − 2a2ht

h2
x

and their radii

are equal to or less than
∣∣∣ht

(
a2

h2
x
− a3

2hx

) ∣∣∣ +
∣∣∣ht

(
a2

h2
x

+ a3

2hx

) ∣∣∣, all of the eigenvalues of

A must be contained within the circle with those values.

From Lemma B.2.1, I can make an argument that stiffness is not a problem for

some areas of convergence. This is possible due to two observations: a2
ht

h2
x

along the

boundaries of convergence is a constant value and a1ht has a maximum constant value

when for both values a3 = 0. Although I cannot prove this is true using theory, the

following data tables indicate that these two assertions are true.

The first data tables, Tables B.1 and B.2 show that a2
ht

h2
x

is constant along the

upper and lower values of convergence (the blue area within the graphs). This comes

from the observation that the boundaries appear to follow the equation ht = c
a2

h2
x

where c is the constant I am going to find. I vary both a1 and a2 and find the value

of hx when ht = 10−5.92, the smallest ht of the data I have collected due to the shape

of the convergence area. Both upper and lower boundaries are parallel to each other

until ht becomes to large at a certain point and the upper boundary tapers off and

meets the lower boundary. By using the smallest ht value for the simulations I have

run, I will not be calculating a2
ht

h2
x

for the tapered off area. Once I have hx when

ht = 10−5.92 for the parameters a1 and a2, I then find a2
ht

h2
x

to show that their values

are extremely close to each other, pointing to that fact that it is most likely a constant

value. From the table I will find the average lower boundary constant value is 0.48

and the constant for the upper boundary is about 0.021.

The third data table, Table B.3, points to the fact that (max(ht))a1 is a constant

number, which is easy to see after viewing multiple graphs when varying a1 and a2.

91

a1 a2 ht hx a2
ht

h2
x

1 0.01 10−5.92 10−3.788 10−0.345

1 0.1 10−5.92 10−3.310 10−0.300

1 1 10−5.92 10−2.780 10−0.362

1 10 10−5.92 10−2.301 10−0.317

1 100 10−5.92 10−1.824 10−0.272

1 1000 10−5.92 10−1.293 10−0.334

1 10000 10−5.92 10−0.815 10−0.289

0.1 1 10−5.92 10−2.780 10−0.362

10 1 10−5.92 10−2.780 10−0.362

100 1 10−5.92 10−2.780 10−0.362

1000 1 10−5.92 10−2.780 10−0.362

Tab. B.1: Table depicts values of the lower boundary of convergence when ht = 10−5.92, with variations of

the parameters a1 and a2 varying to compute a2
ht
h2

x
.

92

a1 a2 ht hx a2
ht

h2
x

1 0.01 10−5.92 10−3.098 10−1.725

1 0.1 10−5.92 10−2.620 10−1.680

1 1 10−5.92 10−2.142 10−1.635

1 10 10−5.92 10−1.611 10−1.697

1 100 10−5.92 10−1.134 10−1.652

1 1000 10−5.92 10−0.603 10−1.714

1 10000 10−5.92 10−0.125 10−1.669

0.11 1 10−5.92 10−2.142 10−1.635

10 1 10−5.92 10−2.142 10−1.635

100 1 10−5.92 10−2.142 10−1.635

1000 1 10−5.92 10−2.142 10−1.635

Tab. B.2: Table depicts values of the upper boundary of convergence when ht = 10−5.92, with variations of

the parameters a1 and a2 varying to compute a2
ht
h2

x
.

