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ABSTRACT

The thesis discusses PRIMM which stands for parallel remote in-

teractive management model. PRIMM is a framework for object oriented

applications that relies on grid computing. It works as an interface between

the remote applications and the parallel computing system.

The thesis shows the capabilities that could be achieved from PRIMM

architecture, such as communication using UDP will be more reasonable in

Runtime Execution Management. The thesis contains an analytical study

for applying matrix multiplication and parallel search using PRIMM inter-

face and MPI-Cluster. PRIMM showed satisfactory results in improving

the performance of a single machine by distributing the work remotely to a

parallel server.

PRIMM contributed in the development of grid methodologies by

applying shortcutting techniques, in which PRIMM server can be managed

to shortcut the execution of other processes.

PRIMM is designed for solving small to medium problems relatively

to grid computing, in which it could be very expensive to solve these prob-

lems on personal or regular business computers.

Finally, PRIMM is an object oriented framework, programmed in

java and supported by open source API. Developed to be customizable to

all possible remote applications. It is language independent. It gains control

to the parallel cluster through the operating system, it bridges this control

to a remote client through a network.
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1. INTRODUCTION

Each of the past three centuries has been dominated by a single technology.

The 18th century was the era of the great mechanical systems accompanying the

industrial revolution. The 19th century was the age of the steam engine. During

the 20th century, the key technology was information gathering, processing and dis-

tributed computing.

In 1965, Gordon Moore made the following simple observation, ”The complex-

ity for minimum component costs has increased at a rate of roughly a factor of two

per year. Certainly over the short term this rate can be expected to continue, if not to

increase. Over the longer term, the rate of increase is a bit more uncertain, although

there is no reason to believe it will not remain nearly constant for at least 10 years.

That means by 1975, the number of components per integrated circuit for minimum

cost will be 65,000.”

According to Moore’s observation, by the year 1975 , devices with as many

as 65,000 components would become feasible on a single silicon chip occupying an

area of only about one fourth of a square inch. Nowadays in 2007, we have seen

the tremendous advances in microprocessor technology that Moore expected. For

example, clock rates have increased from 40 MHz in 1988 to 3.2 GHz in 2007. Not

only one single microprocessor can be integrated into the motherboard circuit, but

also we have seen the dual microprocessor architecture being available in our personal

computers.
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The move to multicore architecture is forcing every system to be distributed.

Distributed computing or Grid computing is trying to decrease the limitations of the

single microprocessor technology and also supports systems with more computational

resources.

In the past decade, grid technology has gained an important role in sustaining

the ability to solve huge computational problems. Grid technology was limited in

the beginning to scientific applications, but nowadays it appears in servers and user

applications.

Because grid technology relies on network speed it was limited to very small

class of problems. However, network speed has been dramatically increasing during

the last ten years. This allows grid technology to play a more important role in the

software development process and encourages developers to adapt to the new grid

computing approaches.

Grid frameworks have evolved from scientific research that attempts to solving

huge problems. During the implementation of these frameworks , developers and

researchers took into consideration all the environmental factors such as networks

latencies, processors speeds and available resources. But since these environmental

factors are variable and always get new enhancements, further development must be

taken into account. In the past couple of years, enterprise development has taken

place to enhance the performance of existing servers and applications. The industry

of software engineering has noticed that the great enhancement in network speed and

microprocessor technology will have a positive impact on the grid systems.

1.1 Grid Frameworks

A Grid Framework is a basic conceptual and software structure used to solve

relatively complex problems through the application of Grid Computing. The grid

framework includes a group of libraries that will simplify the development, distribu-

tion and synchronization of grid computations.
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Grid computing is an emerging model of distributed computing that employs

a dynamic pool of dispersed commodity computer resources to tackle large, time-

consuming tasks. The chief attraction of grid computing systems is that they promise

to provide large amounts of computing power more economically than costly high-end

computers, and their potential capacity is scalable beyond that of the most powerful

supercomputers.

The success of a number of experimental grid computing projects spurred a

growing interest within the academic community and, more recently, in the realm of

commercial enterpriser grid computing [13]. This has led to the development of open

standards, which dominate scientific grid applications, and a variety of proprietary

architectures aimed at the commercial grid market.

Many grid systems were successfully developed for various needs and pur-

poses [6]. Some examples are: Globus Alliance tool kit, Enabling Grid for E-SciencE,

Fushion Grid,

NorduGrid, Open Science Grid, OurGrid, Sun Grid, Xgrid, UC Grid, JPPF,

Scalable Cluster Environment, BOINC, GRIA, Vishwa and IceGrid. And other na-

tional grid systems such as China Grid Project, D-Grid (Germany), GARUDA(India)

, Malaysia National Grid Computing, Naregi Project, Singapore National Grid Project

and Thai National Grid Project.

1.1.1 Outline of Grid Systems

This section will give an overview of some main grid frameworks and applica-

tions.

The Globus Alliance organization and many others all over the world worked

together on developing an open source software named Globus Toolkit [2]. Globus

toolkit contributes to solving problems in large grid projects. For example Globus

toolkit has been used in Earth System Grid ESG, which is concerned with solving

the earth climate problem.
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Globus toolkit adopted many grid computing standards, it also supports and

influences grid computing communities such as IETF, W3C, OASIS and GGF. It is

also worth mentioning that Globus toolkit supports heterogeneity by designing special

interfaces and services which the developers can use.

Globus toolkit has defined the class of problems that could be solved and

implemented efficiently using Globus toolkit. The components of Globus toolkit are

the Software Developmental Kit SDK , developer API, basic grid services and tools.

Another well-known gird is GridSolve. GridSolve is an RPC-based library for

executing solver code on Grid resources. It uses a client/agent/server architecture,

with a very simple client model [12]. It is integrated with a wide variety of devel-

opment environments (MATLAB, Octave, C, FORTRAN, etc.) and supports many

types of compute resources and authentication systems. The server runs in user space,

and the agent handles Grid complexity.

GridSolve evolved as an enhanced model of NetSolve [12]. GridSolve basically

works as a middle interface between the grid resources and the clients. It performs

allocation for the resources through multiple network services. Any resources includ-

ing both hardware and software could be assigned for a request. Gridsolve [12] is

interested in solving complex scientific problems and in developing a grid computing

environment to apply these solutions.

Another famous grid to the industry is Xgrid. Xgrid is developed by Apple

Corporation. Xgrid turns a group of Macs into a supercomputer, so they can work

on problems greater than each individually could solve [4]. Xgrid may operate in

screensaver mode, so whenever users arent working, the Mac can crunch away at

some data set. Or if developer has a group of Macs dedicated to the task, Xgrid

makes it easy to set up a cluster that works around the clock, every day of the year.

Developers or users of Xgrid can not perform concurrent execution management, but

they can retrieve their computational results after a certain period of time. Xgrid

depends on TCP/IP implementations. It could work independently via local network

or communicate with their global cluster via the Internet.
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Sun Microsystems has considered Sun Compute Utility Grid as the world’s

first and only true compute utility [8]. Sun Gird supports solutions to different sizes

of problems. In another words, Sun Gird target all different computational problems

in different corporations and organizations sizes. Their clients communicate to Sun

Grid through the internet, no local networks are feasible. They charge 1 USD per

CPU-hour. They are unlike most grid frameworks, they intend to cover both scientific

and enterprize problems. It relies on implementations built on top of the TCP/IP

protocol. All computations run on top of Solaris 10 operating system. They do

not support remote concurrent execution management, or the interactive access, all

the calculations must run to completion. Sun Grid has Sun Grid Job Submission

Application Programming Interface (API) to allow developers develop tasks and jobs.

Sun Grid Compute Utility allows application developers - including end users and

Independent Software Vendors (ISVs) - to publish applications in a viewable list

called the Job Catalog. The Job Catalog is a resource for users to search and sample

applications that are available on the Sun Grid.

The Java Parallel Processing Framework JPPF is java-based grid computing

framework that has been famous lately [1]. JPPF is tool to run applications in paral-

lel, in which it could increase the application’s performance and reduce the execution

time. JPPF allow developers to write the code once, deploy one and execute every-

where. JPPF is supported by well-documented easy to use API [1]. It is scalable up

to an arbitrary number of processing nodes. It has built-in failover and recovery for

all components of the framework (clients, servers and nodes). Runs on top of Java

Virtual Machine JVM. It’s network communications are based on TCP/IP implemen-

tations. JPPF has a java-based job submission language and it has been adapting

Java Management Extension JMX.
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1.1.2 PRIMM System

Consider the problem of developing a system that may require at some point

of execution more resources. There are many possible solutions that could solve the

problem, but not all of these solutions are cost efficient and feasible. For example,

consider the cost for a company to build a parallel cluster, or for an individual de-

veloper to buy more hardware resources, or consider the cost of maintaining it, or

consider that the system is made for research purposes and doesn’t have enough funds.

The idea here is that there are some developers that have relatively big systems that

require more resources that are not available; also they may not have the choice to

buy or invest in more resources because of funding and financial limitations.

It is well known that JDBC and ODBC are interfaces between a system and its

database. RPC and RMI are other well known methods to access remote resources.

LDAP also is a well known protocol to access active directories. So there are many

well known interfaces and ways that a developer would use to gain access to resources.

Given the abundance of available remote resources, the question becomes: what would

a developer use to gain access to parallel resources remotely? How would the developer

manage, control and customize the access to remote resources?

Among object oriented interface that manage parallel resources is PRIMM. It

contributes in solving developer’s problems by distributing computations over parallel

resources that could be shared between multiple clients. PRIMM gives the developers

the ability to access parallel resources remotely. For example a developer in Mexico

with poor hardware resources who is running a server on his personal computer could

use PRIMM to access parallel resources in California State University.

The idea of sharing parallel resources remotely with a client’s applications is

not new to the industry. Sun Grid for example allows client’s applications gain access

to parallel resources for a fee based on CPU hours used. However, PRIMM is different

than these systems for many reasons, for more details about these differences continue

to the following section.

6



Server

Parallel Cluster A

Parallel Cluster B
.

.

.

.

.

.

.

.

Large Num ber of Requests Or  

Very High am ount  of Com putat ions

Fig. 1.1: Example of PRIMM Application

PRIMM is a relatively small system that has been developed under J2SE. It

contains two main components, a server object and a client object. The two objects

are used to build an interface between the parallel computational resources and the

remote clients. The client is supported with an API that will help developers to

build applications that may use parallel computational resources. Using PRIMM

may result in reducing the overall execution time of an application or even it may

increase the applications’ capabilities of handling huge computational loads.

PRIMM is targeting specified type of problems. In general, PRIMM tries to

solve small computational problems relatively to grid computations, in which these

problems could be very costly on regular machines.

PRIMM has many functionalities. It allows developers to ship their code,

compile it and run it remotely. It also allows the client application to keep track of

the parallel executions, for example the client application will still be able to have an

interactive relation with the parallel clusters. The interactive relation will help the

client applications to know the execution status and also allows them to control it

remotely.
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PRIMM adopted the User Datagram Protocol UDP. UDP is a famous connec-

tionless transport layer that has been used widely. However, in grid and distributed

computing, developers mainly used TCP for communications mainly because it does

not feature packet loss. TCP is a famous and reliable connection oriented protocol

that could run on unreliable networks such as the World Wide Web (WWW). TCP

also exhibits satisfying performance in various contexts including parallel and dis-

tributed computing. PRIMM proposes the usefulness of UDP over TCP in certain

situations. UDP can perform better when information is time dependent and needs

to be used for managerial purposes that are bounded by small time frames. In ad-

dition the thesis will go into an analysis of the UDP behavior in concurrent process

management and compare it to the TCP behavior.

The thesis still considers the TCP protocol as a very important implementation

in grid and parallel computations, applying TCP in PRIMM is considered a future

work.

