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An accurate system matrix is required for quantitative proton CT �pCT� image reconstruction with
iterative projection algorithms. The system matrix is composed of chord lengths of individual
proton path intersections with reconstruction pixels. In previous work, reconstructions were per-
formed assuming constant intersection chord lengths, which led to systematic errors of the recon-
structed proton stopping powers. The purpose of the present work was to introduce a computation-
ally efficient variable intersection chord length in order to improve the accuracy of the system
matrix. An analytical expression that takes into account the discrete stepping nature of the pCT
most likely path �MLP� reconstruction procedure was created to describe an angle-dependent ef-
fective mean chord length function. A pCT dataset was simulated with GEANT4 using a parallel
beam of 200 MeV protons intersecting a computerized head phantom consisting of tissue-
equivalent materials with known relative stopping power. The phantom stopping powers were
reconstructed with the constant chord length, exact chord length, and effective mean chord length
approaches, in combination with the algebraic reconstruction technique. Relative stopping power
errors were calculated for each anatomical phantom region and compared for the various methods.
It was found that the error of approximately 10% in the mean reconstructed stopping power value
for a given anatomical region, resulting from a system matrix with a constant chord length, could be
reduced to less than 0.5% with either the effective mean chord length or exact chord length
approaches. Reconstructions with the effective mean chord length were found to be approximately
20% faster than reconstructions with an exact chord length. The effective mean chord length
method provides the possibility for more accurate, computationally efficient quantitative pCT
reconstructions. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3218759�
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I. INTRODUCTION

In proton therapy, the maximum dose along the radiation
path is deposited in a sharp peak at the end of the proton
range, in what is known as the Bragg peak. To achieve dose
conformality and thus healthy tissue sparing, the energy of
the proton beam is adjusted so that the maximum proton
range in the patient corresponds to the distal edge of the
target volume. This approach requires accurate knowledge of
the proton energy loss characteristics when the protons inter-
act within the patient.

The majority of current proton treatment centers use pen-
cil beam algorithms for treatment planning due to their com-
putational efficiency.1,2 In this approach, a pencil beam dose
deposition model based on the experimentally measured or
simulated depth-dose curves in water is convolved with a

three-dimensional �3D� map of stopping power relative to
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water. Currently, the relative stopping powers are obtained
by converting x-ray CT Hounsfield units via an empirically
derived calibration curve.3–5 This conversion leads to errors
in the estimated proton range during treatment, typically on
the order of 3% of the maximum proton range.6 Thus, a
combination of the errors inherent in the x-ray CT scan, and
the errors arising from the empirically derived conversion
function can contribute to a significant final range uncer-
tainty in the proton treatment plan.

Proton CT �pCT� offers the possibility of directly obtain-
ing the relative stopping power required for proton treatment
planning calculations, removing the errors associated with
x-ray CT and the conversion methods described above. In the
current generation pCT design previously proposed by us,7

individual protons in a parallel beam are tracked pre- and
post-patient with 2D sensitive silicon strip detectors �SSDs�,

providing information about proton position and direction at
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the boundaries of the image space. This allows the effects of
multiple Coulomb scattering �MCS� within the object to be
accounted for in a most likely path �MLP� estimation.8 The
advantage of this in terms of spatial resolution of the recon-
structed image has been shown in a previous study.9

In addition to tracking the position of individual protons,
the energy lost by each proton after traversal of the image
space is recorded. Using these measurements, one can calcu-
late either the path integral of relative electron density of a
water equivalent object,7 i.e., an object of water composition
but varying electron density that produces the same energy
loss as the real object, or the integral of relative stopping
power along each proton path. Both quantities are equally
applicable to pencil beam planning algorithms. In this study,
we calculated the relative stopping power with

�
L

�s�r�dl = �
Eout

Ein dE

S�Iwater,E�
. �1�

Here, Ein and Eout are the measured entry and exit proton
energies at the image space boundaries, respectively, �s is the
stopping power at spatial location r relative to water, and L
is the estimated proton path through the image space. The
stopping power in water S�Iwater ,E� is given by the Bethe–
Bloch equation,10

S�Iwater,E� =
4�remec

2Ne,water

�2�E�

��ln�2mec
2

Iwater

�2�E�
1 − �2�E�� − �2�E�	 . �2�

In Eq. �2�, re is the classical electron radius, me is the mass of
the electron, Ne,water is the electron density of water, � is the
velocity of the proton relative to the speed of light c, and
Iwater is the mean excitation energy of water.

