
Keith On...

Hardware

K.E. Schubert

Founder
Renaissance Research Labs

Associate Professor
Department of Electrical and Computer Engineering

School of Engineering and Computer Science
Baylor University

2

Contents

I Electronics 3

1 Passive Components 5

1.1 Resistor . 5

1.2 Capacitor . 5

1.3 Inductor . 6

1.4 Memristence . 6

2 Basic Laws 7

2.1 Coulomb’s Law . 7

2.2 Maxwell’s Laws . 7

2.2.1 Gauss’ Law for Electricity . 8

2.2.2 Gauss’ Law for Magnetism . 8

2.2.3 Faraday’s Law of Induction . 9

2.2.4 Ampere’s Law . 9

3 Semiconductors 11

3.1 Energy Levels . 11

3.2 Intrinsic Semiconductors . 12

3.3 Extrinsic Semiconductors . 14

3.3.1 P Type Semiconductors . 14

3.3.2 N Type Semiconductors . 14

4 Diodes 17

4.1 Reverse Bias . 17

5 Binary Junction Transistors 19

6 Field Effect Transistors 21

6.1 Ideal Behavior . 21

6.2 Amplification . 22

7 Logic Families 23

7.1 Diode Logic . 23

7.2 Resistor Transistor Logic . 24

7.3 Diode Transistor Logic . 24

7.4 Transistor Transistor Logic . 24

7.4.1 Open Collector Outputs . 24

7.4.2 Totem Pole Outputs . 25

3

4 CONTENTS

7.4.3 Tristate Outputs . 25

7.5 CMOS Families . 25

7.6 Interfacing . 25

II Digital Logic 29

8 Boolean Algebra 31

8.1 Postulates and Theorems . 31

8.2 DeMorgan’s Law . 32

8.3 Gates . 34

9 Logic Conventions 37

9.1 Logic-Voltage Conventions . 37

9.2 Canonical Forms . 42

9.2.1 Sum of Products . 42

9.2.2 Product of Sums . 43

10 Combinational Circuits 47

10.1 Designing: Tables . 47

10.1.1 Implementing With Sum of Products . 47

10.1.2 Implementing With Product of Sums . 48

10.1.3 Implementing With Decoders . 48

10.1.4 Implementing With Multiplexors . 48

10.2 Designing: Karnaugh Maps . 49

10.3 Quine-McCluskey . 51

11 Synchronous Circuits 55

11.1 Counters . 56

11.2 General Design . 56

12 Timing 59

12.1 Combinational Circuits . 59

12.2 Sequential Circuits . 59

12.3 Flip Flops and Hazards . 60

12.4 How Often? . 60

III Data Representation and Manipulation 63

13 Codes 65

13.1 Standard Codes . 65

13.1.1 Unsigned . 65

13.1.2 Signed . 67

13.2 Huffman Codes . 67

13.2.1 Huffman Algorithm . 68

13.3 Error Detection and Correction . 68

13.3.1 Hamming Code . 69

CONTENTS 5

14 Integers 73

14.1 Integer numbers . 73

14.2 Addition . 74

14.2.1 Ripple Adders . 74

14.2.2 Conditional Sum . 74

14.2.3 Carry-Lookahead . 77

14.2.4 Other notes . 78

14.2.5 Signed Int . 78

14.2.6 2’s Comp . 79

14.2.7 Excess . 79

14.3 Multiplication . 79

14.3.1 unsigned . 79

14.3.2 2’s complement . 81

14.3.3 Systolic Array . 83

14.4 Integrated Examples . 83

14.5 Residue Arithmetic . 83

15 Floating Point 87

15.1 Fixed Point Numbers . 87

15.2 Floating Point Numbers . 88

15.3 IEEE 754 . 89

15.4 Rounding versus Chopping . 92

15.5 Evaluating a Polynomial . 93

IV Organization 95

16 Arithmetic Operations 97

16.1 Three Address Machines . 97

16.2 Two Address Machines . 97

16.3 One Address Machines . 98

16.4 Zero Address Machines . 98

16.5 Comparison Code . 98

17 Stack Machines 99

17.1 Affine Encryption Program . 100

17.2 Babylonian Algorithm . 102

18 Instruction Set Architecture 105

18.1 RISC vs. CISC . 105

18.2 Memory Access . 105

18.3 Branching . 105

19 Addressing 107

19.0.1 Arrays . 108

19.0.2 String Storage . 109

19.0.3 Structs . 109

6 CONTENTS

20 Subroutines 111

20.1 Basic Overview . 111

20.1.1 What needs to be passed? . 111

20.1.2 General Call Sequence . 111

20.2 Return Addresses in Leaf and Non-Leaf Subroutines . 112

20.3 Parameter Passing . 113

20.4 Register . 114

20.5 Parameter Block . 116

20.6 Stack . 117

20.7 Temperature Conversion . 118

21 MIPS Assembly 121

21.1 Registers . 122

21.2 Keeping Your Ends Straight . 122

21.3 Data Structures . 123

21.4 Register Passing . 123

21.4.1 Exponentiation by Multiplication . 123

21.4.2 Polynomial Evaluation . 124

21.4.3 Xor Encryption . 125

21.4.4 Bubble Sort . 126

21.5 Block Passing . 126

21.6 Stack Passing . 130

21.6.1 Towers of Hanoi . 131

21.6.2 Tracing Code . 133

22 Data Transfer 135

22.1 I/O . 135

22.2 Busses . 135

22.2.1 Synchronous/Asynchronous Transfer . 136

22.2.2 Polling and Interrupts . 137

23 Memory and Cache 141

23.1 Memory . 141

23.1.1 Endian . 142

23.2 Cache Design . 142

23.2.1 Neat Little LRU Algorithm . 145

23.2.2 Cache Performance . 146

23.3 Virtual Memory . 147

24 CPU Control 149

24.1 Tiny Accumulator . 149

24.2 GST ISA . 150

24.2.1 R Type Commands . 150

24.2.2 I Type commands . 150

24.2.3 B Type commands . 151

24.2.4 Commands . 151

24.2.5 Registers . 151

CONTENTS 7

V Performance 153

25 Performance 155

25.1 Cost . 155

25.2 Power, Energy, and Heat . 155

25.3 Performance . 156

25.4 Time . 157

25.5 Measuring CPU Time . 157

25.5.1 First Approximation . 158

25.5.2 Second Approximation . 158