Both PRIMM’s client and PRIMM’s server are multithreaded objects. They

try to perform many functionalities in non-blocking manner, for example the receiving

thread is separated from the validation thread, and the sending thread is separated

from the monitoring thread, and so on. These threads contributes in managing and

controlling the computations in both sides.

PRIMM has a distinct feature over all other grid frameworks. It has the

ability to perform shortcutting. Developers and users can manage PRIMM’s threads

to perfrom shortcutting as soon as the thread could find a desirable results. The

shortcutting idea is described later in full details.

1.1.3 PRIMM in Comparison to Others

In comparison with Globus Toolkit. PRIMM is a centralized grid system,

in that is does not distribute computations over multiple testbeds, and does not

assigned tasks to unknown resources. While Globus is world-wild computing server,
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and distributes it’s calculations on a large scale of networks and testbeds [2]. PRIMM

and Globus are completely different in consideration of the problem sizes that both

of them are targeting. Globus targets the huge computational problems, that will be

cheaper to solve them through the grid technology.

Java Parallel Processing Framework JPPF [1] and PRIMM shares an easy to

use API. Both of them are interested in application-based problems. Java 2 Second

Edition J2SE was the basic implementation language for both, but JPPF has also

included services based on Java 2 Enterprise Edition J2EE. PRIMM and JPPF are

different on both the problem sizes and architecture, JPPF tries to solve relatively

more complex problems than PRIMM. JPPF developers manage resources through

Java Management Extension JMX. PRIMM supports a runtime execution manage-

ment in order to monitor and control the execution in more efficient way. JPPF

is a TCP/IP based system, all communications are performed through TCP/IP or

protocols on top of it. JPPF is language dependent, jobs and task are dependent on

specific implementation.

Xgrid and PRIMM are two different systems. Xgrid communicates a bunch

of MAC machines together to form a distributed cluster. Xgrid runs calculations

that are not required to be executed instantly, it takes advantage of the idle clock

cycles in the personal MAC machines. PRIMM is completely different since it tries

to return the results as soon as the results are calculated. It has an active access to

the execution in which users and developers can know the status of the execution and

at what stage the execution is going to. In Xgrid the main interest is to solve a huge

computational problems that does not require intensive management and control dur-

ing execution. Xgrid has no interest in application development, unlike PRIMM that

concentrates to bring resources and computational power to applications. Xgrid is

a TCP/IP based system, it relies on LDAP- and Kerberos-based authentication and

credentials protocols, it does not rely on any real time transport protocols.
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GridSolve and PRIMM shares two main features, both of them are designed

to be an interface to the grid resources. PRTIMM is similar to GridSolve client-server

architecture, but GridSolve relies also on an agent that doesn’t exist in PRIMM. Both

of them have language and implementation independency for example GridSolve im-

plementations could be in (MATLAB, Octave, C, FORTRAN, etc.). PRIMM is de-

signed to solve personal and small businesses problems within a reasonable number of

resources, while GridSolve is designed to solve complex scientific problems remotely.

GridSolve has relied on TCP/IP transport protocol, and kept the option of UDP pro-

tocol applicable. In PRIMM, the main protocol is UDP and the future development

will include the TCP/IP option.

Sun Compute Utility Grid and PRIMM are both interested to serve commer-

cial applications. Sun Compute Utility Grid and PRIMM are both accessible systems

world wide, in which PRIMM can communicate to any parallel cluster with a known

IP address, and Sun Grid can be accessed from any location world wide. PRIMM

can run also on a local network unlike Sun Grid that can not have clients on its local

network. Sun Grid runs on Solaris 10 Operating System, while PRIMM’s server is

independent on the operating system. Sun Grid solves complex and simple computa-

tional problems that organizations and companies may have, it also could be adapted

to solve scientific problems. Sun Grid tasks and jobs are dependent on Sun Grid

implementations. Both PRIMM and Sun Grid has an API to perform the required

development.

Based on the transport layer protocols [7], PRIMM can support features

through the adaptation of UDP that other systems will not be able to provide effi-

ciently. For example concurrent runtime management with very high surviving rates.
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PRIMM is the first grid system that is aware of applying shortcutting method-

ologies. Developers can customize the monitoring threads to shortcut each other based

on certain circumstances. PRIMM has the ability to open a streaming link between

the operating system and the client. The clients will be able at any time to monitor

their executions and make decisions during the execution of the implementations.

1.2 Parallel Languages

In the field of computer science, extensive research has already taken place

to build suitable implementations for parallel computation. Many software libraries

exist in different models and for different purposes.

A well-known model for parallel computations is the SPMD model, which

stands for Single Program Multiple Data [3]. PRIMM depends on the parallel im-

plementations of this model. In this model, the single program will run on all the

processing elements but in different ranges of input. Only one single program is

developed to run on all distributed processes in SPMD.

Message Passing Interface MPI, is a library specification for message passing,

proposed as a standard by a broadly based committee of vendors, implementers, and

users [14]. It was designed for high performance on both massive parallel machines

and on workstation clusters. The MPI programs are function calls of the message-

passing interface mixed with programming language code, most likely C or Fortran.

These function calls manage the communications between the processes and performs

a set of different operations. The MPI implementation is used to benchmark PRIMM’s

performance.

MPI showed a successful impact on the parallel and distributed computations.

Research was done to build parallel computation systems on top of MPI. The PLan-

guages, referring to both Parallel C and Parallel Fortran have been built as language

extension on top of the message-passing interface. Parallel C for example showed an

elegant programming style compared to the MPI programming style.
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Fig. 1.2: PRIMM’s Architecture General View, I:Internet or Networking Media, OS: Operating System,
JVM: Java Virtual Machine, Remote: PRIMM’s Client Object, Server: PRIMM’s Server

1.3 PRIMM Architecture

The PRIMM idea is not completely new in reference to the current avail-

able systems in the industry. However, it still has a very distinctive specification

and feature set that contributes in new grid methodologies. Recently, ideas similar

to PRIMM have attracted many grid developers’ interests on different web forums.

PRIMM tries to bring up grid functionalities to regular developers in very simple

approach.The figure 1.2 shows the general architectural view.

PRIMM is built to be an object oriented system; notice the separation between

the client and the application in figure 1.2. The remote instance on the left side is a

multithreaded object that contains all the necessary methods and functions to interact

with the server. The server in figure 1.2 is a multithreaded class that works as an

interface between the Java Virtual Machine and the remote object. The Java Virtual

Machine bridges between the operating system and the server. Server and remote

client are built to have a listening socket and multithreaded classes to manage the

massages that are being sent back and forth between them.

PRIMM is not built from scratch, but instead it uses already existing features

of other implementations. For example, PRIMM controls running process indirectly

through the interaction with the operating system, performs process distribution

through the message passing interface, and so on.
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For the current implementation PRIMM performs its remote communication

depending on the UDP protocol, making the adaptation of TCP as future work.

Reasons for this choice are described in the thesis.

PRIMM has its own basic communication protocol that was built on top of the

UDP protocol. Future development that should be applied to this protocol includes

security, acknowledgments strategies, overlapping and others.

PRIMM is built to be a framework for grid computations. These computations

could be applied using PRIMM’s client object that itself could be part of the software

architecture. The remote client has it’s own API that exposes many classes and inter-

faces that could be extended or just be called at any point of time during execution

of the application. PRIMM has no preference on which kind of application could be

developed; for example the remote client can be used in web server development or a

reporting system application development, among others.

The remote client helps the running application during its heavy load compu-

tations. The remote server operates by trying to handle the requests from the main

application and transfer them to the parallel system. It does this in order to decrease

the execution time on the remote machine and as a result increases the performance

of the application. For example a web server that is running on a regular personal

computer may have certain resource limitations. If a huge number of requests occur

within a certain period, the web server may not be able to handle all the requests,

or handle them in an efficient manner. The web server may ask the remote client for

help in executing and processing the requests. The remote client will divert the re-

quests to the parallel system that has much more resources than the regular machine.

The server load comes from the complexity of the computations rather than from the

number of requests.

PRIMM is targeting a certain class of problems that has certain size of com-

plexity. PRIMM is not intended to solve huge problems. On the other hand, PRIMM

is intended to solve problems that are considered huge for personal machines or regu-

lar businesses machines. PRIMM aims to give developers in the industry the ability to
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utilize remote resources for efficiently dealing with heavy and/or complicated request

handling situations.

The computational resources are the processing elements that will run the

parallel algorithms. The left and right arrows show that there is input and output

streaming between entities. The repetition of arrows means that multiple parallel

executions may be running at the same time.

PRIMM optimizes resource usage, solves specific type of non-deterministic

problems (i.e. with shortcutting), attempts to provide real-time interaction ( or close

to real-time interaction ) between parallel processes and remote clients and perform

monitoring and control. Furthermore, it could be customized in an object-oriented

fashion.

In the server side, remote clients can apply their own algorithms, using any lan-

guage implementation, create files and headers, compile them and run them. PRIMM

is a parallel model that is language independent. Developers using PRIMM will be

able to run programs in MPI, MPI 2, PC, Linda and others. PRIMM can interact

with other grid systems, and resolves many issues that have been an obstacle in the

development of grid systems.

PRIMM also has a shortcutting option, in which it can save more resources

and decrease execution time by a significant factor for some class of problems.

PRIMM is currently used in the following situation: One parallel system and

multiple remote clients. This client-server architecture is similar to the Remote

Method Invocation RMI or the Remote Procedure Call RPC. (Refer to communi-

cation protocol chapter). PRIMM tries to solve the problem by using a reasonable

number of resources, unlike other grid technologies that spread calculation other hun-

dreds or sometimes thousands of processing elements. The sever address is assumed

to be static meaning that the remote clients know the server IP address and port

number.
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1.4 Goals of the Thesis

Globus, Sun’s Grid Engine, Java Parallel Processing Framework JPPF, Tera-

grid and others are great grid frameworks. There are many reasons why developers

would want to use them. However, PRIMM is a framework that provides an API

for developing a different family of Grid technologies, which rely heavily on the UDP

protocol.

A. Language Independency

PRIMM simplifies applications development that relies on grid computations

by providing the applications with an interface to different parallel implementations.

Being language independent is not only useful for applying variant types of imple-

mentations but also increases the scope of grid usage. With PRIMM, more developers

have a way to get involved in this type of development without being limited to a

single type of parallel implementation.

PRIMM is not the only system that concerns about being language indepen-

dent; GridSolve [12] for example can be applied into three different parallel imple-

mentations. But by providing a more comprehensive open-source API, developers

will have more flexibility in controlling and managing these different parallel imple-

mentations.

B. Runtime Execution Management

PRIMM introduces the Runtime Execution Management feature to grid com-

putations. This allows applications to perform control during the execution of parallel

implementations within a small time frame. PRIMM relies on the analysis of trans-

port layer protocols. It also takes into consideration that most of grid systems have

been developed on top of TCP, or other protocols that are built on top of TCP, like

SOAP for example.
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The goal of the Runtime Execution Management in PRIMM is to show that

Runtime Execution Management contributes to higher performance and an increased

capability to solve problems that require many frequent interactions with the server.

C. Shortcutting

PRIMM is the first grid system that was developed with the consideration

of the shortcutting technique in mind. PRIMM performs shortcutting on local and

remote machines. The most important issue here is that shortcutting increases the

performance and contributes to better resource management.

D. Customization

Through an object-oriented approach, PRIMM seeks to make remote develop-

ment easier and more powerful.

16



2. COMMUNICATION PROTOCOLS

This chapter has been included to describe the important differences in pro-

tocols architecture and how these protocols can be a key factor in the development

of grid technologies [23]. The Real-Time Transport Protocol RPT is described in ab-

stract to give a close idea about the requirements of PRIMM’s protocol. PRIMM func-

tionalities is highly dependent on understanding the differences between the Trans-

mission Control Protocol TCP and the User Datagram Protocol UDP.