To generate images from the pCT data, iterative projec-
tion methods, e.g., the algebraic reconstruction technique
�ART�,11 have been demonstrated as the preferred way of
accommodating scattered proton paths.9 Such methods are
based on solving a system of equations of the form

Ax = b , �3�

where the system matrix A is an n�m matrix whose ele-
ments aj

i correspond to the length of intersection �chord
length� of the i-th proton history’s path with the j-th voxel, x
is the unknown m-dimensional image vector, and b is the
n-dimensional vector, whose elements bi correspond to the
integral relative stopping power measured along the i-th pro-
ton path �Eq. �1��.

In x-ray CT, the chord lengths of rays with individual
pixels can be relatively easily calculated12 due to the straight
line nature of the radiation. This is not the case in pCT,
where MCS deflects the proton path from a straight line. Our
current approach to calculating the chord lengths in pCT has
been to step through the image space in half-pixel step
lengths and use the MLP formalism8 to determine which pix-
els are intersected. These pixels are assigned constant chord

lengths, equal to the pixel size, while pixels that are not

Medical Physics, Vol. 36, No. 10, October 2009
intersected are assigned a value of 0. We have observed that
images reconstructed with this approach underestimated the
relative stopping power of the imaged object by up to 13%
when reconstructing with ART �unpublished data�.

In the current work, two methods are described for deter-
mining the elements of the system matrix A more accurately.
In the first method, exact chord lengths are calculated by
joining MLP step points with straight line segments. In the
second method, an analytical description of the mean chord
length for a given proton path-reconstruction grid orientation
is used to assign elements of the system matrix. The potential
advantages of these approaches in quantitative pCT imaging
are investigated by reconstructing a Monte Carlo generated
pCT dataset with the ART algorithm. An assessment of the
most valuable method is made based on quantitative image
quality and reconstruction time.

II. METHODS

II.A. Most likely path formalism

As energetic protons traverse the object being imaged,
individual trajectories deviate from straight line paths due to
MCS. Our current pCT design includes position sensitive
silicon strip detectors upstream and downstream of the object
to record individual proton entry and exit positions and
directions.7 Using this information and Bayes theorem,13 the
MLP through the object can be calculated.8

Our MLP formalism makes use of the generalized Fermi–
Eyges theory of MCS,14 which accounts for proton energy
loss in the scattering medium and employs a Gaussian scat-
tering distribution. In this approach, the three-dimensional
scattering is treated by projecting the path onto two orthogo-
nal planes. The lateral displacement t and the projected 3D
angle � at the boundary locations, u0 and u2, are required for
the evaluation of the MLP �Fig. 1�. Given the entry and exit
data vectors, y0= �t0 ,�0� and y2= �t2 ,�2�, the most likely data

8

FIG. 1. Conceptual illustration of the MLP formalism. The bold line repre-
sents the MLP, while the faint line corresponds to a proton undergoing
exaggerated multiple Coulomb scattering.
vector at intermediate depth u1 is calculated as
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yMLP = ��1
−1 + R1

T�2
−1R1�−1��1

−1R0y0 + R1
T�2

−1y2� . �4�

In Eq. �4�, �1
−1 and �2

−1 are the 2�2 inverse variance-
covariance scattering matrices, R0 and R1 are the 2�2
translate-rotate matrices, and T denotes the matrix transpose
operator. In our pCT reconstruction software, yMLP is first
calculated in half-pixel size increments along u assuming a
0° projection angle. Each MLP point is rotated by the current
projection angle and the corresponding pixel or voxel num-
ber is recorded. Each pixel or voxel is then assigned a chord
length.

II.B. Exact chord length approach

To calculate exact chord lengths with the MLP procedure,
discrete step points were joined with straight line segments.
In this work we set the step size to be equal to half the pixel
size to ensure that in each step we either stay within the same
pixel or move into one of the surrounding eight pixels. If the
new step point was in the same pixel as the previous step, the
Euclidian distance between the points was added to the chord
length of the current pixel.

If the new step point was in one of the surrounding pixels
that shares a boundary with the previous pixel, only one line
of the reconstruction grid was crossed during the step. In this
case the point of intersection of the straight line joining the
step points and the appropriate grid line was calculated. The
distance between the point of intersection and each step point
was added to the corresponding pixel chord length.