93

In the table I find the largest ht value and multiply it by a1 to show that they come

to a constant number that is approximately 0.1. This is restated in Observation B.2.2

because it has relevance to estimating the value of the a3 vertical boundary in Section

5.2.3. This is only an observation because no formal proof is given.

Observation B.2.2. If a3 = 0, the maximum ht value for the area of convergence

will be approximately 0.1
a1

.

a1 a2 max(ht) (max(ht))a1

0.001 1 102.009 10−0.991

0.01 1 100.980 10−1.02

0.1 1 100.0382435 10−0.9617565

1 1 10−1.012 10−1.012

10 1 10−1.962 10−0.962

100 1 10−2.991 10−0.991

1000 1 10−4.020 10−1.020

1 0.01 10−1.012 10−1.012

1 0.1 10−0.932 10−0.932

1 10 10−0.941 10−0.941

1 100 10−1.020 10−1.02

1 1000 10−0.932 10−0.932

Tab. B.3: Table depicts the maximum ht value that converges for variations of the parameters a1 and a2.

With this information I can find the two circles, one for the lower boundary and

one for the upper boundary of convergence. For the lower boundary circle I know

94

that the center is at 1 + hta1 − 2a2ht

h2
x

, where 2a2ht

h2
x

≈ 0.96 and 0 ≤ hta1 > 0.1. This

means that the center of the circle is 0.04 > center > 0.14. The radius of the circle

2
∣∣∣a2ht

h2
x

∣∣∣ ≈ 0.96. This means that the smallest eigenvalue possible is -0.92 and the

largest possible eigenvalue is 1.1. This gives the maximum difference of eigenvalues,

but unfortunately what I am looking for is the difference in absolute values between

eigenvalues. Since the smallest absolute value of a possible eigenvalue is zero, and were

are comparing degrees of magnitude between eigenvalues, it is possible for stiffness to

be a problem for the lower boundary.

However for the upper boundary I can say that in general stiffness is not an issue.

Here 2a2ht

h2
x
≈ 0.042, which gives a center between 0.958 and 1.058. With these circles

having a radius of 0.042 the maximum and minimum eigenvalues possible are 0.916

and 1.1. Since the circle’s radius does not overlap zero, I can say that a maximum

difference in the magnitude of the eigenvalues is 0.184, which is not nearly high enough

to cause a stiffness issue.

For the upper boundary I have shown that at a3 = 0 stiffness is not an issue.

This continues to be the case as a3 grows as well, because the factor a3ht

2hx
will grow

very slowly because ht will be very small compared to h2
x. The parameter a3 will

only be a concern if hx grows very big to make ht big. Since this is not the case

for the simulations that have been run however, I can say that a3ht

2hx
in general will

not contribute to much growth to the radius of the circle for the upper boundary.

This means that a3 is largely independent of the stiffness of the upper boundary and

therefore cannot be the cause of the vertical a3 convergence boundary in the upper

area.

95

I can explicitly define the convergence area where stiffness is not a problem, when

the radius of the Gershgorin Circle does not include zero. The smallest the center

of a circle can be is 1 − 2a2ht

h2
x

, when hta1 = 0. When I subtract the radius from this

center value I find that stiffness will not be a problem when a3 = 0 for:

0 < 1− 4a2ht

h2
x

(B.6)

0.25 <
a2ht

h2
x

(B.7)

The growth of a3 might be a problem close to this boundary when there is a small

margin for error, but as a2ht

h2
x

it should not be a problem.

96

APPENDIX C

SOURCE CODE

97

This chapter contains the source code that was used to simulate the CA models

I created using the Forward and Backward Euler’s methods. The code in Section

C.1 on page 98 will run multiple CA simulations on a u vector for various hx and

ht parameters and output the results as text files. The code in Section C.2 on page

104 will take those text files and plot the information to create the convergence maps

shown through out this thesis.

C.1 Simulation Code

Listings C.1, C.2, and C.3 are functions used by Listing C.4 to run multiple CA

simulations.

Listing C.1: Scilab Function that computes the change in u for a particular cell given its neighbor values for

the Forward Euler’s function. The function comes from Equation 4.5 on Page 26.