The internet has two main protocols in the transport layer,a connectionless

protocol and a connection-oriented one [22]. The connectionless protocol is the UDP.

The connection-oriented protocol is TCP. Because UDP is basically just IP with short

header added, it would be easier to start with it.

2.1 User Datagram Protocol - UDP

UDP is one of the core protocols of the Internet protocol suite, UDP is a

connectionless oriented protocol that uses an IP address for the destination host and

a port number to identify the destination application. UDP is very close to IP,

There’s almost a one-to-one correspondence between UDP and IP. For most small

packet sizes, one UDP packet corresponds to one IP packet [16].

UDP is unreliable; there is no guarantee that a UDP packet will actually

be received, and also does not ensure that packets will be received in order. UDP

is packet-oriented. It sends a series of discrete messages. The packets that carry

relatively small chunks of data are called datagram packets.
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UDP transmits segments consisting of an 8-byte header followed by the pay-

load. The two ports in the header serve in identifying the end points within the

source and destination machines. When a UDP packet arrives, its payload is handed

to the process attached to the destination port. This attachment occurs when BIND

primitive or something similar is used; the binding process in UDP is similar to the

TCP binding process. In fact, the main value of having UDP over just using the IP

is the addition of the source and the destination ports. Without the port fields, the

transport layer would not know what to do with the packet. With them it delivers

segments correctly.

Port number is divided into three categories. First the well-known privileged

port numbers that are assigned by Internet Assigned Numbers Authority IANA, this

category has a range from 0 to 1023, these port numbers are reserved for well-known

universal application, as a way making standard ports for especial applications. Sec-

ond, register users port number, this category is based on user definition not related to

any universal applications; it ranges from 1024 to 49151, other name for this category

in the user port numbers. Third category is private/dynamic port numbers, ranges

form 49152 to 65535, these ports are neither reserved nor maintained by IANA, they

can be used for any purpose without registration so they are appropriate for private

protocol used only by a particular organization [22].

Developers can design there application to bind to any port number in the

range of user port numbers category. The application address on the local host if

defined by the port number and the address of the machine that has that application

is defined by an IP address. For example, imagine that the IP address is the address

of your apartment complex, and then the port number will specify which apartment

number in that complex you live.

The source port is primarily needed when a reply must be sent back to the

source. By copying the source port field from the incoming segment into the desti-

nation port field of the outgoing segment, the process sending the reply can specify

which process on the sending machine is to get it.
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The UDP length field includes the 8-byte header and the data. The UDP

checksum is optional and stored as 0 if not computed (a true computed 0 is stored as

all 1s). Turning it off is foolish unless the quality of the data does not matter (e.g.

digitized speech).

It is probably worth mentioning explicitly some of the things that UDP does

not do. It does not do flow control, error control, or retransmission upon receipt of a

bad segment. All of that is up to the user process, or the application level and the way

the developer design his application header. What it does do is provide an interface

to the IP protocol with the added feature of de-multiplexing multiple processes using

the ports.

One area where UDP is especially useful is in client-server situations. Often

the client sends a short request to the server and expects a short reply back. If either

the request or reply is lost, the client can just time out and try again, not only is

the code simple, but fewer messages are required (one is each direction) than with a

protocol requiring an initial setup.

For example, an application that uses UDP this way is DNS (the Domain

Name System). In brief, a program that needs to look up the IP address of some

hostname, for example www.csci.csusb.edu, can send a UDP packet containing the

host name to a DNS server. The server replies with UDP packet containing the IP

address. No setup is needed in advance and no release is needed afterward [16].

UDP is considered connectionless since there is no virtual circuit set up, just

a series of datagram packets is being sent. But on the other hand, it is considered

point-to-point, since it is possible that one sender can have only one receiver.

Be aware that the Ethernet has a limit on the size of the UDP packet can

be transferred, this size limitation is basically related to the hardware limitation.

The Maximum Transmission Unit MTU is preferable not to exceed 1500 bytes per

Ethernet packet. The problem gets more complex, because an IP packet being sent

across the internet may cross several types of hardware. That means an IP packet

may be fragmented as it travels from source to destination. So if the packets carry
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more than 1500 bytes it is more likely to get fragmented, meaning that the packet

will be divided into two or more smaller packets.

Other constraint is the Operation System OS, many OS’s have memory limits

on their input buffers that limit default incoming UDP packets to 8192 bytes. Any

host must take at least 512 bytes.

Three main causes of getting the UDP packets dropped. First, it possible that

the router drop the packet because of many issues the router might have. Second, the

machines input buffer (at 8192 bytes) fills up; packets that arrive while the buffer is

still full are dropped. Third, some transmission error, IP packet get dropped, UDP

packet dropped as a result.

UDP works well in peer-to-peer designs. There is not always one central

server; instead, each host communicates with whatever host it needs to. And it is

also possible to build one centralized server.

UDP blocking technique, is to separate the socket processes in single thread

rather than blocking the whole communication.

2.2 Remote Procedure Call - RPC

Sending a message to a remote object or host and receiving back a respond is

a lot like making a function call in programming languages. In both cases you start

with one or more parameters and you get back a result you need. This observation

can lead people to attempt to arrange request-reply interaction on the networks to be

cast in the form of procedure calls. Such an arrangement makes network applications

much easier to program and more familiar to deal with. Imagine a function named

getAddressByHostname(hostname) that works by sending a UDP packet to DNS

server and waiting for the reply that contains the IP address, timing out and trying

again if nothing return back quickly enough. In this way, all the details of networking

can be hidden from the programmer.
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Birrell and Nelson came up with the idea of remote procedures calls in 1984 [22].

In a nutshell, what Birrell and Nolson suggested was allowing programs to call proce-

dures located on other remote machines. When a process on machine A calls a proce-

dure on another machine B, the calling process in A is suspended and the execution

of the called procedure takes place on machine B. Information can be transported

from the caller to the called process in an invisible way from the developer [22].

RPC and UDP are good fit to each other. UDP is commonly used to build the

RPC. However, when the parameters or results may exceed the size of a UDP packet,

results and values are divided into multiple UDP packets and sent, but it would be

more reliable if TCP connection is used in this case. Or when the requested operation

is not idempotent - (i.e. cannot be repeated safely, such as incrementing a counter).

The typical point of view in RPC is that the caller performs an execution of

a procedure call on another single remote machine. RPC idea could be expanded to

perform a whole set of computations using a remote parallel system. Through the

thesis, multiple considerations are made to preserve the properties of RPC, meaning

that procedure calls from the caller point of view are the same, but from the server

it is a parallel implementation.

2.3 Real-Time Transport Protocols - RTP

Client-server RPC is one area in which the UDP is widely used. This is

because if RPC is to be expanded to parallel implementations, it would be necessary

to go through the UDP real time implementations. As streaming media such as

Internet radio, internet telephony, music-on-demand, videoconferencing, video-on-

demand, and other multimedia applications become more commonplace, people will

discover that these types of applications would require higher Quality of Service [22].

PRIMM shares with RTP applications the real time interaction requirement between

it’s clients and servers. Developing real time processing may contribute in many new

ideas in the grid technologies and it’s applications.
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The position of RPT in the protocol stack is somewhat strange. It was decided

to put RTP in the use space and make its implementation run on top of UDP [22].

It operates as follows. The multimedia application consists of multiple audio, video,

text, and possible other streams. These feed into RTP library, which is in the user

space along with the application. This library then multiplexes the streams and

encodes them in RTP packets, which it then stuffed into a socket. At the other

end of the socket, UDP packets are generated and embedded in IP packets. If the

computer is on the Ethernet, the IP packets are then put in frames for transmission.

The protocol stack for this situation is shown bellow. The second figure shows the

similarity with the PRIMM protocol requirement.PRIMM’s protocol requires to be

located in the same level as the RTP, see figure 2.1.

The basic function of RTP is to multiplex several real-time data streams onto

a single stream of UDP packet. The UDP stream can be sent to a single destination

(unicasting) or to multiple destinations (multicasting). Because RTP just uses normal

UDP packets, its packets are treated normally through the routing process, unless

special quality of service is defines in the IP protocol header at the network layer,

there are no special guarantee about delivery and jitter.

In the RTP stream each packet sent is given a number one higher than its

predecessor. This numbering allows the destination to determine if any packets are

missing. If a packet is missing, the best action for the destination to take is to

approximate the missing value by interpolation. Retransmission is not a suitable

option since the retransmission is going to consume time that will make the re-sent

packets invaluable at that time.

The RTP payload may contain multiple samples and they may be encoded in

many formats the way the application wants. To allow for interpreting, RTP defines

several profiles (e.g. a single audio stream). For each profile, multiple encoding

formats are allowed, for example a single audio stream may be encoded as 8-bit PCM

samples at 8 kHz, delta encoding, predictive encoding, GSM encoding, MP3, and so

on. RTP provides a header field in which the source can specify the encoding but is

22



 

USER 

SPACE 

OS 

KERNEL 

App. 

 

 

RTP / PRIMM HDR 

Socket Interface 

UDP 

 

 

IP 

 

 

Ethernet 

Fig. 2.1: Protocol Interface Level

23



 

RTP PAYLOAD 

Ethernet 

HDR 

IP HDR UDP HDR RTP HDR   

OR PRIMM HDR 

UDP PAYLOAD 

IP PAYLOAD 

ETHERNET 

PAYLOAD 

Fig. 2.2: Network Headers

otherwise not involved in how encoding is done.

PRIMM’s protocol suggests the use of variant payloads’ formats. The encoded

formats may help PRIMM’s protocol to adapt to different network congestion levels.

This may come a key element if PRIMM’s application depends on transferring a big

chunks of data, for example image processing.

A vital and shared feature between multimedia real-time application and

PRIMM client application is the time stamping. The idea here is to allow the source

to associate a timestamp with the first sample in each packet [15]. The timestamps

are significant; the absolute values have no meaning. This mechanism allows the

destination to do a small amount of buffering and play each sample the right num-

ber of milliseconds after the start of the stream. This is done independent of when

the packet containing the sample arrives. Not only does time stamping reduce the

effect of jitter, but it also allows multiple streams to be synchronized with each other.

For example, a digital television program might have a video stream with two audio

streams.

24



The details of RTP and header formats could be easily found on the web or

in the thesis references [22] and [15].

2.4 Transmission Control Protocol - TCP

Transmission control protocol was specifically designed to provide a reliable

end-to-end byte stream over an unreliable network [15]. The internet network differs

from a single network because different parts may have widely different topologies,

bandwidths, delays, packet sizes, and other parameters. TCP was designed to dy-

namically adapt to properties of the network and to be robust in the face of many

kinds of failures.

Obviously each machine that supports TCP has a transport entity: Either

a library procedure, a user process, or part of the kernel. In all cases, it manages

TCP streams and interfaces with the IP layer [16]. A TCP entity accepts user data

streams from local process, breaks them up into pieces not exceeding 64 KB ( in

practice, often 1460 data bytes in order to fit a single Ethernet frame with the IP and

TCP headers), and sends each piece as a separate IP datagram. When a datagram

packet containing TCP data arrives at a machine, they are given to the TCP entity,

which reconstructs the original byte streams.

TCP service is obtained by both the sender and receiver creating end points,

called sockets, each of the sockets have a socket number and address, basically IP

address and port number,.

The TCP socket may be used for multiple connections at the same time [16].

In other words, two or more connections may start or terminate at the same socket,

All TCP connections are full duplex and point-to-point. Full duplex means

that traffic can go in both directions at the same time. Point-to-point means that

each connection has exactly two end points. TCP does not support multicasting or

broadcasting.
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A TCP connection is a byte stream, not a message stream. Message boundaries

are not preserved end to end. For example, if the sending process does four 512-bytes

writes to TCP stream, these data may be delivered to the receiving process as four

512-byte chunks, two 1024-byte chunks or even on 2048-byte chunk.