25.6 Amdahl’s Law . 158

25.6.1 Alternate Approach . 159

25.6.2 Relating the CPIs . 162

25.7 Putting It All Together . 162

26 Instruction Level Parallelism 165

26.1 Trouble In Paradise . 165

26.1.1 Data Hazards . 165

26.1.2 Hazard Solutions . 166

27 Pipelining 169

27.1 Basic Architecture . 169

27.1.1 Calculating efficiency . 169

27.1.2 Branch Prediction . 171

27.2 Unrolling . 173

27.3 Unrolling, Part II . 173

27.4 Software Pipelining . 174

27.4.1 Example . 175

28 Tomasulo 177

28.1 Multiple Issue Tomasulo . 177

29 Thread Level Parallelism 183

29.1 Taxonomy . 183

29.2 Shared Memory . 183

29.3 Distributed Memory . 184

29.4 Performance . 185

VI Appendices 189

A Sample Computers 191

A.1 32 Bit Pipelined Computer . 191

A.2 One Command Computer . 194

A.3 Multiple Issue Machine . 197

CONTENTS 1

B Encryption 201

B.1 Modular Arithmetic . 201

B.1.1 Congruence . 201

B.1.2 Modulus . 201

B.1.3 Addition . 202

B.1.4 Additive Inverse . 203

B.1.5 Multiplication . 203

B.1.6 Multiplicative Inverse . 203

B.2 Affine Encryption Program . 204

C Projects for CSCI 313 207

C.1 Data Compression/Uncompression . 207

C.2 Postfix Expression Evaluator . 207

D Mini: ALU 209

D.1 Half Adder . 209

D.2 Full Adders . 210

D.3 Adder-Subtractor . 210

E Mini: Register File 213

E.1 Register File . 213

F Mini: Timing 217

F.1 Timing . 217

F.2 Assembling . 218

G 7400 Series Part Numbers 221

2 CONTENTS

Part I

Electronics

3

Chapter 1

Passive Components

1.1 Resistor

V = IR (1.1)

P = V I (1.2)

= I2R (1.3)

=
V 2

R
(1.4)

DC: R = l·ρ
A , where l is the length in meters, A is the cross sectional area in square meters and ρ is

the electric resistivity or specific electrical resistance in ohm-meters. This assumes the current density is

uniform.

b
!!a
a!

!b
222kΩ

T�
��L
LL�
��T

222kΩ

1.2 Capacitor

cV = q (1.5)

5

6 CHAPTER 1. PASSIVE COMPONENTS

When I took my physics E&M class my professor had an interesting way to remember equation 1.5. One of

his friends in college used a beer slogan, “Canadian Velvet is the Queen of beers”, as a mnemonic.

put(70,0)
0.01µf

0.01µf

1.3 Inductor

Symbol: L

Unit: Henry (volt sec/Amp)

ϕ = LI (1.6)

Note: ϕ is magnetic flux

1.4 Memristence

Memristors were first predicted in the 1970’s due to symmetry, but were first made in 2007. They have great

potential to revolutionize memory.

ϕ = M(q)q (1.7)

Thus, at some instant in time

V (t) = M(q(t))I(t) (1.8)

Note that M is not a constant, and in fact it is non-linear with hysteresis.

Chapter 2

Basic Laws

2.1 Coulomb’s Law

F =
kq1q2
r2

(2.1)

=
q1q2

4πε0r2
(2.2)

Note: Negative forces attract and positive repel.

Coulomb’s constant, k is given by

k =
1

4πε0
(2.3)

≈ 9× 109 [N ·m2/C2] (2.4)

2.2 Maxwell’s Laws

Maxwell’s four Laws have individual names:

Gauss’ Law of Electricity

Gauss’ Law of Magnetism

Faraday’s Law of Induction Basis of electrical generators and inductors

Ampere’s Law

The symbols used are:

E Electric field

B Magnetic field

D Electric displacement

H Magnetic field strength

ρ charge density

7

8 CHAPTER 2. BASIC LAWS

ε permittivity

ε0 permittivity of free space

µ permeability

µ0 permeability of free space

M Magnetization

i electric current

J current density

c speed of light, c = 1√
µ0ε0

.

P Polarization

k Coulomb’s constant, k = 1
4πε0

.

2.2.1 Gauss’ Law for Electricity

Integral Form ∮
E⃗ · A⃗ =

q

ε0
(2.5)

Differential Form

∇ ·D = ρ (2.6)

where D is

General Case D = ε0E + P

Free Space D = ε0E

Isotropic Linear Dielectric D = εE

2.2.2 Gauss’ Law for Magnetism

Integral Form ∮
B⃗ · A⃗ = 0 (2.7)

Differential Form

∇ ·B = 0 (2.8)

2.2. MAXWELL’S LAWS 9

2.2.3 Faraday’s Law of Induction

Simplified Form

V = −N∆(BA)

∆t
(2.9)

N number of turns in the coil

B Magnetic Field

A The cross sectional area (perpendicular to the magnetic field)

t Time

V Voltage or EMF (electro-motive force)

Integral Form ∮
E⃗ds⃗ = −dΦB

dt
(2.10)

= EMF (2.11)

Differential Form

∇× E = −∂B

∂t
(2.12)

2.2.4 Ampere’s Law

Integral Form ∮
B · ds = µ0i+

1

c2
∂

∂t

∫
E · dA (2.13)

Differential Form

∇×H = J +
∂D

∂t
(2.14)

where D is

General Case D = ε0E + P

Free Space D = ε0E

Isotropic Linear Dielectric D = εE

and H is

General Case B = µ0(H +M)

Free Space B = µ0H

Isotropic Linear Magnetic Medium B = µH

10 CHAPTER 2. BASIC LAWS

Chapter 3

Semiconductors

This will be a brief introduction to physical electronics. To properly study the field requires both quantum

and statistical mechanics. Perhaps one day I will write up a book on these topics and will then have the

background material available to show more of the why. For now I will attempt to give an understanding of

the key concepts and an explanation of how to solve for key values.