// change por t i on o f Forward Euler

//u=current c e l l va lue

// u l e f t and ur i gh t are ne ighbor va lue s

function uChangeAtX=forwardF (u , u l e f t , ur ight , ht , hx , a1 , a2 , a3 , b1)

uChangeAtX = (a1∗u) + b1 ;

uChangeAtX = uChangeAtX + ((a2∗ ur i gh t) −

(2 ∗ a2 ∗ u) + (a2 ∗ u l e f t)) / (hx ˆ2) ;

uChangeAtX = uChangeAtX + ((a3∗ ur i gh t) − (a3 ∗ u l e f t)) / (2∗ hx) ;

uChangeAtX = ht ∗ uChangeAtX ;

endfunct ion

Listing C.2: Scilab Function that computes the change in u for a particular cell given its neighbor values for

the Backward Euler’s function. The function comes from Equation 4.19 on Page 29.

// change por t i on o f Backward Euler

//u=current c e l l va lue

98

// u l e f t and ur i gh t are ne ighbor va lue s

function uChangeAtX=backF (u , u l e f t , ur ight , ht , hx , a1 , a2 , a3 , b1)

// use value from Forward Euler ’ s

uChangeAtX = forwardF (u , u l e f t , ur ight , ht , hx , a1 , a2 , a3 , b1) ;

i f (1−(a1∗ht)) == 0 then // f ix d iv id e by zero error

uChangeAtX = 10ˆ100;

else

uChangeAtX = uChangeAtX ∗ (1/(1−(a1∗ht))) ;

end

endfunct ion

Listing C.3: Scilab Function that runs a simulation for u for multiple iterations. The function takes in an

initial u vector and outputs the final u vector as well as a value that indicates why the simulation

was stopped. See Section 5.1 on page 34 for details about the simulations run.

//uSim s i u l a t e s u function up to maxIter I t e r a t i o n s

// u In i t = i n i t i a l u vec to r

// form = 1 for Forward Eulers , 2 for Backward Euler s

// uFinal = u vecto r at end o f s imu la t i on

//bkReason − reason s imu la t i on stopped

// 1=converge , 0=diverge , 7=max i t e r a t i o n s

function [uFinal , bkReason]=uSim(uIn i t , ht , hx , a1 , a2 , a3 , b1 , maxIter , form)

bkReason=0;

uFinal = u In i t ;

[rows , c o l s] = s ize (u In i t) ;

// i i s time index , j i s space index

i =1;

while 1==1 // loop fo r eve r , breaks near the end

99

i=i +1;

changeU = zeros (rows , 1) ;

for j =1: rows

i f (j−1==0) then

uLeft = 0 ; // zero boundary value

else

uLeft = uFinal (j −1, i −1);

end

i f (j+1>rows) then

uRight = 0 ; // zero boundary value

else

uRight = uFinal (j +1, i −1);

end

i f (form==1)

changeU (j , 1) = forwardF (uFinal (j , i −1) , uLeft , uRight , ht , hx , a1 , a2 , a3 , b1) ;

else

changeU (j , 1) = backF (uFinal (j , i −1) , uLeft , uRight , ht , hx , a1 , a2 , a3 , b1) ;

end

uFinal (: , i)=changeU + uFinal (: , i −1);

i f (norm(changeU) < 10ˆ(−10)) then

bkReason=1;

break ;

end

i f (norm(changeU) > 10ˆ(10)) then

100

bkReason=0;

break ;

end

i f (i > maxIter) then

bkReason=7;

break ;

end

end

endfunct ion

Listing C.4: Scilab script that runs multiple CA simulations on u for different hx and ht values. It outputs

the simulation results into text files that are used by other scripts to plot the convergence maps.