So being stream oriented means that the data is an anonymous sequence of

bytes. There is nothing to make data boundaries apparent. The receiver has no

means of knowing how the data was actually transmitted. The sender can send many

small data chunks and the receiver receive only one big chunk, or the sender can send

a big chunk, the receiver receiving it in a number of smaller chunks. The only thing

that is guaranteed is that all data sent will be received without any error and in the

correct order. If any error occur, it will automatically be corrected (retransmitted as

needed) or the error will be notified if it can’t be corrected.

For instance, as the data is a stream of bytes, your application must be pre-

pared to receive data as sent from the sender, fragmented in several chunks or merged

in bigger chunks. For example, if the sender sent ”Hello ” and then ”World!”, it is

possible to get only one trigger for data availability event and receiving ”Hello World!”

in one chunk, or to get two events, one for ”Hello ” and the other for ”World!”. You

can even receive more smaller chunks like ”Hel”, ”lo wo” and ”rld!”. What happens

depends on traffic load, router algorithms, random errors and many other parameters

you can’t control.

The application may pass data to TCP. TCP may send it immediately or

buffer it in order to collect more amount of information to fill the buffer and to be

sent at once, suppose a remote application is using command line and it has been

finished typing and the carriage return typed, it is essential that the line be shipped

off to the remote machine immediately and not buffered until the next line comes in.

This is important in order to force the socket to send data immediately. TCP has

also urgent data mechanism, in which the data should be sent as soon as it is urgent

and could not handle any waiting time in the buffer.
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The urgent data mechanism in TCP sockets helps in developing a concurrent

control between client and application and performs real-time interaction between

each other. But more intensive discussion will be mentioned in the concurrent control

section.

A key feature of TCP connection is that it has its own 32-bit sequence number.

When the Internet began, the lines between routers were mostly 56 kbps leased lines,

so a host blasting away at full speed took over 1 week to cycle through the sequences.

At modern network speeds, the sequence numbers can be consumed at an alarming

rate. Separate 32-bit sequence numbers are used for acknowledgments and for the

window mechanism

Sending and receiving TCP entities exchange data in the form of segments.

A TCP segments consists of a fixed 20-byte header, plus an optional part, followed

by zero or more data bytes. The TCP software decides how big the segments should

be. It can accumulate data from several writes into one segment or can split data

from one write over multiple segments. The limitation of segment size, is that each

segment including the TCP header, must fit in 65,515 bytes IP payload, and must fit

the maximum transfer unit or MTU, which is 1500 bytes usually.

TCP is considered in the development of parallel systems, since its unique

features make it more reliable to perform communications other multiple machines.

TCP has not been specifically developed for parallel computations purpose, but be-

cause TCP is connection- and stream- oriented, it has become easier for developers

to adapt to it.
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3. RUNTIME EXECUTION MANAGEMENT

3.1 Runtime Execution Management in Grid Computing

Imagine that you turned on your chatting program -for example yahoo or msn

messenger -on your personal computer to do PC to PC chatting with a friend in a

different country. You start your voice conversation saying ”hello”, wait for your

friend to reply while expecting his reply within a small time frame. As soon as you

hear him interact with your ”hello” word, you start the rest of your conversation,

for example saying ”how are you”. The sentence ”how are you” should arrive at a

certain time range, meaning that you want your friend to hear the sentence ”how are

you” within the next two or three seconds, otherwise the whole conversation may be

meaningless if you and he couldn’t hear each other within a reasonable time frame.

For the above example it is important that streamed packets arrive within

a certain time frame. Unfortunately the Internet has connectionless property [15],

meaning that for some reasons packets may not arrive at the other end in the correct

manner. For example it may arrive in a different order, or some of the packets may

get lost. The reliability in the above example does not play the main role, because

even if the packets arrived and arrived in order, it may exceed the time frame limit,

so the whole data being sent and received would not have a meaningful value in

such applications that are time-dependent, for example IM and Video Conferencing

applications.

Another example is video and radio streaming. Users may lose some packets

during the transformation of data, but at least users still get a reasonable number

of packets that allow them to proceed watching or hearing. Or sometimes, the real

time application may perform a packet recovery by some statistical analysis or by
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using predefined functions, for example interpolation or extrapolation. So it is more

important to receive the data and buffer it within certain time frames rather than

receiving the whole data after a pre-determined time limit.

All existing grid computing systems are independent on the time factor during

the execution. The transformation of data within a time frame is useful only for a

specific and limited class of problems. Runtime execution management based on UDP

transport protocol exists only in PRIMM, while other grids could perform remote

management based on TCP transport protocol.

Suppose in the above two examples that TCP/IP protocol is used. Then all

packets in all cases would be guaranteed to arrive in order. However, TCP/IP doesn’t

have any guarantee that the virtual deadline explained earlier would not be exceeded.

For instance, if there is network congestion, then TCP/IP might be a bad choice [11].

Not to mention, TCP/IP may also add to the network latency and slow down the

communication channel between the source and destination. It has been proved that

TCP/IP is not a suitable choice for these types of applications.

The computer industry developed many real time protocols and many modified

versions of TCP (example fast TCP ) to replace the dominant TCP/IP protocol [11].

Many of these protocols are built on top of IP and UDP. The UDP has much more

capabilities in handling real-time application problems than TCP/IP [15].

The transferred data in parallel and distributed computations are sometimes

time dependent. If the data arrived or is sent too late it might lose its high level value

(i.e., the value in the information it is supposed collectively portray to the human

receiver). Efficient runtime execution management and optimal resource management

requires real-time (or close to real-time) interaction between the client and the server,

meaning that packets carrying commands and data must be available based on specific

status and situation.

The PRIMM should handle the missing specifications in the UDP protocol in

order to keep all parallel and distributed communications running in more reasonable

manner. Using the UDP protocol in the packet streaming process will make the
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runtime execution management possible and more achievable. On the other hand, the

TCP/IP has poor performance in real time interaction applications, which makes the

TCP a bad choice to perform a runtime execution management, or even an unrealistic

choice, when network congestion is variable.

Assume a parallel computation system is designed to perform a statistical anal-

ysis on the New York stock market based on the dynamic stock prices at the current

time. Basically, the parallel computations try to predict the stock market status in

the next coming minutes, and helps customers to make decisions: Either buy or sell.

The current stock market prices may be the input that feeds the parallel computing

system. The system must make a decision and return values to the customers as soon

as possible. It should read current stock market prices at an acceptable frequency and

perform a suitable procedure. So in this situation it’s desirable to have the parallel

computations run as close to real time as possible in order to provide a more accurate

next minute predictions.

The typical system manages the parallel computations based on real-time stock

market factors because business decisions and calculations may be subject to be

canceled or modified or changed at any time. The system must have concurrent

control to allow immediate reflections to the parallel computations, if there is no

runtime execution management then the parallel computations will not really reflect

the intended calculations for the current stock prices. So latency in performing an

interaction between the server and the client is not acceptable, since it may produce

data that has no significant value. Data must be transferred within a defined time

frame and calculations must be performed within a reasonable duration.

The importance of runtime execution management also introduced in con-

trollers, controllers may be controlled by parallel computing system if the network

latency is assumed to be very low.
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3.2 PRIMM’s Runtime Execution Management Approach

The bellow figures show a single packet analysis assuming that control com-

mands could be carried in one packet. Later, a more discussion on streaming packets

or the command controls that requires a stream of packets, and PRIMM protocol

requirements will be addressed based on the analysis of TCP and UDP, refer to [17].

The bellow figure shows that the UDP packet is sent from source to destination

under normal network congestion level, the packet is supposed to arrive within a

specific time frame as shown in the figure, the computation mode changes based on

the control values of the packet, the computation mode A and B are just an examples

for parallel computations that run on certain input and then switch to another. The

computation mode A is supposed to finish execution at different point than the one

that is shown in the figure, but because of the Runtime Execution Management the

execution under mode A is terminated and switched to B. In the bellow figure the

parallel computing system responded to the application within the time frame limit.

The arrows have a slop to show that the messages have spent an amount of

time while transferring from one side to another. The figures don’t reflect all the

possibilities of the TCP or UDP cases. Many other cases may exist are not discussed

down bellow. The basic idea is to show how the transport protocol can play a role in

grid systems and the features that are available in these systems.

The time frame constraint could be a requirement in receiving the packets in

both the parallel computing system and the real-time application, since the parallel

computing system is performing calculations that reflect the real-time application.

But for the bellow analysis, it is assumed that the time frames exist in both with

synchronization differences, and that the time frame for the parallel computing system

depends on the time frame of the application.

The bellow shows that the UDP packet is sent from source to destination under

high network congestion level, the packet is supposed to arrive within a specific time

frame as shown in the figure, but it exceeded that limit. If the packet is lost or arrived

late, the same consequences will happen, in the UDP protocol, no need to resend the
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Fig. 3.1: Datagram Packet Analysis, Successful Control

packet, or most likely the resent packet will not arrive within that time constrain.

Though out the thesis the TCP messages are intended to be data segments,

not packets, making reader differentiate between TCP data segments that are carried

through network layer packets IP, and the UDP that are packets carried by the

network layer packets IP, refer to TCP and UDP sections. So a message is meant to

be a packet in UDP and data segment carried in one internet packet.

The bellow shows that the TCP segment message is sent from source to des-

tination under normal network congestion level, the segment message is supposed to

arrive within a specific time frame as shown in the figure. For each complete seg-

ment is sent an acknowledgment must be received. The TCP succeeded to perform

concurrent control action in this bellow case.

The bellow shows that the TCP segment message is sent from source to des-

tination under normal network congestion level, the segment message is supposed to

arrive within a specific time frame as shown in the figure. For each complete seg-

ment is sent an acknowledgment must be received. The second segment from parallel

computing system to client application got lost, the parallel computing system resend
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Fig. 3.3: TCP Segment Analysis,Successful Control

33



 Parallel 

Computing 

System 

Real-Time 

Application 

 

 

Message 

 

Acknowledgment 

 

Computation Mode    

A 

Computation Mode    

B 

 

ACK 

 X 

TCP 

ACK 

Fig. 3.4: TCP Segment Analysis, Control Failure

the segment, but the segment couldn’t arrive within the time frame constrain. The

last segment participates in network congestion, since both the TCP segment and its

acknowledgment are useless.

Let’s take in consideration the multiple packets streaming between client ap-

plication and parallel computing system using both TCP and UDP.

Notice in the bellow figures, that the TCP requires more network usage, since

the actual amount of packets or messages being sent and received by any side requires

an acknowledgement message. So for example if four control messages being sent to

the server, then another four acknowledgements should be received from the receiver,

in the case of responding to each message sent to the parallel computing server, then

another four responding messages will be sent to the application or to the remote

client, and four acknowledgements to be received from the receiver, and so on, making

the total number of messages and acknowledgements being sent an received within

that time frame equal to sixteen. While if you refer to the UPD protocol only eight

messages is being sent and received in that time frame.
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Fig. 3.5: UDP Streaming Control

The UDP messages may not arrive in order, or may not arrive at all, or may

arrive exactly within the time frame and in order. So network congestion plays a

vital role in what happening between the application and the parallel commutating

system.

The computation mode was switched to mode B at the point where all four

requesting messages were served by the previous computation mode A. Notice that

when message four is sent to the real-time application the parallel computing system

starts mode B, remember that this will not cancel the fact that the parallel computing

system can run in many different modes and different types of calculations at the same

time, but for simplicity, the figures show two modes, as an example that controlling

commands can be sent and received to change the status of the computations right

away.