3.1 Energy Levels

In electronics we are concerned about three basic types of materials: insulators, semiconductors, and con-

ductors. Their properties come from the energy gap between their valence1 (energy level of the valence band

is denoted Ev) and conduction2 (energy level of the conduction band is denoted Ec) bands, and where the

Fermi energy3 (denoted Ef) lies with respect to them.

Conductors have a small energy gap between the valence and conduction band and the Fermi energy is at

or above the level of the conduction band. Charge carriers are readily available to carry current. This

is how they conduct.

Semiconductors have a small to mid sized gap and the Fermi energy lies in this gap. Charge carriers are

not readily available, but can be made to be available by other factors (temperature, electric field,

photons, donors/acceptors, etc.). This ability to conduct or insulate is the source of the name. We

break down semiconductors into different categories: intrinsic and extrinsic. Extrinsic is then broken

down into p or n type.

Insulators have a large energy gap between the valence and conduction band and the Fermi energy is

between them, though not close to the conduction band. This means charge carriers are very unlikely

available to move and thus carry current. This is how they insulate.

Quantum theory tells us that the electrons around an atom are in shells that have quantized energy values.

Further, due to the Pauli Exclusion Principle, no two electrons can have the same quantum numbers (n, l,

m, s), which also applies in systems of multiple atoms. As atoms come closer together the shells split so the

quantum numbers are unique between them.

1topmost filled band
2band above the valence band
3A formal discussion is beyond the scope, so I will try to give a simple explanation. In thermal equilibrium the Fermi energy

is the chemical potential, i.e. the amount the energy of the system changes when particles are added or subtracted from it. It
is a crucial element in determining the probability a state contains an electron. The Fermi energy can also be thought of as
the critical energy of the Fermi-Dirac distribution (the energy at which the probability is 0.5). Note the Fermi energy is always
greater than the energy of the highest filled band.

11

12 CHAPTER 3. SEMICONDUCTORS

Table 3.1: Semiconductors in the Periodic Table and Intrinsic Semiconductor Properties
IB IIB IIIA IVA VA VIA

5 6 7 8
B C N O
13 14 15 16
Al Si P S

29 30 31 32 33 34
CU Zn Ga Ge As Se
47 48 49 50 51 52
Ag Cd In Sn Sb Te
79 80 81 82 83 84
Au Hg Tl Pb Bi Po

Material Symbol Eg[eV] B[cm−3K−3/2]
Gallium Arsenide GaAs 1.42 2.10× 1014

Germanium Ge 0.66 1.66× 1015

Silicon Si 1.12 5.23× 1015

Figure 3.1: Silicon crystal structure

Si Si Si Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

3.2 Intrinsic Semiconductors

Intrinsic semiconductors are materials that semiconduct in and of themselves. They come in two varieties,

elemental (Si, Ge) and compound (GaAs, InP, etc.), which simply tells you if the material is an element or a

compound (made of several elements). Elemental semiconductors come from column IVa of the periodic table,

see Table 3.1, as they have half their outer s and p sub-shells filled. Compound intrinsic semiconductors are

compounds that behave like elemental intrinsic semiconductors, as they are formed by bonding elements on

either side of column IVa. I will mostly discuss elemental, though the principles are the same for compound

intrinsic semiconductors.

These are (and must be) pure materials, as even a small amount of impurities will cause them not to

work. Most modern semiconductors are extrinsic4, so I will just give a brief overview. At room temperature,

Fermi-Dirac statistics shows the gap between valence and conduction band must be on the order of 1 electron

volt or less. Several materials meet this requirement, such as gallium arsenide (GaAs, 1.42 eV), Silicon (Si,

1.12 eV), and Germanium (Ge, 0.66 eV). The electrons promoted to the conduction band leave behind

holes in the valence band, and current is carried by both the flow of electrons in the conduction band and

4This is due to the excessive cost and difficulty of making a pure or nearly pure material.

3.2. INTRINSIC SEMICONDUCTORS 13

holes in the valence band. The flow of the electron-hole pairs (in opposite directions) is the mechanism

of current. Essentially the electron-hole movement is the same for extrinsic semiconductors also, but for

extrinsic semiconductors these need not be equal (and are not).

The number of electrons available in the conduction band is given by

ne = 2

(
2πm∗

nkT

h2

) 3
2

e

(−(Ec−Ef)

2kT

)
(3.1)

= BT
3
2 e

(−(Ec−Ef)

2kT

)
(3.2)

Since the number of electrons in the conduction band and the number of holes in the valence band are

equal in an intrinsic semiconductor, we will just consider the density of the intrinsic carriers (either electron

or hole), ni.

ni = BT
3
2 e

(
−Eg
2kT

)
(3.3)

The temperature in Kelvin is T . The values of B and Eg are dependent on the material, and are provided

for our top three intrinsic materials in Table 3.1.The Boltzmann constant, k, is 86× 10−6[eV/K].

Example 1 What is the carrier density of Germanium at room temperature?