If the new step point was in one of the surrounding pixels
that share only a vertex with the previous pixel, two recon-
struction grid lines were crossed during the step. In this case,
the straight line joining the MLP step points was simulta-
neously solved with both of the grid lines forming the vertex
of interest. These intersection points were used to calculate
the chord lengths to be added to the previous and current
pixel accordingly. Also, the distance between the intersection
points was assigned to the intermediate pixel that was missed
by the MLP stepping procedure.

II.C. Effective mean chord length approach

Calculation of individual step points with the MLP for-
malism is computationally expensive. To calculate exact
chord lengths, a series of decisions and calculations must be
made at each step point, adding to the pCT reconstruction
time. We propose here a method that assigns a single chord
length to all pixel intersections along a given proton path,
speeding up the reconstruction. This approach is based on the
assumption that a large number of protons will traverse the
image grid with a given orientation and have a uniform spa-
tial distribution. In this case, deterministic proton path-pixel
intersections can be treated in a statistical manner. In this
section, we derive the effective mean chord length function
that describes this scenario, while taking the discrete step-
ping nature of the MLP into account.

While the majority of pixel intersections will be detected
by the MLP calculation �i.e., when a step point occurs within

the given pixel�, the discrete stepping nature means that
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some pixel intersections will be undetected. The effective
mean chord length combines these two components. Firstly,
to account for the pixel intersections that are detected by the
MLP stepping process, we calculated the mean detected
chord length. By considering a single representative pixel,
this quantity was found by taking an average over all pos-
sible chord lengths for a given path-pixel orientation,
weighted by the probability that a step point is registered
along a given chord.

Secondly, to account for the undetected chords in the
overall proton path length through the image space, a correc-
tion term was added to the mean detected chord length. This
correction term is composed of the mean undetected chord
length weighted by the probability that a step point does not
occur inside a pixel. Combining these, the effective mean
chord length is given as

�̄eff��� = �̄d��� + pu����̄u��� . �5�

Here, �̄eff is the effective mean chord length, �̄d is the mean
detected chord length, pu is the probability that a step point

will not occur inside a pixel, and �̄u is the mean undetected
chord length. These variables are a function of the path ori-
entation relative to the reconstruction grid, described by the
angle �.

The explicit form of the effective mean chord length as a
function of proton path orientation relative to the reconstruc-
tion grid ��� is derived in the Appendix and is given as

�̄eff =
l

3
� �s/l�2sin 2� − 6

�s/l�sin 2� − 2�cos � + sin ��

+
�s/l�2sin 2�

2�cos � + sin ��� for 0 ° � � � 90°. �6�

Here, l is the pixel size and s the step size. Due to symmetry
of the square reconstruction grid, any path orientation can be
rewritten as an angle between 0° and 90°. In this work, a step
size equal to half the pixel size was used. The effective mean
chord length as a function of rotation angle is shown in Fig.

FIG. 2. Plot of the derived effective mean chord length as a function of pixel
rotation angle.
2.
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To simplify the formalism, � was taken to be the angle of
the straight line joining the entry and exit points of the pro-
ton to the reconstruction area relative to the positive x axis of
the reconstruction grid.

II.D. Proton CT simulation

To investigate the application of the different chord length
approaches to reconstructed images, a GEANT4 �Ref. 15�
simulation was carried out for a realistic pCT system, con-
sisting of four proton tracking planes and a crystal calorim-
eter �Fig. 3�. The incident proton beam consisted of a 200
MeV monoenergetic 2D parallel geometry. The 30�30
�0.04 cm3 2D sensitive silicon tracking planes were as-
signed a spatial resolution of 100 	m. The calorimeter de-
tector was a cesium iodide 32�32�10 cm3 rectangular
prism with perfect energy resolution, i.e., sources of detector
noise were neglected.

A cylindrical phantom with an elliptical cross section,
based on the head phantom design of Herman,16 was located
at the center of the imaging system. The major axis of the
phantom cross section was set to 17.25 cm and the minor
axis to 13 cm. A cross section of the phantom can be seen in
Fig. 4�a�. The bone and bulk brain regions were assigned a

FIG. 3. Schematic of the GEANT4 simulation geometry used to model an ideal
pCT system.

FIG. 4. �a� The Herman head phantom. Reconstructed images corresponding
to the cycle of minimum relative error with �b� constant chord length, �c�

exact chord length, and �d� effective mean chord length.
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density and chemical composition corresponding to cranial
bone and brain respectively, according to ICRP Report 23.17

The ventricular regions �corresponding to cerebrospinal
fluid� were assigned the chemical composition of water. All
other structures had the chemical composition of brain but
different densities.