// s c r i p t that runs a number o f ht & hx combos

//and s t o r e s the r e s u l t s in f i l e s in cur rent working d i r e c t o r y

// index . txt − conta in s r e s u l t s o f each ht & hx combo

//ptsConv . txt − l i s t o f hx , ht po in t s that converged

//ptsNotConv . txt − l i s t o f hx , ht po in t s that d iverged

//ptsUnknown . txt − l i s t o f hx , ht po in t s that h i t max i t e r a t i o n s

ptsConv = [0 0] ;

ptsNotConv = [0 0] ;

ptsUnknown =[0 0] ;

// i n i t i a l i z e c o e f f i c e n t s for and u for s imu la t i on

a1=1;

a2=1;

a3=0;

b1=1;

101

u In i t = [1 2 3 4 5] ’ ;

maxIter =4000;

f i leNum=1;

numElements = s ize (uIn i t , 1) ;

fhand le=f i l e (’ open ’ , ’ index . txt ’ , ’ unknown ’) ;

fpr intf (fhandle , ’ u In i t :\n ’) ;

for k=1:numElements

fpr intf (fhandle , ’%f \n ’ , u In i t (k , 1)) ; // wr i t e a l ine

end

fprintf (fhandle , ’ a1 = %3.15 f , a2 = %3.15 f \n ’ , a1 , a2) ; //

fpr intf (fhandle , ’ a3 = %3.15 f , b1 = %3.15 f \n\n ’ , a3 , b1) ; //

// for c lo s eup o f lower l e f t corner

// generate ht ’ s and hx ’ s to use for s imu la t i on s

hTExp= [0] ;

for i =1:75

hTExp(i) = (10ˆ(−4))∗1 .2ˆ(i) ;

//hTExp(i) = (10ˆ(−3))∗1 .2ˆ(i) ;

end

hXExp= [0] ;

for i =1:75

hXExp(i) = (10ˆ(−3 .5))∗1 .13ˆ(i) ;

//hXExp(i) = (10ˆ(−3))∗1.13ˆ(i) ;

end

// s imulate u for each ht , hx pa i r

for i =1:75

102

ht=hTExp(i) ;

for j =1:75

hx=hXExp(j) ;

i f (modulo (j , 2 0) == 0)

p r i n t f (’(%d,%d) ’ , i , j) ;

end

fData = sprintf (’ data%04d . txt ’ , f i leNum) ;

[uFinal , bkReason]=uSim(uIn i t , ht , hx , a1 , a2 , a3 , b1 , maxIter , 2) ;

//uncomment l ine below to s t o r e a l l u s imu la t i on va lue s

// fpr in t fMat (fData , uFinal , ’ %3.15 f ’) ;

numIterat ions = s ize (uFinal , 2) ;

fpr intf (fhandle , ’%s :\n ’ , fData) ;

fpr intf (fhandle , ’ ht = %3.15 f , hx = %3.15 f \n ’ , ht , hx) ;

fpr intf (fhandle , ’ I t e r a t i o n s : %d\n ’ , numIterat ions) ;

fpr intf (fhandle , ’ S tab l e = %d\n ’ , bkReason) ;

for k=1:numElements

fpr intf (fhandle , ’ %3.15 f \n ’ , uFinal (k , numIterat ions)) ;

end

fprintf (fhandle , ’ \n ’) ;

//put hx , ht combo in appropr ia t e l i s t

i f (bkReason == 0)

ptsNotConv (s ize (ptsNotConv ,1)+1 ,1) = hx ;

ptsNotConv (s ize (ptsNotConv , 1) , 2) = ht ;

end

i f (bkReason == 1)

ptsConv (s ize (ptsConv ,1)+1 ,1) = hx ;

103

ptsConv (s ize (ptsConv , 1) , 2) = ht ;

end

i f (bkReason == 7)

ptsUnknown (s ize (ptsUnknown ,1)+1 ,1) = hx ;

ptsUnknown (s ize (ptsUnknown , 1) , 2) = ht ;

end

f i leNum = fileNum +1;

end

end

fp r in t fMat (’ ptsNotConv . txt ’ , ptsNotConv (2 : s ize (ptsNotConv , 1) , :) , ’ %5.18 f ’) ;

fp r in t fMat (’ ptsConv . txt ’ , ptsConv (2 : s ize (ptsConv , 1) , :) , ’ %5.18 f ’) ;

fp r in t fMat (’ ptsUnknown . txt ’ , ptsUnknown (2 : s ize (ptsUnknown , 1) , :) , ’ %5.18 f ’) ;

f i l e (’ c l o s e ’ , fhand le) ;

C.2 Plotting Code

Listings C.5 and C.6 are used by Listing C.7 to plot the convergence maps. Listing

C.8 is code that plots the convergence map with the values suggested by the guidelines

in Listing 5.1 for the Backward Euler’s function.