Answer:

Room temperature is not a well defined term, meaning it is not a set temperature. Roughly it could vary

from 65◦F to 85◦F, or in kelvin, from 291K to 303K. For ease of calculation, we will choose 300K to be room

temperature.

ni = BT
3
2 e

(
−Eg
2kT

)
(3.4)

= 1.66× 1015 · 300 3
2 e

(
−0.66

2·86×10−6·300

)
(3.5)

≈ 2.40× 1013[cm−3] (3.6)

To make life easier in calculating this, I usually use a small SciLab program, see Code 3.1.

Listing 3.1: SciLab code to calculate intrinsic carrier density.

//Setup
GaAs=1;
Ge=2;
S i =3;
Eg = [1 . 4 2

0 .66
1 . 1 2] ; //eV

B = [2 . 1 E14
1 .66E15
5 .23E15] ; //cmˆ{−3}Kˆ{−3/2}

k=86E−6;//eV/K

// user s e l e c t i o n s
T=300;//Kelv in
mate r i a l = Ge ;

n i = B(mate r i a l) ∗ Tˆ1.5 ∗ exp(−Eg(mate r i a l) / (2∗k∗T)) // in cmˆ{−3}

14 CHAPTER 3. SEMICONDUCTORS

Figure 3.2: P Type Silicon crystal structure

Si Si Si Si

Si Si Ga

Si Si

Si Si Si Si

Si

3.3 Extrinsic Semiconductors

Extrinsic semiconductors are made by adding an impurity into the crystallin structure that is chosen to

provide an extra electron above the valence band (a donor or n type), or to provide a deficiency of electrons

(an acceptor or p type). Since the charge carriers (electrons and holes) are no longer balanced, we need to

be able to calculate how many of them there are. A basic relationship is

nenh = n2
i (3.7)

where ne is the thermal equilibrium concentration of free electrons, nh is the thermal equilibrium concentra-

tion of holes, and ni is the intrinsic carrier density. Provided the concentration of the dopant is greater than

the intrinsic carrier density, we can approximate the number of carriers of the type provided by the dopant

by the concentration of the dopant. We will denote the dopant concentration by Nn for n type materials

and Np for p type materials.

3.3.1 P Type Semiconductors

If an element like gallium or boron is doped, which has only 3 electrons in its outer shell of up to 8, into the

crystallin structure of say silicon, which has 4 electrons in its outer shell of 8, a gap in the bonding is formed,

see Figure 3.2. The outer shell of the gallium and the bonded silicon is just one shy of completing and thus

it is already free to conduct a hole by stealing an electron from a neighbor. In terms of energy bands, the

energy of this “hole” (usually denoted Ea) is very close to (but above) the energy of the valence band. The

Fermi energy is thus close to the valence band, which means there will not be lots of free electrons, so the

only free carriers are these holes5.

3.3.2 N Type Semiconductors

5In truth the hole is the spot where the electron is missing (and thus not an actual thing), but since this means that the
atom that is missing it is ionized (positive in the case of a lack of an electron), it appears that a positive charge is flowing. This
is governed by statistical mechanics and so it is not possible to track the actual electron. Like it or not, holes are a reasonable
description of how the charge is carried.

3.3. EXTRINSIC SEMICONDUCTORS 15

Figure 3.3: N Type Silicon crystal structure

Si Si Si Si

Si Si As

Si Si Si Si

Si Si Si Si

Si

16 CHAPTER 3. SEMICONDUCTORS

Chapter 4

Diodes

Up till now we have considered individual semiconductors, now we want to consider what happens when we

put two next to each other. By placing a p region next to an n region, holes start diffusing from the p region

to the n region, and electrons start diffusing from the n region to the p region. This does several things.

• First, it locks up the charge carriers, so that there are not any available to carry current. For this

reason it is called the depletion region.

• Second, it causes a charge differential across the boundary, which is called the potential barrier, Vbi.

The potential barrier resists the further diffusion of charge carriers, because the depletion region in the

n material is slightly positive, and the depletion region in the p region is slightly negative, resulting in

an induced E-field from n to p. The potential barrier is given by

Vbi =
kT

e−
ln

(
NnNp

n2
i

)
, (4.1)

where, e− is the electron charge1. We often lump kT
e− into a term called the thermal voltage, VT , which

is approximately VT ≈ 0.026 [V] at T = 300 [K].

• Third, the charge differential acts like a capacitor (it is storing charge). The nominal (or zero applied

voltage) junction capacitance (or depletion layer capacitance), is given by, Cj0 and is usually around

a pico Farad (pF).

4.1 Reverse Bias

If we apply a voltage, such that the positive terminal is connected to the n material, and the negative

terminal to the p material, the applied electric field, EA, is in the same direction as the electric field of the

potential barrier. This causes the depletion region to grow, because the free electrons in the n material are

drawn to the positive terminal and the free holes in the p material are drawn to the negative terminal. The

larger depletion region prevents charge from flowing so the diode is off. The reverse bias also effects the

junction capacitance.

Cj = Cj0

(
1 +

VR

Vbi

)−0.5

(4.2)

1I am putting a minus sign in the exponent to distinguish the electron charge from the natural logarithm base. Thus I will
put a plus in the exponent if I want to speak of the charge of a proton. The value of e− = 1.60217648710−19 [coulombs], which
can also be calculated by e− = F

NA
, where F is Faraday’s constant (9.64853399x104 [C/mol]) and NA is Avogadro’s Number

(6.02213667x1023 [1/mol]).

17

18 CHAPTER 4. DIODES

with VR the reverse bias voltage. Note the larger the larger the applied voltage the smaller the capacitance,

which is due to the increased width of the depletion region (wider the region the lower the capacitance).