The GEANT4 standard model for hadronic ionization was
implemented with dE /dx values being calculated in 2000
bins ranging from 1 keV to 500 MeV, as suggested in Ref.
18. Elastic and inelastic nuclear collisions were also enabled.
The first 20 000 proton histories to traverse the system and
deposit energy in the CsI scintillator in each projection angle
were recorded. A total of 180 projection angles at 2° intervals
was carried out.

II.E. Proton CT image reconstruction and evaluation

For accurate MLP calculations,8 the boundary of the im-
aged object is required to specify the region in which MCS
can occur. To achieve this, an initial estimate of the image
was found by processing the pCT data with an adaptation of
the direct summation method, described in Ref. 19, prior to
the iterative reconstruction. In this method, the proton path
was simplified to a straight line and the backprojections of
all line integrals �Eq. �1�� were summed. To obtain the
boundaries from the resulting smooth image, a simple
derivative-based filter20 was used with a cutoff, to set the
regions outside the object to 0.

Once the border of the object had been calculated, ART
was used to find a solution to Eq. �3�. The algorithmic struc-
ture of ART is

xk+1 = xk + 

bi − 
ai,xk�

�ai�2 ai. �7�

Here, k is the iteration index, xk and xk+1 are the current and
updated image estimates, respectively, ai is the i-th row vec-
tor of A, bi is as described above, and 
 is a user determined
relaxation parameter. A constant value of 
=0.002 was used
here, based on the results of previous work.21 For a given
reconstruction, 10 ART cycles were carried out, where a
cycle refers to a complete execution of Eq. �7� for all proton
indices i.

In this work, the analysis of image quality focused on
quantitative accuracy of the relative stopping power values,
as these values are most important for the accuracy of proton
dose calculations. To compare reconstructed relative stop-
ping powers to actual values, the phantom electron density
was converted to a mean relative stopping power defined by

�s =
1

�E
�

10

200

�e,m

�
�ln�2mec

2�2�E�/�Im�1 − �2�E���� − �2�E��
�ln�2mec

2�2�E�/�Iwater�1 − �2�E���� − �2�E��
dE .

�8�

Here, �e,m and Im are the electron density relative to water

and mean excitation energy of the pixel, respectively. Note
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that over the energy range of �E=200–10 MeV, the inte-
grand varies only slowly with energy.

The relative error �Eq. �9�� of the reconstructed images
after each cycle was calculated and used as a means of image
quality evaluation,

�n = 
j

�xj� − xj
n�/

j

�xj�� . �9�

Here, xj� is the relative stopping power in pixel j of the phan-
tom and xj

n is the reconstructed relative stopping power in
pixel j after n cycles.

III. RESULTS

III.A. Quantitative accuracy of proton CT
reconstructions

The relative stopping power images of the smallest rela-
tive error within 10 ART cycles are shown in Fig. 4. Images
reconstructed with a constant chord length equal to the pixel
size �Fig. 4�b��, with an exact chord length �Fig. 4�c��, and
effective mean chord length �Fig. 4�d�� are compared to the
original phantom �Fig. 4�a��. When the exact chord length or
effective mean chord length approaches are used, image
noise is considerably reduced.

Histograms of the relative stopping power values in the
phantom and reconstructed images are shown in Fig. 5. The
various anatomical regions �brain, bone, etc.� appear as
peaks, which are broadened in the reconstructed images.

FIG. 5. Distribution of reconstructed relative stopping powers with constant
chord length, exact chord length, and effective mean chord lengths.

TABLE I. Results of a Guassian fit to histograms of rec
power images. The mean value with 95% confident

Region Phantom

Constant chord length

Mean 

Brain 1.031 0.926�0.002 0.043 1
Bone 1.463 1.306�0.001 0.046 1
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When a constant chord length is used, the relative stopping
power values of all regions are systematically underesti-
mated. Much closer agreement between the phantom and re-
constructed values can be seen when an exact chord length or
effective mean chord length method is used.

The peaks of the reconstructed brain and bone regions in
Fig. 5 were fitted with a Gaussian function to quantify the
accuracy of the various reconstruction approaches. The re-
sults are shown in Table I. The constant chord length ap-
proach displayed an approximate 10% underestimation of
both brain and bone regions. This was reduced to 0.4% un-
derestimation of the brain and 0.4% overestimation of the
bone relative stopping powers when an exact chord length
was used. The effective mean chord length approach dis-
played a brain peak position equivalent to the phantom,
within statistical uncertainty, and overestimated the bone re-
gion by 0.3%. The standard deviations listed in Table I rep-
resent the amount of noise in the reconstructed images. The
amount of noise is an important parameter for image quality
as it determines the low-contrast density resolution of the
images. Reconstructions with the exact chord length were
found to display the least amount of noise.