The bellow figure shows that the UDP packets going form source to destination

or to the parallel computing server succeeded in responding to the client application

within the time frame limit. It is assumed that network congestion level is normal.
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Fig. 3.6: TCP/IP Streaming Control

The real-time application that needs a concurrent interaction with the parallel

computing system, requires that the application and the parallel computing system

to be in sending and receiving mode at all times.

The UDP protocol, as shown in the bellow figure, used to perform concurrent

control. The application starts with sending requests that require a respond within

a limited time frame. The parallel computing system sends all the responds as soon

as it is available, assuming that these responds are available at the time each request

being received, then the parallel computing system will send a respond message to

the application. The parallel computing system is not limited to a certain number

of messages to be sent or received, but since the real-time interaction requires a time

frame constraint, then only a limited number of messages can be in between during

that time.

The figure shows that requests 1, 2, 3, and 4 are received, and responds 1, 2,

3, and 4 are sent back to the application without any obstacles. And during that the

computation mode A served the requests and then switched to mode B.
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The parallel computing system receives another four control requests from the

application, numbered 5, 6, 7, 8. As soon as possible, the responding messages will

be sent back, but for some reasons related to the network, responds 5, 8 are lost. The

application only received 6, 7, the remote application may decide whether to ignore

the lost responds and proceed or to perform a recovery method. Usually, this can be

done by using the existing data to predict the missing ones. What determine that

and what methodology should be used depend on the application type and the time

frame size.

One of the last four requests that supposed to be sent from the application to

the parallel computing system was lost, meaning that part of the controlling request

is lost. Instead of receiving requests 9, 10, 11, 12 it received only 10, 11, and 12.

Then the decision whether to proceed or to recover is also made by the receiver.

The main point is that even when lost requests and responds exist, the UDP

effect on the concurrent control did not terminate its survival possibilities; it just

couldn’t perform an accurate controlling. And that shows that in the future when

the network problems disappear the concurrent control could be still available and

possible and its control accuracy returns to high, consider the option of running this

methodology on private network.

Other saying, receiving anything during the time frame is better than receiving

nothing or even receiving everything after. And basically depending on the remote

application type and the computations being carried by the parallel computing sys-

tem, the decision of whether it’s required to have accurate concurrent controlling or

not is based on that.

PRIMM does not eliminate the TCP option for other types of computations,

but it does not support the TCP for concurrent control, because the TCP is not

designed for that or in other words it is not customizable for that. A case description

for that is shown bellow

In the bellow figure, the TCP protocol is applied to perform concurrent control

on the parallel computing system.

37



 Parallel 

Computing 

System 

Real-Time 

Application 

UDP 

1 

1 

2 

2 

3 

3 

4 

4 

X 

X 

5 

6 

7 

8 6 

7 

10

 
11 

12 

10 

12 

11 

Message 

 

Computation Mode    

A 

Computation Mode    

B 

 

X 
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The first set of requests 1, 2, 3, 4 succeeded to perform an accurate concurrent

control on the parallel computing system, four requests received and four acknowledg-

ments are sent back to the remote application. The parallel computing system sends

four responds as soon as these responds are available. The responds were received

within the time frame constraint, and four acknowledgements were sent back to the

parallel computing system.

The next sets of requests 5, 6, 7 and 8 were received by the parallel computing

system, and four acknowledgements were sent back to the remote application. The

parallel computing system sent responds 5, 6, 7 and 8 to the remote application,

unfortunately because some issues with the network, respond number 7 was dropped,

the parallel computing system waited for an acknowledgment for that respond and

couldn’t get it. It decided to re send it again, after the second attempt the parallel

computing system got an acknowledgment; it proceeds to send respond 8. Because of

the delay of resending the responds and waiting for acknowledgements, responds 7, 8

were received in a time exceeding the time frame for that request. This is considered

the basic problem of TCP to be applied for concurrent control.

Be aware that the TCP protocol may send multiple internet packets at the

same time and then wait for acknowledgments depending on the window manage-

ment. But for simplicity, the example refers that for each request it must get an

acknowledgement, or assume that the respond and request are group of packets.

The third set of requests 9, 10, 11, 12 were supposed to be sent during the time

frame the remote application, but because request number 10 got lost, a resending

process restarted again and another waiting time for an acknowledgement. Making

request number 11 little bit late. Unfortunately, request 11 was lost also, since no

acknowledgment was received. The remote application re sends request 11 and waits

for an acknowledgement, the request was received by the parallel computing system

but for some reason the acknowledgments got lost, the remote application decide again

to resend request number 11 since no acknowledgment arrived during the waiting time.

The resending process and time waiting for acknowledgment exceeded the time frame
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that the four requests and responds should be sent and received. The connection-

oriented feature of the TCP made the requests and responds to delay not only in one

single time frame but also it affected the others.

The TCP couldn’t carry on the concurrent requests and responds between

the parallel computing system and the remote application, but instead it made data

available at a wrong points of execution. TCP has very low survival possibilities to

preserve the concurrent control.
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4. SHORTCUTTING IN PARALLEL COMPUTATIONS

4.1 Shortcutting Concept

Assume that you have just got home form work and opened your fridge looking

for a bottle of milk, finding out that no more milk is left. So you decide to go shopping

to the closest grocery store in your neighborhood. After a very short while of leaving

your home, your roommate calls you telling you that s/he has already brought milk

for the whole week. At that point, wouldn’t it be wise to turn back home? Assuming

the purpose of the trip was only to buy milk. Assume further that you didn’t take any

means of communication with you (for e.g. no cell phone or walkie-talkie), then your

decision of buying milk would not change most likely. The extra bottle of milk might

not be of much use. You might end up putting it in your fridge while its expiration

date will be approaching soon.

Sometimes computations in parallel execution may have no sense or signif-

icance, or it may be expired and not needed [5]. Let’s assume that a parallel se-

quential algorithm is developed to run into multiple processes, on multiple machines.

Each process has a loop that will run sequentially comparing the key element with

an element in a distinct input array. If the element is found then its loop will exit

and the value will be showed up to the users. While the rest of other processes are

still running and have no clue that the element is already found. At this point it is

obvious that the computations of other processes are not useful, but even harmful, in

which it has reserved resources for doing insignificant work.

If the process that found the search element can talk or yell at its neighboring

workers to tell them to stop, then the parallel execution algorithm will run faster. This

means no need to wait for all of them to end. Discovering the fact that interruptions
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of current running computations may help not only in reducing the amount of time

spent for execution, but also aims to solve the problem more efficiently with the

teamwork spirit.

Your decision in the above example of buying milk is made basically depending

on initial circumstances, that there is no milk left in the fridge, so the decision of

hitting to the grocery store to buy milk is made based on that. And in which you

couldn’t predict or expect that your roommate will come over with a bottle of milk.

Problems in parallel computations may start with an initial attempt to solve the

problem, but at certain point it discovers that different direction must be taken. So

some interruptions from other neighboring processes may be involved to assure the

necessity of the work.

Implementation of shortcutting in parallel execution is tricky and deceitful

[5]. Readers may say why it is so hard just to inform other processes that the search

element is found already. Yes, it is possible to broadcast an interrupting message to

all other processes, but sending a message requires a receiver, or simply the sending

process requires a receiving process. In our current methodologies for implementing

parallel execution, the process can perform one thing at a time, either looping or

receiving. If the receiving action is not made at that moment then the sender will

either not send the value or block or may put the value somewhere into its neighboring

worker memory.

4.2 Shared Memory Structure for Shortcutting

Now introducing the shared memory structure for communication, it sounds a

great idea but still has its own overhead [10]. Lets assume that a flag is put somewhere

in memory to indicate an interruption [9] (puts and gets functions). At each looping

iteration the processes has to check the flag before proceeding, if the flag is set true,

then the processes exit otherwise proceed. If the loop has hundreds of iterations,

which means hundreds of comparisons has to be made; now an extra hundred of

comparisons should be made also to tell whether to proceed or to stop.
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for i <-- 1 to M

if(Interruption Flag)

Compare(Array[i],Key)

The interruption condition above usually determined by memory check, the

memory check usually takes more clock cycles than usual computations since it re-

quires reading from processor main memory. It is obvious that m + m comparisons

required completing the loop. The big-O for the above loop is O (2m) ≈ O (m), since

’2’ is considered a constant. Meaning that the additional m is completely an overhead

added to the loop.

If it is required to consider the resource consumption, then shared memory

structure for shortcutting may require more resource consumption, if the parallel

execution is scattered on P processors, then m*P is the overhead of the total additional

computations. Meaning that the resource did more work than before, be aware that

this doesn’t mean that the overall execution time is decreasing or either increasing,

since the interruption could occur at any point during execution, if it happened early

enough, it may decrease the overall execution time, otherwise, it most likely increase

the execution overhead.

4.3 Preemptive Processes Approach

Other option is still feasible, let us assume that a superior process may exist

to perform the task of monitoring and controlling the running process, and assume

that that process has the ability to kill or terminate the looping process [18], then at

the time the interruption is made, the looping processes will be killed or terminated

by a superior process. And by this way it is possible to achieve that same goal but

with more resources consumption.

Creating an extra process that handles the incoming events and interrupts

is considered an exaggeration. This may achieve the shortcutting concept but the

resources consumptions will be high. Lets simplify the idea, assume ten processes

are running to perform a parallel search on a distinct array of integers, in best case
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scenario of initiating the processes, is that at each processing element a single process

will run, and an additional ten will run to listen to the interrupts coming from each

other, then a total of twenty processes to perform a parallel search on an array,

with the assumption that the additional ten will handle all the other requirements

of coordination between them. Then this may allow one process interrupts the other

and so, and getting to the point that shortcutting is possible.

Through all of the above explanations for achieving shortcutting, the thesis

proposes a new architecture that allows more flexibility in design and management,

and preserves the resources from insignificant work. Through building an interaction

interface between the operating system and the parallel processes will help in control-

ling and managing the resources, and even customize threads purposes based on the

execution plan, the following section will go into depth of the problem and present a

thesis solution.

This section requires a complete understanding of the TCP - (Transmission

Control Protocol) - and a basic knowledge about MPI - (Message Passing Interface)

-communication and synchronization methodologies. The reason for that is that MPI

uses the TCP protocol for communication, and MPI may inherit some issues because

of TCP.

4.4 Implementing Shortcutting in Parallel Execution

Many issues could be taken in consideration when implementing any parallel

algorithm. For simplicity, the MPI-Cluster architecture will be the basic execution

framework.

The following assumptions are made:

1. There exists a variance between local machines clocks and the actual time,

meaning that there is no fully synchronized clock between all of them.

2. There exists a variance in the starting point of each process, assuming

the computational loads may not be completely balanced, making some processors

interacts slower than the other.
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Fig. 4.1: Shortcutting Idea In Parallel Processing

3. There exists network latency.

4. There exist TCP sliding window problem. Packets may not be scheduled

under optimal settings, meaning that the TCP protocol will not be adapted to the

network latency during the beginning of the execution.

The figure 4.1 (N+1) processes running in an SPMD model, only one of them

may find the solution; for example, the problem of sequential search, modified to run

in parallel.

Process P1 was lucky to find the answer within the shortest time. Process P1

decides to broadcast the message to all other processes [10]. At point A, if shortcutting

was enabled then the parallel execution will terminate somehow close to the point A.

Otherwise the parallel execution will proceed to finalize state at point B. It is obvious

that shortcutting may achieve less execution time by (B-A)
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Fig. 4.2: Shortcutting Other Processes Will Result in Reducing the Total Execution Time

If shortcutting is designed based on send/receive architecture then process

P1 will start a broadcasting process as multiple send/receives to all other processes,

meaning that process P1 will need some extra time after point A to terminate. And

due to network latency messages may arrive to other process at different times, be

aware that the MPI-Clusters uses TCP as a communication protocol, meaning that

in practical execution, the socket will send an interruption request and wait for ac-

knowledgment. Packet may get lost, or may exceed the sliding window timeframe, or

many other possibilities.