Listing C.5: Scilab function that returns the ht value of the zero boundary constraint given the hx parameter

for the Forward Euler’s equation. This function comes from Equation A.79 on page 80.

function [htPlus , htNeg]=zeroConst1 (a1 , a2 , a3 , hx)

t1 = 4 ∗ hx ˆ2 ;

t2 = (−2∗a1∗hxˆ2) + (2∗ a2) +(a3 ∗ hx) ;

t3 = (−2∗a1∗hxˆ2) + (2∗ a2) −(a3 ∗ hx) ;

104

htPlus = t1 / t2 ;

htNeg = t1 / t3 ;

endfunct ion

Listing C.6: Scilab function that returns the ht value of the zero boundary constraint given the hx parameter

for the Backward Euler’s equation. This function comes from Equation A.101 on page 85.

function [htPlus , htNeg]=zeroConst1 (a1 , a2 , a3 , hx)

t1 = 4 ∗ hx ˆ2 ;

t2 = (2∗ a2) +(a3 ∗ hx) ;

t3 = (2∗ a2) −(a3 ∗ hx) ;

htPlus = t1 / t2 ;

htNeg = t1 / t3 ;

endfunct ion

Listing C.7: Scilab script used to plot the points in the text files created by Listing C.4. It also plots the

poles constraints in black and the zero boundary constraints in magenta. It assumes the text

files to plot are in the current working directory.

// f i r s t graph the s imu la t i on data

ptsC = fscanfMat (” ptsConv . txt ”) ;

ptsN = fscanfMat (” ptsNotConv . txt ”) ;

ptsU = fscanfMat (”ptsUnknown . txt ”) ;

ptsCMod = [0] ;

ptsNMod = [0] ;

ptsUMod = [0] ;

set (” f i g u r e s t y l e ” ,”new ”) ;

g=gca () ;

105

g . x l a b e l . text = ”ht ” ;

g . x l a b e l . f o n t s i z e = 4 ;

g . y l a b e l . text = ”hx ” ;

g . y l a b e l . f o n t s i z e = 4 ;

g . y l a b e l . f o n t ang l e = 0 ;

plot (ptsC (1 : s ize (ptsC , 1) , 2) , ptsC (1 : s ize (ptsC , 1) , 1) , ” b . ”) ;

plot (ptsN (1 : s ize (ptsN , 1) , 2) , ptsN (1 : s ize (ptsN , 1) , 1) , ” g . ”) ;

plot (ptsU (1 : s ize (ptsU , 1) , 2) , ptsU (1 : s ize (ptsU , 1) , 1) , ” r . ”) ;

g . l o g f l a g s=” l l ” ;

g . c h i l d r en (1) . c h i l d r en (1) . mark s i ze = 3 ;

g . ch i l d r en (2) . c h i l d r en (1) . mark s i ze = 3 ;

g . ch i l d r en (3) . c h i l d r en (1) . mark s i ze = 3 ;

l =legend (” Convergent ” ,” Divergent ” ,”Unknown”) ;

// graph c o s n t r a i n t s

// i n t i a l i z e c o e f f i c e n t s

a1=1;

a2=1;

a3=0;

hExp= [0] ;

for i =1:100

hExp(i) = (10ˆ(−6))∗1 .3ˆ(i) ;

end

//upper po l e s c on s t r a i n t

106

d e f f (” [y]= f (x)” ,” y=sqrt ((2∗ a2)/ a1) ”) ;

f p l o t 2d (hExp , f) ;