Chapter 5

Binary Junction Transistors

Characteristic Common Base Common Emitter Common Collector
Input impedance Low Medium High
Output impedance Very High High Low
Phase Angle 0◦ 180◦ 0◦

Voltage Gain High Medium Low
Current Gain Low Medium High
Power Gain Low Very High Medium

19

20 CHAPTER 5. BINARY JUNCTION TRANSISTORS

Chapter 6

Field Effect Transistors

6.1 Ideal Behavior

A Field Effect Transistor (FET) is in one sense essentially a capacitor, and thus it is governed by

CV = Q (6.1)

Cgb(Vgc − Vt) = Qchannel (6.2)

where,

• Cgb is the capacitance between the gate and the body, this is often just called the gate capacitance.

• Vgc is the Voltage between the gate and the channel. Note that Vc = Vds/2, so Vgc = Vgs− Vds/2.

• Vt is the threshold voltage, i.e. the minimum voltage to cause an inversion layer to form.

• Qchannel is the charge carries available in the channel to conduct.

The more charge carriers, Qchannel, the easier the current will flow, so calculating this is an essential step to

quantitatively analyzing a FET. First we need to find out what our capacitance, Cgb is, this is done by

Cgb = εox
WL

tox
(6.3)

= 3.9ε0
WL

tox
(6.4)

• εox is the permittivity1 of the insulating oxide layer. Note: the 3.9 is the relative permittivity of silicon

dioxide compared the the permittivity of free space. Relative permittivity is denoted εr, and varies by

material, frequency, temperature, and sometimes even direction. We will treat it as a constant, which

is ok for our operating situation.

• ε0 is the permittivity of free space (8.85× 10−14 [F/cm]).

• W is the width of the gate (along source and drain).

• L is the length under the gate (between source and drain).

1Permittivity is the resistance to forming an electric field.

21

22 CHAPTER 6. FIELD EFFECT TRANSISTORS

Now we want to get the current flowing in the channel, but that means we need to know how fast they are

moving. In a semiconductor the velocity of the charge carrier, vc, is given by

vc = µcE (6.5)

= µc
Vds

L
(6.6)

where µc is the mobility of the charge carrier. The length of the channel divided by the velocity of the

carriers, gives us the time for a charge to cross the channel, Tchannel. The total charge in the channel divided

by this time is then the current.

ids =
Qchannel

Tchannel
(6.7)

=
Cgb(Vgc − Vt)

L
vc

(6.8)

=
3.9ε0

WL
tox

(Vgc − Vt)
L

µc
Vds
L

(6.9)

= 3.9ε0
W

tox
(Vgs − Vt)µc

Vds

L
(6.10)

=
3.9ε0
tox

µc
W

L
(Vgc − Vt)Vds (6.11)

=
3.9ε0
tox

µc
W

L
(Vgs − Vt − Vds/2)Vds (6.12)

6.2 Amplification

iDS =
k

2
(VGS − VT)

2 (6.13)

if VDS ≥ VGS − VT ≥ 0.

Chapter 7

Logic Families

There are a great many logic families in use today. Probably the most famous is the TTL family, though it

has largely been replaced by CMOS families. Even so, there are reasons for using different families (power,

current, voltage, static, noise rejection, bus design, etc.). In the following sections we will examine some of

the more well known families, their advantages, and how to interface them.

7.1 Diode Logic

Diode Logic (DL) uses diodes and resistors to implement logic gates. DL is a simple but old technology

not used in integrated circuits. They are helpful to understand, as they are similar in some ways to later

families. DL only has and and or gates.

Consider the circuit in Figure 7.1. If either in1 or in2 is high, the corresponding diodes (D1 or D2

respectively) turns on, making the output high. Since the output will be about 0.6v less than the input

you can’t put too many of these in series before the logic level drops below useful levels. If both inputs are

off then both diodes don’t conduct and the resistor to ground (R1) pulls the output down to a low output

(hence the name pull down resistor). The circuit is thus an or gate.

Now consider the circuit in Figure 7.1. If either in1 or in2 is low, the corresponding diodes (D1 or D2

respectively) turns on, making the output low, though it will be about 0.6v higher than the inputs so just

like with the or gate, you can’t do too many of these in series. If by inputs are high, then both diodes are

off and the output is isolated from the input. The resistor to Vcc pulls the output up (hence the name, pull

up resistor). The gate is thus an and gate.

Figure 7.1: Diode Logic (a) Or Gate and (b) And Gate.
(a) (b)

23

24 CHAPTER 7. LOGIC FAMILIES

Figure 7.2: Diode Transistor Logic Nand Gate.

Figure 7.3: Transistor Transistor Logic Nand Gate.

7.2 Resistor Transistor Logic

Resistor Transistor Logic, (RTL) replaces the diodes of DL with transistors, which allowed for negation.

This is thus the first full logic family.

7.3 Diode Transistor Logic

7.4 Transistor Transistor Logic

Transistor transistor logic (TTL) is arguably the most famous logic family. It has been used for around

40 years, and can still be purchased today. It is reasonably fast, has good noise rejection, and has good

protection from static. A large number of interfaces are TTL compatible, so even when the components are

not used, its design implications are still felt. The venerable 7400 and 5400 (milspec1) series are the most

famous TTL components, and they have been used widely in engineering labs since I was in school way back

when... If you want to see what components were in the series, see Appendix G.

7.4.1 Open Collector Outputs

If you noticed in earlier logic families, typically the collector of the output transistor is connected to power

by a pull-up transistor, and without it the “high” output would not function correctly (it would be a weak,

floating high). Since all the outputs use one, you could omit the resistor, and then wire the outputs together,

and put an external pull-up. Such an output is “open collector” and they allow you to do active-low wired-OR

1Milspec means it is built to military specification, which would be enough to be noteworthy, but milspec parts are useful
in hazardous environments, such as space, marine (water and saline), industrial fabrication environments, extreme temperature
ranges, etc.