The bellow figure shows a safe mode shortcutting, where only process P1

could tell the others about the direction of computations, and it is only the one

who performed the shortcutting, and there is no other process were interested in

shortcutting.
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Shortcutting will always happen after point A, since there must exist network

latency. So synchronizing shortcutting interruptions is also another problem, if it

is assumed that more that one process can shortcut others, because the network

latency may lead to misunderstanding between them , in which who will perform the

shortcutting first, and who has the most significant value. See figure 4.3.

Process P1 finds a significant indicator on the direction of the computations;

it will perform broadcasting to all other processes, for example consider the prime

numbers algorithms. But for some reasons process Pn tends to be also interested in

shortcutting other processes, then Pn also start broadcasting to all other processes,

while an interruption message from P1 to Pn was still in progress, and Pn has no clue

that P1 is already in shortcutting mode.

The figure 4.3 shows that shortcutting may lead to network congestion, and

an inconsistent state of execution, meaning that who is right, or who has the final

decision or answer. This also may lead to blocking state between P1 and Pn, meaning

that each of P1 and Pn is waiting for response.

The implementation of shortcutting in PRIMM has different approach, the

computations is monitored by special monitoring thread, that can handle the issues

of synchronization and consistency of the shortcutting process, the figure 4.4 shows

a conceptual idea of how the monitoring thread works, the figure does not show all

the details of the implementation, such as the operating system or the structure of

the file system, but basically, it does perform shortcutting based on I/O streaming

without the regular buffering process, meaning that an immediate shortcutting can

occur and only from one process, eliminating the possibilities that are in figure 4.3.

The model carries its management through the operating systems, meaning

that the process that run on different processing elements, is already running on

top of the operating system, and the operating system is already performing the re-

quired management for that process, for example giving the process its time slices,

or hardware resources and so. The operating system usually has higher privileges

than the regular processes, meaning that operating systems can terminate processes
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Fig. 4.4: PRIMM’s Server Thread Shortcutting, Thread Monitoring the Parallel Execution

and interrupts its current execution. The PRIMM built a communication interface

between the operating systems and the thread, meaning that the operating system

stands as a bridge between the monitoring thread and the current running process,

monitoring thread as mentioned before, has streaming capability, meaning that the

thread can check what is going inside the process at any point of time, concurrent

control. More specifically the thread reads a stream of bits, buffer them to one byte,

and then perform the required byte conversions and concatenations operations. The

thread itself is managed by another severing thread, which has also the responsibility

to bridge between the thread to the outside world, so the main thread or the serving

thread communicates to the monitoring thread to remote applications, in which re-

mote application users or even remote applications can has direct access on what is

going inside the parallel server.
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The thread performs its operations through systems calls to the operating

system, therefore the thread will perform, for example a process termination, by

system call to the operating system.

Thread management is allowed, and management schemas are also available.

So that the developers can write their own case scenario management plans, like

determining when to proceed and when to shortcut, or what should be performed if

one or more of the processing elements are down, and so on. Since during execution

a number of non-deterministic conditions may occur, so the thread should be built to

perform the correct action for that specific execution. The thread could not predict

what kind of actions the developer needs, meaning that a developer may run matrix

multiplication algorithm and other developer may run parallel sieve algorithm and so

on, and in both two different monitoring thread must exit.

The PRIMM has shortcutting capabilities, the figure 4.4 shows that process

P1 has the shortest execution time, and process Pn second shortest execution time,

the thread has detected that P1 has already found shortcutting answer, then the

thread will perform a termination operation to all other running processes. The time

required to inform the thread that P1 has already found a shortcutting answer, is

the streaming time between P1 and the thread. Assuming that the latency of this

process is too low, practically it is, but theoretically it is required to mention it.

Only one process will return at a time to the operating system, meaning that

one process can only stream to operating system at certain point of time, be aware

that this doesn’t mean that other processes can’t, it just means that the operating

system streams the processes output as soon as it has an output. So whenever a

process output is available then it is streamed to the operating system. Well known

process of input and output streams or I/O operations. For example, if you typed

something from your keyboard, it will show up as the order you typed the letters.

If you practically tried to type two letters at the same moment, then you will not

see two letters overlap each other on the same display block. This gives readers

hint about how the monitoring thread reads from the operating system, it reads

51



from shortcutting process directly, which eliminates the inconsistency state that was

introduced before. Pn can not confuse the monitoring thread by anyway, since the

monitoring thread will perform the suitable system call as soon as the streamed bits

built a certain value or certain indication.

4.5 Analyzing Shortcutting Probability in Parallel Search

Roughly depending on the problem type, shortcutting may be considered a

great option in decreasing execution time and managing resource consumption. Con-

sider the problem of a sequential search again, if the search key exits within the

distinct input array then for sure at least one of the processes will find the key before

termination.

If the algorithm is designed to run on P even number of processing elements,

assuming it has an input array A of size S divided into L sub arrays of size K each,

if S is odd then last L will have K+1, with no overlapping, then the search key must

be in one of the Ls sub arrays.

The probability of finding the key in a random position in A is

Pa = 1/S (4.1)

The probability of finding the key in a random positon in L is

Pl = 1/K (4.2)

Pl represents also the possibility of shortcutting in the above search algorithm.

For example, assume S= 100, P=4 Then K=100/4 =25 so Pa = 1/100 while the Pl

= 1/25

Pl is relatively good value to indicate that shortcutting possibility is signifi-

cant rather than the Pa that shows shortcutting possibility is insignificant. Meaning
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that in parallel algorithms the shortcutting possibility may have more significance

than sequential algorithms. Also comparing parallel algorithm with shortcutting and

without shortcutting, consider the bellow example:

Assume Ws is the work that has been preserved from insignificant computa-

tions, if the search key in the above example was found in first position then

W1 = (K − 1) ∗ P

W2 = (K − 2) ∗ P
...

Wk = (K − k) ∗ P

(4.3)

Meaning that Ws = (1/K)*P is the work that shortcutting preserved from

insignificant computations, and Ws also is the amount of computational load that

was avoided,

If shortcutting is disabled then total resource work W is

W = (K) ∗ P (4.4)

Ws = 0 (4.5)

This proves that shortcutting has higher potential to save ((1/K) * P - 0) work

than the one without shortcutting.
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5. CUSTOMIZATION

5.1 Customizing Parallel Implementation

PRIMM is language independent. It has the ability to perform parallel com-

putations on many types of parallel implementations.

The computations can be customized remotely, which means that the parallel

implementation may be coded on a remote machine and then loaded and compiled

on the server machine. In other words, customization include transferring the code

file from PRIMM client to PRIMM server, the server installs the file under a unique

client directory in order avoid overwriting other client’s work. PRIMM client then

sends a control command to PRIMM server to ask for compilation. The compilation

process will be managed by a lightweight thread on the server and the results of the

compilation(s) would be shipped out to the client.

Many grid systems have something called task submission and task definition.

The task definition is when the task is being defined by the developers on their local

machine. The task can be defined in multiple ways. For example in JPPF, tasks are

threads [1]; in GridRPC [21], tasks are functions; and in GLOBUS, tasks are JSDL

jobs defined by Job Submission Description Language [2]. In PRIMM, tasks have

no special definition language; any supported language should work. For example if

PRIMM server has MPI-1 and MPI-2 installed then the developer could use any of

them. The task submission process is when the implementation of the task is being

received by the managing node. In PRIMM, the task is submitted when PRIMM

client sends the appropriate control command.
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Below is an example for the use of PRIMM client:

client.create("local filename path/search.c");

client.compile("search.c");

client.execute("search.c", "Execution Details");

PRIMM has re-usability feature. This means that developers do not have to

define an already existing task; they just have to send control commands that initiate

the implementation. It is unlike other systems; where developers, at each execution

step, have to ship the whole task to the managing node.

Below is an example of re-usability. Notice that there is no compilation or

creation processes needed.

client.execute("search.c", "Execution Details");

5.2 Customizing Buffers

PRIMM has capability to customize buffers and packets. This is a unique

feature that adds more value to PRIMM. Buffers and packet sizes can be defined

appropriately based on the implementation needs. PRIMM client can send control

command to the server to specify what size of the buffer should be used to receive

and send massages for a specific implementation. For example, the generation of an

encryption key would most likely be transferred in a 256-byte packet size and the

generation of a random array may need to be transferred in 1500-byte packet size.

Packets and buffers size play an important role when data has to be sent within a

pre-determined time frame [16]. For example, consider the situation where PRIMM

client requests to generate an encryption key of size 256 bytes from the PRIMM

server. In this case, the PRIMM server would accept the command and launch a

monitoring thread for the parallel implementation. The monitoring thread would

then start reading each byte until it reads 256 bytes. At this point, it would send the

packet right away without the need to wait for the maximum capacity of the packet

to be consumed.
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5.3 Setting Requirements

The object oriented approach has been a decorative feature that many grid

systems have. Unfortunately most O.O grid systems claim that they can contribute

in application development level. That’s true in theoretic view, but because of the

sophisticated requirements that these grids need made the developers to avoid the use

of grid computing. Grid systems usually have special installation and development

requirements in order to be used in the application development, such as tutorials

and classes should be taken in order for developers to start using them. PRIMM also

has special requirements, but these requirements are very simple and affordable. For

example to use PRIMM Client, you need to be registered user in PRIMM Server,

know the IP address and port number of the PRIMM Server and finally to have

PRIMM client object in you path.
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6. ANALYSIS AND CONCLUSION

6.1 Introduction

In this chapter we will explore two experiments that highlight the differences

between shortcutting and non-shortcutting techniques in grid and parallel computing.

The chapter includes the explanation of two main experiments done to compare the

execution times of different programs under the two techniques. The first experiment

was based on a matrix multiplication problem and the other experiment was based

on a parallel search for a key in a data set. The goal of the matrix multiplication

experiment is to highlight the possibility to gain better performance by distributing

problems to a parallel cluster. PRIMM shows that there are many types of problems

that can be solved more efficiently using remote access to parallel resources. A typical

problem that could benefit from added parallel resources is the matrix multiplication

problem, thats why it was chosen for the first experiment. PRIMM with shortcutting

could be used in problems where stopping the execution after finding the first good

answer is useful; a problem of this nature is a parallel search for a key and that why

it was chosen for the second experiment.

6.2 Matrix Multiplication

6.2.1 Problem Description

Consider the problem of multiplying two matrices AB = C. The calculations

of multiplying the rows in matrix A to the columns in matrix B could be distributed

over multiple parallel processes. Each process may contribute in finding the final

result. Parallelizing the calculations may result in better performance and less time
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consuming, this will be more efficient when the problem size or the number of com-

putations involved is relatively huge to a single processors.

The distribution of matrix multiplication computations in this section is per-

formed as rows-to-columns. It is based on the following equations that show a stan-

dard and traditional well-known formula for multiplying two matrices, for example

the first row in matrix A and the first column in matrix B will be multiplied and

summed to find the first element in the first row of the resulted matrix C. See figure

6.1

A =




a11 a12 . . .

a21 a22 . . .
...

...
. . .


 =




A1

A2
...


 (6.1)

B =




b11 b12 · · ·
b21 b22 · · ·
· · · · · · . . .


 =

[
B1 B2 · · ·

]
(6.2)

AB =




A1B1 A1B2 · · ·
A2B1 A2B2 · · ·

...
...

. . .