//Forward Euler ’ s lower po l e s c on s t r a i n t

// d e f f (” [y]= f (x)” ,” y=sqrt ((2∗ a2∗x)/(2+(a1∗x))) ”) ;

//Backward Euler ’ s lower po l e s co sn ra in t

d e f f (” [y]= f (x)” ,” y=sqrt ((2∗ a2∗x)/(2∗(1− a1∗x)+(a1∗x))) ”) ;

f p l o t 2d (hExp , f) ;

//plot zero c on s t r a i n t s

hExp2 = [0] ;

for i =1:2000

hExp2(i) = (10ˆ(−6))∗1.05ˆ(i) ;

end

// zeroConst1 i s de f ined for e i t h e r Forward or Back Euler ’ s

[htPlus htNeg] =zeroConst1 (a1 , a2 , a3 , hExp2 (1)) ;

// i n i t i a l i z e v e c t o r s

zeroConst1PlusCoords = [htPlus hExp2 (1)] ;

zeroConst1NegCoords = [htNeg hExp2 (1)] ;

for i =2:2000

[htPlus , htNeg] =zeroConst1 (a1 , a2 , a3 , hExp2(i)) ;

zeroConst1PlusCoords (s ize (zeroConst1PlusCoords , 1)+1 , :) = [htPlus hExp2(i)] ;

zeroConst1NegCoords (s ize (zeroConst1NegCoords , 1)+1 , :) = [htNeg hExp2(i)] ;

end

plot (zeroConst1PlusCoords (: , 1) , zeroConst1PlusCoords (: , 2) , ”m”) ;

107

plot (zeroConst1NegCoords (: , 1) , zeroConst1NegCoords (: , 2) , ”m”) ;

// rezoom

g= gca () ;

g . zoom box = [10ˆ(−4) ,10ˆ(−4) ,10ˆ(0) ,10ˆ(0)] ;

Listing C.8: Scilab script used to plot the points in the text files created by Listing C.4. It also plots a

magenta line that represents those values recommended by the guidelines in Listing 5.1. It

assumes the text files to plot are in the current working directory.

//plot s imu la t i on data

ptsC = fscanfMat (” ptsConv . txt ”) ;

ptsN = fscanfMat (” ptsNotConv . txt ”) ;

ptsU = fscanfMat (”ptsUnknown . txt ”) ;

ptsCMod = [0] ;

ptsNMod = [0] ;

ptsUMod = [0] ;

set (” f i g u r e s t y l e ” ,”new ”) ;

g=gca () ;

g . x l a b e l . text = ”ht ” ;

g . x l a b e l . f o n t s i z e = 4 ;

g . y l a b e l . text = ”hx ” ;

g . y l a b e l . f o n t s i z e = 4 ;

g . y l a b e l . f o n t ang l e = 0 ;

plot (ptsC (1 : s ize (ptsC , 1) , 2) , ptsC (1 : s ize (ptsC , 1) , 1) , ” b . ”) ;

plot (ptsN (1 : s ize (ptsN , 1) , 2) , ptsN (1 : s ize (ptsN , 1) , 1) , ” g . ”) ;

108

plot (ptsU (1 : s ize (ptsU , 1) , 2) , ptsU (1 : s ize (ptsU , 1) , 1) , ” r . ”) ;

g . l o g f l a g s=” l l ” ;

g . c h i l d r en (1) . c h i l d r en (1) . mark s i ze = 3 ;

g . ch i l d r en (2) . c h i l d r en (1) . mark s i ze = 3 ;

g . ch i l d r en (3) . c h i l d r en (1) . mark s i ze = 3 ;

a1=10;

a2=1;

a3=100;

// find max ht g iven

//a1 , a2 , and a3 c o e f f i c e n t s .

upSearch = (0 . 1/ a1)∗10ˆ (3) ;

lowSearch = (0 . 1/ a1)∗10ˆ(−15);

mu l t i p l i e r = 1 . 1 ;

s a f e t yBu f f e r = . 6 0 ;

s a f e t yBu f f e r 2 = 1 . 6 ;

h t I n t e r s e c t = −1;

h t I n i t =0.1/a1 ;