III.B. Reconstruction time

Negligible difference in reconstruction time was found
between the constant chord length and the effective mean
chord length reconstruction. The exact chord length recon-
struction was found to require approximately 20% more time
for each reconstruction cycle.

IV. DISCUSSION

By using the energy loss and spatial tracking measure-
ments of individual protons, pCT image reconstruction can
provide the data required for proton treatment planning algo-
rithms. Two methods for improving the accuracy of these
reconstructions were described and tested in the current
work. The first method generated a reconstruction system
matrix consisting of exact chord lengths, by joining each
MLP step point with a straight line segment. The second
method assigned an effective mean chord length for all pixel
intersections in a given proton history based on the orienta-
tion of the proton path relative to reconstruction grid.

It was found that reconstruction with both the exact chord
length and the effective mean chord length resulted in better
quantitative accuracy in comparison to the previously used
constant chord length. With the new approaches, the relative
stopping power of brain and bone regions was reconstructed

ucted bone and brain regions in the relative stopping
and standard deviation  are given.

ct chord length Effective mean chord length

ean  Mean 

�0.001 0.020 1.031�0.001 0.025
�0.001 0.029 1.467�0.003 0.034
onstr
limit

Exa

M

.027

.469
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to within 0.5% of the phantom values, effectively diminish-
ing the substantial error of the constant chord length ap-
proach. However, bone values were still systematically over-
estimated. This can be explained by the fact that the current
MLP formalism assumes water as the scattering medium. In
bone regions, where the radiation length is less than water,
the elements of the variance-covariance needed for the cal-
culation of the MLP �Ref. 8� will be underestimated. This
results in an underestimation of the MLP segment length that
traverses bone, which, in turn, leads to overestimation of the
relative stopping power. In order to comply with the ob-
served energy loss, this overestimation must be compensated
for elsewhere in the reconstruction, explaining the corre-
sponding underestimation of brain regions.

In pCT, reconstructed image noise is generated through a
combination of uncertainties in the proton path estimation,
energy straggling within the imaged object, and noise in the
energy detector measurements. In addition, the reconstruc-
tion algorithm can amplify the noise from these various
sources. In the current work, the effect of proton path esti-
mation was investigated with a GEANT4 generated pCT
dataset that did not account for noise in the detector mea-
surements. Since path estimation and detector noise are in-
dependent sources of noise, their respective variances will be
additive. Thus, the same degree of improvement due to an
improved proton path estimation approach can be expected
in the presence of detector noise.

We demonstrated that image noise due to uncertainties in
proton path estimation was reduced with both the exact
chord length and the effective mean chord length approach in
comparison to the images reconstructed with a constant
chord length approach. Moreover, the exact chord length ap-
proach was found to display the least image noise. The ad-
ditional noise in the effective mean chord length approach
can be attributed to the assignment of one chord length value
to each proton path, which is, of course, less accurate than
calculating the exact chord length of the MLP for each pixel.
The errors due to the assumption of a single path-grid orien-
tation will be largest around 0° and 90°, where the rate of
change in the effective mean chord length with orientation
angle is largest �Fig. 2�. However, considering the time sav-
ing advantages of approximately 20% per cycle with the ef-
fective mean chord length approach and the relatively minor
difference in terms of noise, the effective mean chord length
approach should be the preferred method in future pCT re-
construction studies.

V. CONCLUSION

Proton CT is an imaging modality that is capable of pro-
viding the data required for proton treatment plans in a more
direct manner than the current x-ray CT approach. An exact
chord length and an angle-dependent effective mean chord
length were used to generate more accurate pCT reconstruc-
tion system matrices than the previously used constant chord
length approach. The improvement in reconstruction accu-
racy was verified by reconstructing GEANT4 simulated pCT

data with the ART algorithm. It was found that the error of
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approximately 10% in the mean reconstructed value for a
given anatomical region, resulting from the previously used
method, could be reduced to less than 0.5% with either of the
new approaches. However, the considerable time saving ad-
vantages led us to conclude that the effective mean chord
length approach was preferential for constructing pCT image
reconstruction system matrices.
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APPENDIX: DERIVATION OF THE EFFECTIVE
MEAN CHORD LENGTH