 (6.3)

For example consider An,m and Bm,k Then

A1B1 = a11 ∗ b11 + a12 ∗ b21 + · · ·+ a1m ∗ bm1

Also the parallel implementation of matrix multiplication has been developed

to have variable sizes, in which it could result in performing different amount of

work in each process. For example, assume the distribution of matrix multiplication

computations over five parallel processes. If the first matrix is A[4,4] and the second

matrix is B[4,2], then the first row in matrix A and the first and second column in
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matrix B will be assigned to process one, the second row in A and the first and second

column in B will be assigned to process two, the third row of A and the first and

second of B will be assigned to process three, and the fourth process will be assigned

rows and columns in the same manner. But unfortunately in this example process

five has not been assigned anything. All four processes have been assigned same and

equal size of arrays (rows and columns) while process five has no work at all.

Each parallel process will be contributing in finding a row in the resulted

matrix C, unless if there was no more tasks to be assigned to it as shown in the

previous example, or if there are too many tasks assigned to it in which it may

contribute in finding more than one row.

The master process is considered process number one, it receives all results

from all others. The number of processes has been carefully picked to be five, because

it has showed a satisfying execution time than other numbers. If the number of

processes is much more higher than five, then the overall execution may be effected

from the network latency and the MPI sending and receiving delays, and if the number

is too small then the parallel computations are very limited. It is only the case at the

time the experiments are taken and also it is highly dependent on raven cluster and

it’s situation at that time.

The extra number of computations may not be distributed equally. It is also

straight forward that matrix B or the second matrix is shared between all of them.

The rows are distributed according to the following equations:

AverageDistribution = (NumberOfRows)/(NumberOfProcesses)

ExtraDistribution = (NumberOfRows)MOD(NumberOfProcesses)
(6.4)

For example, if the number of rows in A is 500 then each of the five processes

will be assigned 100 rows, now assume the number of rows in A is 502, then each

of the five processes will be assigned 100 and the extra two will be also assigned to

process number one, so process number one will have 102 rows, and the rest will have
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Fig. 6.1: Parallel Matrix Multiplication Distribution

100 rows each.

Matrix multiplication is considered to be a run to finish problem, in both par-

allel and sequential implementations , which means that the result is always available

at the end. The shortcutting methodologies are not applicable in this example. There

is no shortcutting overhead, since the shortcutting technique is not used at all.

Matrix multiplication is applied on three types of implementations. All of

these three implementations have been tested for the same problem sizes and on the

same machines.

The first one is the sequential implementation in which no network or syn-

chronization delays exist. The second one is the parallel implementation in which the

MPI-Cluster is performing the computations locally (i.e., performing the communi-

cations without any communication with the outside world). The third one is the

PRIMM implementation, which includes all other delays.
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The parallel computing system used here is named Raven; it is a cluster of

13 Compaq Proliant DL-360 G2 machines. Each node has two Pentium III proces-

sors running at 1.4 GHz, and 512MB of SDRAM. Nodes are connected via switched

1000GB Ethernet. The Internet is the communication media between the PRIMM

client and server. PRIMM client has 1.7GHz processor, it communicates to the in-

ternet via Wi-Fi and it runs a Microsoft Windows XP operating system. The local

network latency in both directions between the client and the server is around 25

ms. MPI-Cluster is used on the parallel computing system (Raven) to perform the

computations. The time in PRIMM is the time between the first UDP packet sent to

the server to the last UDP packet carrying the result received. The time of processing

the packets is included in both the server and the client.

6.2.2 Results and Discussion

The matrix multiplication problem is applied to prove that PRIMM has a

potential of decreasing the execution time by distributing the problem to a centralized

parallel computing system.

An order of magnitude increase in this number due to traffic is not unreason-

able, which accounts for the approximated 100,000 ms of delay of PRIMM from the

parallel execution, which was run locally.

The resulted matrix C increases with the increase in the number of rows in

A and the number of columns in B. Specifically, this increase results in an increase

in the number of UDP packets transferred and the overall communication overhead.

Benchmarks that help in decision making by providing sample data files with pre-

determined performance thresholds could be provided as a reference point to assist

users in determining whether the PRIMM approach is a feasible option for their

problem size. For example, sample data files could include matrices of varying sizes

that are to be run in user’s environments in order to obtain certain performance results

that are dependent on user’s environment. These results could then be compared to

benchmarks to decide if PRIMM is a suitable approach.
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Problem
Size

Rows in A Columns
in A

Columns
in B

Time in
Seq. (ms)

Time in
Parallel
(ms)

Time in
PRIMM
(ms)

Packets

1 50 50 50 1000 1000 1200 20
2 100 50 50 2000 1000 1700 39
3 100 100 50 1000 2000 2040 40
4 100 100 100 3000 3000 2670 81
5 150 100 100 7000 4000 4510 122
6 150 150 100 8000 2000 5140 124
7 150 150 150 13000 5000 6510 187
8 200 150 150 17000 9000 9430 251
9 200 200 150 18000 9000 1020 255
10 200 200 200 25000 13000 13800 340
11 250 200 200 32000 18000 19000 427
12 250 250 200 37000 16000 19400 432
13 250 250 250 50000 18000 25400 542
14 300 250 250 56000 27000 36500 653
15 300 300 250 67000 19000 36200 659
16 300 300 300 78000 36000 44400 792
17 350 300 300 91000 29000 58400 926
18 350 350 300 94000 30000 58800 932
19 350 350 350 128000 34000 89000 1090
20 400 350 350 134000 35600 109600 1249
21 400 400 350 155000 39000 110600 1259
22 400 400 400 153000 41000 128570 1442
23 450 400 400 171000 47000 155900 1626
24 450 450 400 185000 71000 157000 1636
25 450 450 450 199000 65000 182000 1844
26 500 450 450 250000 69000 216600 2052
27 500 500 450 270000 76000 217900 2059
28 500 500 500 323000 89000 249300 2290
29 550 500 500 356000 98000 293900 2522
30 550 550 500 394000 118000 296000 2533

Tab. 6.1: Matrix Multiplication Results for the Different Problem Sizes

Notice that the matrix multiplication is not an ideal problem to show PRIMM’s

performance; many other implementations that have relatively smaller output may

show better results. However, implementing the matrix multiplication problem is

very familiar to developers and well-known parallel computing problem.

62



NRA is the number of rows in matrix A. NCA is the number of columns in

matrix A. NCB is the number of columns in matrix B. The resulting matrix should

have the same number of rows in A and the same number of columns in B. Many

input combinations could result in the same output size; for example, consider A100,2

and B2,50. The product would result in C100,50, but the amount of computations

spent to find C100,50 is not the same as in A100,1000 and B1000,50. Therefore, the

problem’s size is defined by {NRA, NCA and NCB}.
Both the parallel and PRIMM implementations used five MPI processes, dis-

tributed across five machines in the raven cluster. Time in sequential is the time

in the sequential implementation with no communication. Time in Parallel is the

time in parallel implementation on the MPI-Cluster. Time in PRIMM, is the time in

the parallel implementation on the MPI-Cluster plus the PRIMM’s client and server

overhead.

The number of UDP packets transferred is an indication of the size of the data

transferred. Some of these UDP packets are consumed for protocol administration.

Since PRIMM server and client runs a communication protocol on top of UDP that

will handle the communication issues, for example PRIMM client has to send a pro-

tocol packet to PRIMM’s server to let it knows that the client process still running.

Each UDP packet is 1500 bytes in size. For example, in case 1, the final result costs

around 30000 bytes of transferred data.

The table 6.1 shows the problem size for each case, the problem size column

is used in the graph 6.2 as X-axis.

Notice that the processing in case number 29 has a slightly less overhead than

that in case number 30. This is because the formal has 50 columns more, which

translates into more computations. Also the overhead of the communication between

number 29 and 30 is almost the same. The small variance between the number of

packets is a result of PRIMM’s protocol overhead.
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Fig. 6.2: The Three Matrix Multiplication Implementations
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Graph 6.2 shows all three implementations. Notice that PRIMM has less

execution time than the sequential implementation and higher execution time than

the parallel implementation. The overhead of PRIMM is considered high depending

on the graph 6.2 and also it is considered better than the sequential implementation.

The local implementation of matrix multiplication on a parallel cluster is con-

sidered the baseline for performance, because PRIMM could have equal or lower

performance given the added overhead at the same problem size. Since the ma-

trix multiplication problem is considered run to finish problem that is not suitable

for shotcutting. This fact makes PRIMM non-shortcutting implementation typically

have lower performance in comparison to the local parallel implementation.

The approximate total time spent in network latency between PRIMM server

and PRIMM client is shown bellow, there is a possibility that the UDP packets

overlap each other. The values are approximate numbers based on the time of the

experiments.

Given that timetransmit = 30ms, timetransmit = .04ms, the number of packets

to transmit is

packets = matrices× rows× columns× byteselement

bytespacket

, (6.5)

and that an update is sent when an element is calculated, thus

updates = rows× columns, (6.6)

roughly the time consumed by the network from the cluster’s perspective, with no

collisions, is
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msnet = msstart + msstatus + msanswer (6.7)

= (mstransmit + packets×mssend)

+ (updates×mssend)

+ (mstransmit + packets×mssend)

=

(
35ms + 2

5002 × 8

1500
∗ .04ms

)

+
(
5002 × .04ms

)

+

(
35ms +

5002 × 8

1500
∗ .04ms

)

≈ 145ms + 10000ms + 90ms

≈ 10235ms

6.2.3 Conclusion

PRIMM gains speed up in most experimental cases as shown bellow 6.8. The

very beginning experiments show an inefficient performance of PRIMM, while the

very end experiments show more satisfying results.
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TSequential

TGrid
≥ 1

No: 1 6= 10000
12000

< 1

No: 2 ≡ 20000
17000

≥ 1

No: 3 6= 10000
20400

< 1

No: 4 ≡ 30000
26700

≥ 1

No: 5 ≡ 70000
45100

≥ 1

No: 6 ≡ 80000
51400

≥ 1

No: 7 ≡ 130000
65100

≥ 1
...

No: 29 ≡ 3230000
2493000

≥ 1

No: 30 ≡ 3560000
2939000

≥ 1

↪→
∑30

i−1 tSeqi∑30
i−1 tGridi

= 42.81893323 ⇒ 42.81893323 ≥ 30

(6.8)

The problem size in table 6.2 is the sum of all the elements that have been

included in the computations. The time in table 6.2 is the time of the execution in

milliseconds. The weighted time is measured based on the problem size.

The non weighted speedup is measured by summing all the thirty experiments

in both the sequential and PRIMM implementation. The table 6.2 shows the sum of

the total execution time in the weighted and non weighted cases. PRIMM was able

to gain speed up around 30%.

Non Weighted Speedup =
∑

TimeSeq.∑
TimePRIMM

= 33170000
25604700

≈ 1.3
(6.9)

The weighted time is the time divided by the problem size, basically we are

normalizing the time by the problem size. The normalization gives a measure of how

efficient the program is at each size and does not disregard smaller problems as an
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Problem Size Time in Seq Weighted
Seq

Time in
PRIMM

Weighted
PRIMM

5000 10000 2.00 12000 2.40
7500 20000 2.67 17000 2.27
15000 10000 0.67 20400 1.36
20000 30000 1.50 26700 1.34
25000 70000 2.80 45100 1.80
37500 80000 2.13 51400 1.37
45000 130000 2.89 65100 1.45
52500 170000 3.24 94300 1.80
70000 180000 2.57 102000 1.46
80000 250000 3.13 138000 1.73
90000 320000 3.56 190000 2.11
112500 370000 3.29 194000 1.72
125000 500000 4.00 254000 2.03
137500 560000 4.07 365000 2.65
165000 670000 4.06 362000 2.19
180000 780000 4.33 444000 2.47
195000 910000 4.67 584000 2.99
227500 940000 4.13 588000 2.58
245000 1280000 5.22 890000 3.63
262500 1340000 5.10 1096000 4.18
300000 1550000 5.17 1106000 3.69
320000 1530000 4.78 1285700 4.02
340000 1710000 5.03 1559000 4.59
382500 1850000 4.84 1570000 4.10
405000 1990000 4.91 1820000 4.49
427500 2500000 5.85 2166000 5.07
475000 2700000 5.68 2179000 4.59
500000 3230000 6.46 2493000 4.99
525000 3560000 6.78 2939000 5.60
577500 3940000 6.82 2960000 5.13

Sum 33170000 120.35 25604700 87.38

Tab. 6.2: Weighted Values Based on the Problem Size for both the Sequential and PRIMM Implementations

68



unweighted sum does. The speedup is smaller than the unweighted case as the cost of

the initial setup is more visible in weighted smaller problems, but it does show that

PRIMM is more efficient. For large problems asymptotic speedup can be expected to

exceed 30%, as is seen in the unweighted case.