// pick htMax

curHx = lowSearch ;

while (curHx < upSearch) // search for i n t e r s e c t i o n

upperZeroHt = (4∗ curHx ˆ2)/((2∗ a2)−(abs (a3)∗ curHx)) ;

lowerPoleHt = (2∗ curHx ˆ2)/((2∗ a2)+(a1∗curHx ˆ 2)) ;

i f (upperZeroHt − lowerPoleHt < 0) then

h t I n t e r s e c t = lowerPoleHt ;

break ;

109

end

curHx = curHx ∗ mu l t i p l i e r ;

end

i f ((h t I n t e r s e c t == −1) | (h t I n i t < h t I n t e r s e c t)) then // h t I n i t i s lower

htMax= h t I n i t ;

else

htMax = h t I n t e r s e c t ;

end

htMax = htMax ∗ s a f e t yBu f f e r ;

//plot a l l po s s i b l e va lue s under htMax from gu i d e l i n e s

hExp= [0] ;

for i =1:100

hExp(i) = (10ˆ(−6))∗1 .3ˆ(i) ;

end

ht = [0] ;

hx = [0] ;

for i =1:100

i f (hExp(i) < htMax) then

ht (i)=hExp(i) ;

hx (i)= sa f e t yBu f f e r 2 ∗sqrt ((2∗ a2∗ht (i))/(2∗(1− a1∗ht (i))+(a1∗ht (i)))) ;

end

end

plot (ht , hx , ”m”) ;

110

REFERENCES

[1] T.A. Burton, editor. Modeling and Differential Equations in Biology. Pure and

Applied Mathematics. Marcel Dekker Inc., 1980.

[2] J. Curnutt, E. Gomez, and K. E. Schubert. “Patterned Growth in Extreme

Environments.” 2007.

[3] M. Gardner. “The Fantastic Combinations of John Conway’s New Solitaire Game

‘Life’.” Scientific American, (223):120–123, 1970.

[4] R. Hu and X. Ruan. “Differential Equation and Cellular Automata Model.”

International Conference on Robotics, Intelligent Systems and Signal Processing,

2(8-13):1047–1051, October 2003.

[5] D. James. “Cs 322 Project 3: Springies - Backward Euler.” http://

www.cs.cornell.edu/courses/cs322/2007sp/projects/backwardeuler.pdf, April

2008.

[6] E. Meron, E. Gilad, J. von Hardenberg, M. Shachak, and Y. Zarmi. “Vegetation

Patterns Along a Rainfall Gradient.” Chaos, Solitons and Fractals, 2004.

[7] N. J. Savill and P. Hogeweg. “Competition and Dispersal in Predator-Prey

Waves.” Theoretical Population Biology, (53):243–263, 1999.

[8] K. Schubert. “Cellular Automaton for Bioverms,” October 2008.

111

[9] K. Schubert. Keith on Numerics. http://csci.csusb.edu/schubert/

pubs/KeithOnNumerical.pdf, Februrary 2008.

[10] J. Shi. “Partial Differential Equations and Mathematical Biology.”

http://www.resnet.wm.edu/ jxshix/math490/lecture-chap1.pdf, April 2008.

[11] J. Stewart. Calculus: Concepts and Contexts. Brooks/Cole Thomson Learning,

2001.

[12] A. M. Turing. “The Chemical Basis of Morphogenesis.” Philosophical Transac-

tions of the Royal Society of London. Series B, Biological Sciences, 237(641):37–

72, August 1952.

[13] J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi1. “Diversity of Vege-

tation Patterns and Desertification.” Physical Review Letters, 87(19), November

2001.

[14] S. Wolfram. “Twenty Problems in the Theory of Cellular Automata.” Physica

Scripta, T9:170–183, 1985.

[15] S. Wolfram. A New Kind of Science. Wolfram Media Inc., 2002.

112