7.5. CMOS FAMILIES 25

Figure 7.4: Transistor Transistor Logic Nand Gate with Open Collector Output.

and active-high wired-AND functionality. Wired gates are “gates” formed by wiring the outputs together,

so you get a free gate. If you were to try this with driven outputs, you would get a short as both high and

low are typically driven. Open collector outputs are generally slow, but proper resistor selection can improve

things, and you can get two levels of logic for one level, which also saves time. I would advise against them

unless you really know what you are doing and why. If you need to use them, the pull-up resistor is generally

sized by calculating the minimum and maximum values per below.

Rmax =
min (Vcc)− VOH∑

max (IOH) +
∑

max (IIH)
(7.1)

Rmin =
max (Vcc)− VOL

IOL −
∑

max (IIL)
(7.2)

where, Vcc is the supply voltage, VOH is the high output voltage of the gate, IOH is the high output current

for every gate whose outputs are connected to the pull-up resistor, IIH is the high input current of every

gate whose input is connected to the pull-up resistor, IOL is the low output current of the gate, and IIL is

the low input current for every gate hooked to the pull-up resistor. This might look fancy, but it is actually

just Ohm’s law (R = V/I in this case), where the voltage is the difference from the output to the supply,

and the current must consider all the possible currents. We then maximize the top and minimize the bottom

and vice versa to get our extreme cases. Memorizing this would be tough, understanding it is easy and from

this it can be easily recreated.

7.4.2 Totem Pole Outputs

Instead of trying to take advantage of wired logic through a pull-up, we could consider how can we make the

outputs switch as fast as possible. To do this we would need to pull up and down with separate transistors,

so that we could quickly drive the output high or low. This is what totem pole outputs does. It is called

totem pole outputs because the output transistors are on top of each other like a totem pole.

7.4.3 Tristate Outputs

7.5 CMOS Families

7.6 Interfacing

There are a lot of logic families out there so I will only cover the most common ones in this section, the rest

can be handled in similar ways, you just need to know the standard considerations of voltages (not just min

and max but also the logic levels), current (input and output at high and low levels), impedance (not always

26 CHAPTER 7. LOGIC FAMILIES

Figure 7.5: Transistor Transistor Logic Nand Gate with Totem Pole Output.

Figure 7.6: Transistor Transistor Logic Nand Gate with Tristate Output.

7.6. INTERFACING 27

needed but can be important on bus lines and such), floating outputs (high, low, or not at all), timing (rise

time, fall time, latency, etc.), and data rates (really this is an implication of timing, but it is big enough to

be mentioned separately). It is helpful to know if the circuits you are interfacing are switching ground or

power, as you can make a more reliable circuit using this information (i.e. you do the same in your circuit,

which will be more compatible and thus also more reliable as it will not run into as many glitches caused by

misreading a voltage level.). The basic requirements to call two chips compatible are:

Driver Output Load Input
VOHmax < VIHmax

VOHmin > VIHmin

VOLmax < VILmax

VOLmin > VImin

−IOHmax > IIHmax

IOLmax > −IILmax

The first two rows require that the high (true in positive logic) output voltage range must be contained

in the high input voltage range, so that any H produced is correctly received. The next two lines do the

same thing for the low values. The last two are to ensure that the driving chip can supply the needed

current for a H and sink the needed current for a L. Note the negative signs are present because they flow

out of the corresponding terminals rather than in. Level shifters can be placed between to meet voltage

requirements, or current amplifiers/buffer stages can be used to meet current requirements. Typically, the

first requirement is met by keeping the supply voltage the same, provided they can both take the same

supply voltage. Similarly the fourth requirement is met by providing both the same ground. The last two

requirements need to be verified for the entire load they are driving (fan-out and fan-in problems).

Before you design a circuit to interface, you should check if there is a device that already does the

interfacing. In many cases there are devices designed for interfacing. For instance, between the old TTL

family and the newer CMOS families (C, HC, AC, ACH, etc.), there are T versions (CT, HCT, ACT, ACHT,

etc.) that can drop in replace the old TTL components, or one of the T devices can sit between the families

and convert (say a buffer or two inverters). This is by far the easiest way to do the conversion, and I would

do it this way unless forced to do otherwise. It is useful to know how to convert, should you ever have to, so

below are the basics.

If you are straight converting signals, you often want to go through two inverters2, as these devices as

they are often used for this purpose, they are frequently designed to handle input and output. Note that

you do not have to use inverters, they are a protection layer. The inverters serve as sacrificial elements (one

for each logic family) to protect the circuits they are interfacing. Frequently you put them and any other

interfacing hardware on a shim board, then if anything gets damaged it is the shim, not the original circuit.

Let’s pick up the case mentioned above, where we wanted to go from an old TTL output to a newer

CMOS input (say from a 74LS to a 74HC), but assume for some reason, we didn’t just want to us a 74HCT

to interface. We would need three circuit elements: a but would also need a pull up resistor of about 1k

between them for two reasons. First, the voltage levels are incompatible, particularly at the high range,

and the pull up solves this. Second, the pull up resistor is used to guarantee the input does not stay in the

2The inverters buffer the input. Don’t use an actual buffer because a buffer is slower than an inverter, so buffers should be
avoided unless absolutely needed. Basically, you put an inverter of the same logic type of the output immediately after the
output and an inverter of the same logic type as the input immediately before the input.

28 CHAPTER 7. LOGIC FAMILIES

dangerous 0.8v to 2.0v range3. To calculate the pull-up resistor more precisely you can use

Rpull−up ≥ Vccmax− VTTL Low Output

ITTL Low Output + (num inputs)ICMOS Low Input
(7.3)

Rpull−up ≤ Vcc − VCMOS Input High

(num inputs)ICMOS Input High
(7.4)

Usually the minimum value is in the mid to high hundreds so a 1k resistor is a good guess up till about

num inputs = 8, past that I would guess 2k till about num inputs = 16, I would not drive more than 16

gates directly with anything at the moment (theoretically you can but current, heat, and transients become

big problems). The input current of CMOS devices is very small, so it can usually be ignored in the lower

bound, and will cause the upper bound to be large (but finite). As the number of devices grows it cannot be

ignored and at around num inputs = 18 there is a crossover, thus no pull-up resistor will work. You should

calculate the minimum and maximum for any problem to ensure there is a feasible region and you are in it.