Bellow is the weighted speed up 6.10, PRIMM can gain approximately around

40%.

Weighted Speedup =
∑

WTimeSeq.∑
WTimePRIMM

= 120.35
87.38

≈ 1.4
(6.10)

6.3 Parallel Search

6.3.1 Problem Description

PRIMM uses the implementation of parallel search to perform shortcutting

remotely. This implementation shows that PRIMM is capable of reducing the execu-

tion time and performing better resource management than many other systems that

do not have the remote shortcutting technique.

The sequential search could be parallelized to some extend by distributing the

search ranges in a controlled manner. Many processes could execute a search in which

each process will run for specific range that is different from the other neighboring

processes. The search array is randomly generated and the search key must exits

always in the array. The master process or process number one declares the result.

6.3.2 Results and Discussion

The table 6.3 shows the execution time of parallel search over half million el-

ements. The search key is variable to show it’s effect on shortcutting and to be able

to compare the three executions. The search key is passed to the parallel implemen-

tation. In PRIMM, the search key is passed to the parallel implementation through

PRIMM’s server, the key is carried in a UDP packet from PRIMM’s client with the
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Category Key Number
of Pro-
cesses

PRIMM Non
Shortcutting
(ms)

PRIMM
Shortcut-
ting (ms)

Parallel
(ms)

1 2 2 31 15 7
2 2 4 39 24 7
3 2 8 50 24 8
4 2 16 47 11 7
5 2000 2 42 13 7
6 2000 4 45 20 7
7 2000 8 62 25 7
8 2000 16 89 22 7
9 70000 2 44 16 8
10 70000 4 31 14 7
11 70000 8 78 23 7
12 70000 16 45 22 7
13 155002 2 19 22 8
14 155002 4 32 32 7
15 155002 8 62 59 7
16 155002 16 63 41 7
17 240000 2 20 34 8
18 240000 4 37 40 7
19 240000 8 39 39 7
20 240000 16 98 47 8

Tab. 6.3: Parallel Search 250000 Elements. PRIMM Non Shotcutting , PRIMM Shortcutting and Parallel
Implementation, Time in Milliseconds

program name (parallel implementation) and the number of parallel processes desired.

This thesis concentrates on showing that shortcutting methodologies in grid

computing has a high potential of decreasing the execution time by a significant factor.

Based on the results from the tables 6.3 and 6.4, PRIMM shortcutting saves more time

and resources than PRIMM non-shortcutting; this could be also the case for many

other grid computing systems that run their communication over the World Wide

Web. The PRIMM shortcutting technique outperforms the PRIMM non-shortcutting

implementation significantly.

The results in the two tables 6.3 and 6.4 represent two different series of

experiments at different times. The difference in values between the non-shortcutting

PRIMM and shortcutting PRIMM show a better performance in both Problem sizes,

P = 0.25M and P = 0.5 M. Notice the differences in results between the PRIMM

shortcutting in the P = 0.25M array and P = 0.5 M array, this difference could be

based on some factors that can affect the computations or the communication between
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Category Key Number
of Pro-
cesses

PRIMM Non
Shortcutting
(ms)

PRIMM
Shortcut-
ting (ms)

Parallel
(ms)

1 2 2 32 12 16
2 2 4 42 22 17
3 2 8 55 28 17
4 2 16 61 12 17
5 2000 2 32 12 17
6 2000 4 22 21 17
7 2000 8 19 19 17
8 2000 16 47 33 17
9 70000 2 44 20 17
10 70000 4 31 14 17
11 70000 8 77 13 17
12 70000 16 47 30 17
13 155002 2 46 36 17
14 155002 4 50 23 17
15 155002 8 65 23 17
16 155002 16 88 30 17
17 240000 2 54 34 17
18 240000 4 46 34 17
19 240000 8 45 36 17
20 240000 16 68 29 17

Tab. 6.4: Parallel Search 500000 Elements. PRIMM Non Shotcutting , PRIMM Shortcutting and Parallel
Implementation

PRIMM’s client and PRIMM’s server.

One expected factor is the Internet (ISP) connection. Since it is well known

that the Internet is an unreliable network that can be affected by many hidden factors,

it is assumed that the packets transferred between PRIMM’s client and server take

multiple routes. It is also important to consider the possibility that the parallel cluster

may have been busy with other jobs from different users as this adds some randomness

to the availability of resources. If one of the nodes in the parallel cluster has been

running slow then that may contribute in slowing down the whole implementation.

This is also be the case in comparing PRIMM non-shortcutting at P = 0.25 M array

and P = 0.5 M array.

The worst case scenario is when shortcutting doesn’t improve the execution

time or even adds an overhead to the parallel execution itself. This is possible when

the key is always found at the end of one of the distributed arrays. However, in the

case of finding the key in the middle of one of the distributed arrays, the execution
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time may be decreased by a satisfying value. The best case scenario is finding the key

at the beginning of one of these distributed arrays. In this case the execution time

may be dramatically decreased. See table 6.3 and 6.4.

However, PRIMM concentrates on showing the usefulness of shortcutting method-

ologies in grid computations. It does not contradict the fact that PRIMM shortcutting

still has a potential to reduce the execution time of parallel implementations. How-

ever, PRIMM with shortcutting had a worse performance in many cases than the

parallel implementation, refer to tables 6.3 and 6.4. Realize that the five cases that

PRIMM shortcutting performed better than the parallel implementation were in the

P = 0.5 M parallel search, refer to the second table 6.4. The results give merit to the

notion that the increase in the number of computations promotes the possibility of

saving time. For example shortcutting a parallel search problem with size of a half-

million, may save time over the same search with a problem size of a quarter-million.

In conclusion, the shortcutting technique in parallel and grid implementations could

be very useful in some cases where the problem size is bigger than a certain threshold

that overshadows the intrinsic overhead of the commutations occurring.

In the tables 6.3 and 6.4 the differences between PRIMM shortcutting and

PRIMM non-shortcutting could be a result of multiple variables, for example the

variance may be caused because the shotcutting has spent short amount of time

buffering, while the non-shortcutting has been buffering until all the processes finish.

The shortcutting result is carried after 24 byte streaming from the operating system.

While the non-shortcutting packet is carried after the stream has completely finished

and terminated. Another important factor is the number of UDP packets transferred

between the client and the server. In the shortcutting mode it is lesser compared

to the number of packets in the non-shortcutting mode ( in most cases ) , because

PRIMM client and server transfer protocol-based packets every short period of time.

These protocol-based packets may cause a short delay in sending the packet that

carries the parallel implementation result.
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Fig. 6.3: Search Results for the Three Implementations on 250000 Elements Array
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The factors discussed lately may also affect the system performance. The

streaming process may cause a little overhead on the local machine itself. That could

also include all other processes that PRIMM is running. The longer the streaming

process stays the more resource cost will be consumed. The PRIMM client also has

overhead on the other side, even if the client is not involved in the calculations itself,

it still consumes time to receive, validate or parse the PRIMM header and finally

declaring that the final result has been received.

6.3.3 Conclusion

The speed up is computed based on the results in the summation of all ex-

periments. Speed up is compared with a grid implementation that has shortcutting

methodologies with another one that doesn’t. The problem that has been used is

considered a straight forward problem, in which the idea of shortcutting can be un-

derstood easily.

For 250000 elements array:

∑
Shortcutting = 543ms

∑
NonShortcutting = 943ms

Speedup =
∑

NonShortcutting∑
Shortcutting

↪→ 24938
2077

≈ 1.7

(6.11)
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For 500000 elements array:

∑
Shortcutting = 481ms

∑
NonShortcutting = 971ms

Speedup =
∑

NonShortcutting∑
Shortcutting

↪→ 971
481

≈ 2.0

(6.12)

The speed up for all the parallel search experiments, the following is based on

equal ratios for problem sizes, the half million array is two quarter a million arrays:

∑
Shortcutting = 0.5 ∗ 481 + 543

∑
NonShortcutting = 0.5 ∗ 971 + 943

Speedup =
∑

NonShortcutting∑
Shortcutting

↪→ 1428.5
783.5

≈ 1.82

(6.13)

6.4 Conclusion

The PRIMM’s throughput rate is defined as the average output of data per

unit of time. This rate includes all the variables in TGrid formula 6.14. It does in-

clude PRIMM’s server processing time S and PRIMM’s client processing time C.

The relationship between the server processing time and the client processing time

is tricky too, be aware that the server or the client may not participate in the same

rate of processing. The variable Packet Validating Time PV in the server side may

be insignificant if compared to the PV in the client side, because the client has to

validate all resulted output packets from the server while the server has only limited

number of packets that carries the control commands.
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Server after Server before 

Server delay 

          PI 

Server Overhead  =  Server After + Server Before + Server Delay 

Fig. 6.5: Server Overhead Time

Consider Parallel Implementation time PI is the parallel implementation time

without PRIMM server being running, Network Latency NL, PRIMM’s Server la-

tency S and PRIMM’s Client overhead C. S is the time consumed from the server

before the parallel implementation starts and after the termination of the parallel im-

plementation. This variable does not include the parallel implementation time PI So

S is defined by the extra time consumed on top of the parallel implementation time.

SBefore is the time when the packet carrying the request received to the time when

the parallel implementation started. SAfter is the time when the parallel implemen-

tation terminated to the time when the final result is sent to the client. SDelay is the

delay time that PRIMM server may cause when running at the same time while the

parallel implementation is still in execution. This mean that PRIMM server could

slow one node that has been participating in the parallel implementation. In the

experiment it is Ravan0. Total execution Time for the grid T. Please see figure 6.5.

This could help in concluding when PRIMM can be more efficient and feasible for a

general problem, for example the variables that contributes in performance overhead

could be insignificant if the computation load is large enough.
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TGrid = PI + NL + S + C

S = SAfter + SBefore + SDelay (6.14)

In order to realize PRIMM’s feasibility, it is required to isolate the PI variable.

PI represents the parallel time for the parallel cluster implementation, in which does

not include any communication with the outside world. Control commands trans-

ferred between the client and the server are not included in PI. PI here will roughly

represent the time for the MPI-cluster implementation.

NL + S + C = TGrid − TParallel (6.15)

PRIMM becomes more feasible system if the variables NL,S and C are insignif-

icant to PI. It means that when the amount of computations is very high compared

to the total overhead of NL,S and C.

PRIMM is capable of reducing the execution time of the sequential implemen-

tations. One technique, shortcutting, could be utilized to reduce the execution time

in grid computations by a significant factor. Example, PRIMM shortcutting and

PRIMM non shortcutting.

PRIMM is not the only grid system that has to deal with considerably higher

network latency; many other grid systems have the same issue when running their

communication over the Internet (ISP). PRIMM may have better potential for bet-

ter performance in some cases than others, because it uses UDP rather than TCP.

PRIMM also provides methodologies to allow the server to perform real time stream-

ing to the client, which could be significant to such applications that require data for

managerial decisions.
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PRIMM is a pure OOP implementation, which translates into cost savings,

relative to other implementations; especially, when frequent adaptations are required.

In addition, it supports shortcutting and runtime execution management.
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