
What is Computer S
ien
e?We study:
• Math (algorithms, languages, automata)
• Engineering (design, information, ma
hines)
• S
ien
e (physi
s, biology,
ognitive s
i.)
• Business (proje
t management, system administration

1

CS related �elds

Science

Engineering

Math

Business

Information

Software Eng

Sys Adm

CS

Bioinformatics

AI

Architecture

Automata

Algorithms

Languages

COMPUTER SCIENCE KNOWLEDGE SET

2

Alan Turing's Work

AI

Architecture

Automata

Algorithms

Languages

Turing Fish

3

Is Mathemati
s Corre
t?Hilbert's
hallenge - 23 unsolved problems in mathemati
s
• 2nd -
an
onsisten
y of arithmeti
 be proved?
• 10th - is there an algorithm for Diophantine equations?
• Prin
ipia Mathemati
a - Russel and Whitehead. Attempt to derive all mathemati
altruths from axioms in a systemati
, algorithmi
 way.
• Godel - proves that any system that in
ludes arithmeti
 and logi
 must be in
om-plete or in
onsistent - spe
i�
ally,
an not prove its own
onsisten
y. Prin
ipia isimpossible.
• Godel does this by en
oding arithmeti
 and logi
 as numbers, whi
h allows the useof arithmeti
 to prove things about itself (How does this relate to Turing?)
• 10th problem (and Prin
ipia) - need to de�ne what is an algorithm. Questions like- �What is a single step? How detailed do we need to be?�

4

The Turing Ma
hine
0 1 1 0 1 0 0 0 1 1 1

State 10:

Read 0 : Write 1, Right, goto 12
Read 1 : Write 1, Left, goto 33

Read/Write head

State Table

blank tape, unlimited extent

Turing
reated the T.M. to de�ne algorithm - Chur
h-Turing Hypothesie. We
an't prove this, butthere are no
ounterexamples.But how does this relate to Hilbert's 2nd problem?

5

Turing ma
hine details
• Turing ma
hines have �nite states, �nite alphabet (e.g 0,1)
• State table spe
i�es the �hardware�, tape is the memory, it is unlimited so we don't run out ofspa
e. Noti
e that we
an't have random a

ess, be
ause addresses are some �nite size and thatlimits the size of memory.
• Turing ma
hines
an read and write
hara
ters on the tape, move to di�erent tape lo
ations.Noti

• e that this is all that modern
omputers do - read and write 0 and 1 in memory.
• By reading and modifying tape, T.M.
an do arithmeti
 and logi
 operations.

6

An example:Alphabet is {0,1}; _ stands for blank tapeState Read Write Move New State1 1 1 R 20 0 R 42 1 1 R 30 0 R 43 _ 1 stop TRUE4 1 1 R 50 0 R 55 _ 0 stop FALSEThis ma
hine reads two
hara
ters on tape and
omputes �AND�

7

The Universal Turing Ma
hine
• Turing Ma
hine
an be des
ribed in its own alphabet - we spe
ify
onventions for how to des
ribethe table, separators for di�erent se
tions of des
ription, et
.
• We
an de�ne a Turing Ma
hine that reads a T.M. des
ription from its tape and exe
utes thatdes
ription - it is universal be
ause we
an run any other T.M.
• Note that the state table of a U.T.M. is �xed - it is like the hardware of a modern
omputer. TheT.M. des
ription is a program.
• Program and data
an be on the same tape - like program and data are in memory of a modern
omputer.

8

Turing and languages
• During World War 2, Turing worked on en
ryption - his work earned him an O.B.E. This is hismost re
ognized language related work.
• T.M. des
ription in its own alphabet introdu
es ma
hine language.
• Spe
i�
 format of T.M. des
ription depends on the state table of the U.T.M. that will run it - thema
hine language must mat
h the ma
hine hardware.
• T.M.
an represent logi
 and arithmeti
, therefore
an
arry out any mathemati
al operation.
• Therefore the programming language of T.M.
an be used to formally des
ribe mathemati
s (�nallywe see where Godel
omes in!)

9

Turing and Godel
• Godel
onverted arithmeti
 and logi
 statements to numbers, so
ould use mathemati
al operationsto express statements about mathemati
s.
• Godel showed that statements su
h as: �This statement is not provable�
an be expressed - youhave statements that are true only if they are not provable, and are false if they
an be proved!
• Turing ma
hines are
apable of
arrying out any mathemati
al operation - in
luding logi
 andarithmeti
. Therfore a result analogous to Godel's theorem should be derivable with T.M.

10

In�nite loops
• If we
an do logi
 and move to di�erent memory (tape) lo
ations, we
an write a while loop onan arbitrary
ondition.
• Suppose we write �while(X) do Something� and X never be
omes false?
• We
an not limit loops to any arbitrary size - for example, limit loops to 1 trillion iterations, thenwe
an not solve problems that require 1 trillion + 1.

11

The Halting Problem
• Given: A T.M. and its data. Can we devise an algorithm that tells us if the T.M. will enter anin�nite loop?
• Sin
e algorithms are Turing Ma
hines, we want to write a parti
ular T.M. -
all it T-HALT - thattakes any T.M. and its data as input.
• T-HALT(TM,data) answers YES if the given ma
hine will halt on the data, NO if it will runforever.

12

The HALT Turing Ma
hine.
• Given: A T.M. and its data. Can we devise an algorithm that tells us if the T.M. will enter anin�nite loop?
• Sin
e algorithms are Turing Ma
hines, we want to write a parti
ular T.M. -
all it T-HALT - thattakes any T.M. and its data as input and answers YES if the ma
hine will halt, NO if it will runforever.
• Assume we
an build T-HALT. We
an use T-HALT to build a ma
hine HALT that runs a T.M.on its own des
ription as data. HALT always answers YES or NO.
• Any TM
an be written on a tape, in some U.T.M. ma
hine language. HALT just dupli
ates thedes
ription on the tape and runs T-HALT with the �rst des
ription as ma
hine and the se
ond asdata
• We
an use HALT to build NOHALT - we take the part of HALT that answers YES and repla
eit with an in�nite loop.
• NOHALT(T.M.) answers NO if T.M. does not halt, but goes into an in�nite loop if T.M. will halt.
• What does NOHALT(NOHALT) do?

13

The limits of
omputability
• HALT always halts. HALT(NOHALT) must halt.
• Therefore NOHALT(NOHALT) does not halt.
• But if NOHALT a
ting on itself does not halt, then NOHALT(NOHALT) must answer NO andhalt.
• CONTRADICTION - so our assumption that we
an make T-HALT must be wrong, and there isno algorithm that solves the halting problem.
• The Halting Problem is the equivalent to Godel's in
ompleteness result.
• Just as Godel allows us to prove that some mathemati
al theorems are unprovable, the HaltingProblem allows us to prove that some problems are un
omputable - be
ause if we
ould solvethem, we
ould solve the halting problem.
• Ba
k to languages - we
an prove that most interesting properties of languages
an not be
om-puted!

14