Depending on the circuit, you might also have to guarantee a particular rise time (the second reason we

wanted a pull-up). In this case we have a simple first order4 equation

VCMOS Input High = VCC

(
1− e

− t
C·Rpull−up

)
(7.5)

where t is the desired rise time, and C is the total capacitance of the circuit, which is the sum of the output

capacitance of the driving circuit, the input capacitance of the receiving circuits, and the capacitance of

the line (often negligible but not always, it is probably about 1pF/cm). You can solve this for the value

of Rpull−up. All of this assumed open-collector output (nothing driving high). If something is driving the

circuit high, the pull-up resistor only has to account for the missing voltage. For instance totem pole output

(typical for many TTL such as the LS family logic gates) is driven to at least 2.7 volts in around 10ns. Given

some driven output voltage the equation for the pull-up resistor is

VCMOS Input High − VDriven Output = (VCC − VDriven Output)
(
1− e

− t
C·Rpull−up

)
. (7.6)

Again solve for Rpull−up and then ensure it falls between the minimum (Eq. 7.3) and maximum (Eq. 7.4).

If we were going the other way, we could just directly connect them, as long as we were in the fan-out

restrictions, which is at least 10 gates for LS-TTL or 2-4 gates for TTL. Often designers put an additional

CMOS buffer, say a 4096, for timing input to the slower TTL circuits. Note the data rates must be

compatible, or no buffer will be able to solve incompatible data rates for continuous data streams.

As an interesting side note TTL at 5v is directly compatible, both ways with CMOS at 3v. Fan in and

out restrictions still apply.

It is worth noting that CMOS has a wide range of voltage operation, so it is not uncommon to have to

convert voltage ranges. Resistor voltage dividers are common for going down, and amplifier circuits, such

as an open drain CMOS device with a pull-up resistor. As a particularly interesting case is ECL, which is

usually run between 0v and -5.2v so the voltage differences and potential logic inversions need to be handled,

or you can just run the CMOS from the same supply, and then just use diodes on the interface for protection.

3In the transition voltage range the P-channel to Vcc and the N-channel to ground can both be open, creating a path from
Vcc to ground. This causes a current spike which can damage circuits if it is around too long. This happens every transition
between high and low, but in the new CMOS families transitions are so fast the time of current spike is thus so short it does
not effect things. The TTL output is slower and thus can allow significant damage. A pull up (or pull down if you want the
default low) resistor solves this problem.

4This is the solution of a first order derivative equation for the rise time of a driven RC circuit. Theoretically they covered
a lot of this in your physics sequence.

Part II

Digital Logic

29

Chapter 8

Boolean Algebra

Our goal is to design circuits, to do this we need to understand how the different circuit elements interact

together to produce an output. A function can be described in three basic ways: algebraically, graphically,

and by a table of values. Algebraically is usually thought of as the preeminent method as it covers every

value precisely. While graphs are theoretically precise it is difficult to do it in practice. While tables are

precise they are not exhaustive. When we deal with boolean values as opposed to numbers, graphs make no

sense but tables are now exhaustive as there are only finitely many values. Proof by table is thus a legitimate

technique in Boolean algebra. As a side note Boolean algebra derives its name from its systematizer, George

Boole.

8.1 Postulates and Theorems

Boolean algebra has many similarities with the regular algebra you are used to. In fact all the usual properties

like commutativity, distributivity, and associativity are present, and a few new ones to boot. Some important

notes are in order before we get in too far.

• Primal refers to the properties of “or”, which is the analog of addition hence the “+”.

• Dual refers to the properties of “and”, which is the analog of multiplication hence“·”.

• You will notice there are “primal” and “dual” versions of all the properties, which is different than

with regular algebra. For instance if the primal (+) distributive property was true for regular algebra

and say a = 5, b = 2, and c = 3 then 5 + 2 · 3 = 11 = (5 + 2) · (5 + 3) = 56. The dual distributive

property is the one you are used to.

• Some properties exist as only special cases in regular algebra. For instance, the primal idempotent

property works in regular algebra only if a=0, and the dual idempotent property works in regular

algebra for 0 and 1.

• Some properties are gone, for instance both the inverses (additive, −a, and multiplicative, 1
a) don’t

exist. They are replaced by the concept of a complement, which does not exist in regular algebra.

31

32 CHAPTER 8. BOOLEAN ALGEBRA

Name Primal Dual
Commutativity a+ b = b+ a a · b = b · a
Distributivity a+ (b · c) = (a+ b) · (a+ c) a · (b+ c) = (a · b) + (a · c)
Identity 0 + a = a+ 0 = a 1 · a = a · 1 = a
Complement a+ a′ = 1 a · a′ = 0
Associativity (a+ b) + c = a+ (b+ c) (a · b) · c = a · (b · c)
Idempotent a+ a = a a · a = a
Involution (a′)′ = a
Absorbtion a+ a · b = a a · (a+ b) = a
(special case) 1 + b = 1 0 · b = 0
Simplification a+ a′ · b = a+ b a · (a′ + b) = a · b
DeMorgan’s Law (a+ b)′ = a′ · b′ (a · b)′ = a′ + b′

8.2 DeMorgan’s Law

DeMorgan’s Law is probably the most useful theorem in the table. DeMorgan’s Law is the basis of our use of

only one gate (either “nand” or “nor” can be that one gate) to design actual circuits. I don’t want to make

my notes purely a mathematical proof record, but it is important to be able to prove things. If you can’t

prove something, you don’t understand it. Note that knowing a proof is also insufficient in and of itself, you

need to know how to prove it and how to use it. I will prove DeMorgan’s algebraically as I want to do the

general statement, which has arbitrary numbers of variables which can’t be represented simply in a table.