To derive the functions describing the effective mean
chord length, consider the representative pixel geometry il-
lustrated in Fig. 6. Here, the rotated pixel vertices are de-
noted by points A, B, C, and D. Through coordinate rotation,
the x component of these points for a pixel of size l can be
calculated with

XA��� = −
l

2
�cos � + sin �� ,

XB��� =
l

2
�sin � − cos �� ,

XC��� =
l
�cos � − sin �� ,

FIG. 6. Schematic of the rotated pixel geometry. The pixel vertices are de-
noted by points A, B, C, and D. The linear functions joining these points are
labeled f1�x ,��, f2�x ,��, f3�x ,��, and f4�x ,��. A simplified straight line pro-
ton path is given as an example, illustrating the discrete stepping nature of
the MLP. The step size is denoted by s. The chord length for this example is
shown in bold.
2
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XD��� =
l

2
�cos � + sin �� . �A1�

The linear functions of the pixel boundaries joining the ver-
tices are labeled: f1�x ,��, f2�x ,��, f3�x ,��, and f4�x ,��. By
using the point-gradient formula, the equation of each pixel
boundary is given with

f1�x,�� = x tan � +
l

2 cos �
,

f2�x,�� = −
x

tan �
+

l

2 sin �
,

f3�x,�� = x tan � −
l

2 cos �
,

f4�x,�� = −
x

tan �
−

l

2 sin �
. �A2�

Approximating chords as straight lines, the chord length
��x ,�� for all possible x values in the representative pixel is
given by the piecewise function

��x,�� = � f1�x,�� − f4�x,�� for XA � x � XB

f1�x,�� − f3�x,�� for XB � x � XC

f2�x,�� − f3�x,�� for XC � x � XD.
� �A3�

Combining this with Eq. �A2�, we have

��x,�� =�
l�cos � + sin �� + 2x

sin 2�
for XA � x � XB

l

cos �
for XB � x � XC

l�cos � + sin �� − 2x

sin 2�
for XC � x � XD.

�
�A4�

Due to the discrete stepping nature of the MLP procedure,
the probability that a chord will be detected is unity when the
chord length is greater than the stepping size s. When the
chord length is less than the stepping size, the probability
that the next step point will occur inside the pixel is given by
the ratio of the chord length and the step size. Thus, the
probability �pd�x ,��� of detecting a given chord requires the
x locations x1e and x2e, at which the chord length is equal to
the step size.

In Fig. 7, the derivation of x1e is illustrated; due to sym-
metry, x2e can be calculated in a similar manner. For a given
step size s, x1e, and x2e are given by

x1e��� = XA��� + s sin � cos � ,

x2e��� = XD��� − s sin � cos � . �A5�

Therefore, in our notation the probability of a step point

occurring within a pixel is given by the piecewise function
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pd�x,�� =�
��x,��

s
for XA � x � x1e

1 for x1e � x � x2e

��x,��
s

for x2e � x � XD.� �A6�

The mean detected chord length can now be calculated by
taking a weighted average of chord lengths over all possible
x values,

�̄d��� =
�XA

XDpd�x,����x,��dx

�XA

XDpd�x,��dx
. �A7�

With the definitions of ��x ,�� and pd�x ,��� given by Eqs.
�A4� and �A5�, the explicit form of the mean detected chord
length is given by

�̄d��� =
l

3
� �s/l�2sin 2� − 6

�s/l�sin 2� − 2�cos � + sin ��� . �A8�

To derive the correction term, we require the probability that
a step point does not occur inside the pixel pu and the mean

undetected chord length �̄u. Firstly, pu can be related to the
probability of detection by

pu��� = 1 −
�XA

XDpd�x,��dx

XD��� − XA���
. �A9�

The mean undetected chord length �Eq. �A10�� is given by a
weighted average in a similar manner to the mean detected
chord length,

�̄u��� =
�XA

XD�1 − pd�x,�����x,��dx

�XA

XD�1 − pd�x,���dx
. �A10�

FIG. 7. Derivation of the point x1e on the x axis at which the chord length
through a pixel is equal to the step size s of the MLP procedure. Through
symmetry, the same method can be used to derive x2e for the positive x axis.
Combining these gives us the correction term
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pu����̄u��� =
l

3
� �s/l�2sin 2�

2�cos � + sin ��� . �A11�

Combination of Eqs. �A7� and �A11� results in the expres-
sion of the effective mean chord length given in Eq. �6� of
the main text.
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