The most general statement of DeMorgan’s Law is

(a1 + a2 + a3 + . . .+ an)
′ = a′1 · a′2 · a′3 · . . . · a′n (8.1)

and

(a1 · a2 · a3 · . . . · an)′ = a′1 + a′2 + a′3 + . . .+ a′n (8.2)

Proof:

The proof will be by induction on 8.1.

1. (Basis) Show that (a1 + a2)
′ = a′1 · a′2.

By definition of complement, a+a′ = 1 and a·a′ = 0. DeMorgan’s Theorem states that the complement

of (a1 + a2) is (a
′
1 · a′2) so

(a) First requirement: a+ a′ = 1

(a1 + a2) + (a′1 · a′2) = (a′1 + (a1 + a2)) · (a′2 + (a1 + a2)) distributivity

= (a′1 + a1 + a2) · (a′2 + a1 + a2) associativity

= (a′1 + a1 + a2) · (a′2 + a2 + a1) commutativity

= ((a′1 + a1) + a2) · ((a′2 + a2) + a1) associativity

= (1 + a2) · (1 + a1) definition of complement

= 1 · 1 Absorbtion special case

= 1 Idempotent

Thus they satisfy the first part of the definition.

8.2. DEMORGAN’S LAW 33

(b) Second requirement: a · a′ = 0

(a1 + a2) · (a′1 · a′2) = (a1 · (a′1 · a′2)) + (a2 · (a′1 · a′2)) distributivity

= (a1 · a′1 · a′2) + (a2 · a′1 · a′2) associativity

= (a1 · a′1 · a′2) + (a2 · a′2 · a′1) commutativity

= ((a1 · a′1) · a′2) + ((a2 · a′2) · a′1) associativity

= (0 · a′2) + (0 · a′1) complement

= 0 + 0 Absorbtion special case

= 0 Absorbtion special case

Thus they satisfy the second part of the definition and are therefore complements of each other.

2. (Inductive Step) Assume it works for (a1 + a2 + a3 + . . .+ an−1)
′ = a′1 · a′2 · a′3 · . . . · a′n−1 and show it

thus works for (a1 + a2 + a3 + . . .+ an)
′ = a′1 · a′2 · a′3 · . . . · a′n

(a1 + a2 + a3 + . . .+ an−1 + an)
′ = ((a1 + a2 + a3 + . . .+ an−1) + an)

′ associativity

= (a1 + a2 + a3 + . . .+ an−1)
′ · a′n basis

= a′1 · a′2 · a′3 · . . . · a′n−1 · a′n induction hypothesis

♢ SDG ♢

Example

Verify the following by both algebra and truth tables.

A+A′ ·B = B +B′ ·A

Sol:

A+A′ ·B = A · 1 +A′ ·B
= A · (B′ +B) +A′ ·B
= A ·B′ +A ·B +A′ ·B
= A ·B′ + (A+A′) ·B
= A ·B′ + 1 ·B
= A ·B′ +B

= B +B′ ·A

A B A′ ·B A+A′ ·B
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 1

A B B′ ·A B +B′ ·A
0 0 0 0
0 1 0 1
1 0 1 1
1 1 0 1

Notice the truth tables are the same for A+A′ ·B and B +B′ ·A, so they are equal.

34 CHAPTER 8. BOOLEAN ALGEBRA

8.3 Gates

Name Expression Symbol Truth Table

Not z = x′ ��
QQ c x x′

0 1
1 0

And z = x · y

�

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

Or z = x+ y

�
�

x y x+ y
0 0 0
0 1 1
1 0 1
1 1 1

Nand z = (x · y)′
�
c

x y (x · y)′
0 0 1
0 1 1
1 0 1
1 1 0

Nor z = (x+ y)′

�
�
c
x y (x+ y)′

0 0 1
0 1 0
1 0 0
1 1 0

Xor z = x⊕ y

�
�	�

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

Xnor z = x⊙ y

�

x y x⊙ y
0 0 1
0 1 0
1 0 0
1 1 1

8.3. GATES 35

A B F
al
se
,
G
ro
u
n
d

A
·B

,
A
n
d

A
;

B
,
N
eg
a
te
d
Im

p
li
ca
ti
on

,
a
n
d
n

A B
;

A
,
N
eg
at
ed

Im
p
li
ca
ti
on

,
n
o
rn

B A
⊕
B
,
X
or

A
+
B
,
O
r

A
+
B
,
N
or

A
⊙
B
,
E
q
u
iv
,
X
n
or

B
,
N
ot

B
=
⇒

A
,
Im

p
li
ca
ti
on

,
or
n

A
,
N
o
t

A
=
⇒

B
,
Im

p
li
ca
ti
on

,
n
an

d
n

A
·B

,
N
an

d

T
ru
e,

P
ow

er

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

36 CHAPTER 8. BOOLEAN ALGEBRA

Chapter 9

Logic Conventions

In a standard digital logic course, a usual starting point is to associate a high voltage, say 5v or 3.3v, with

true (1), and a low voltage, usually ground, with false (0). The purpose of this chapter is to blow that

assumption out of the water. We really have two completely different things we need to associate some way.

One is a system of logic, composed of truth (1), falsehood (0)1, and logical gates. The other system is a

physical one of high voltages (Vcc or Vdd), low voltages (ground), and hardware devices that operate off

these voltage values.

Ideally we would like a system that allows us to look at the logic without having to think about the

hardware, or to look at the hardware without thinking about the logic. Mixed logic allows us to do this. To

use it we will design the logic as we normally would, without any thought of the hardware that we will use

to implement. When we go to select the devices to implement the logic gates, we will use mixed logic to

give us flexibility in the selection of devices, by strategically and consistently changing the logic convention

in place at different locations in our design. As long as we do this we will not change the logic of our design.

I need to take a little pedantic aside, because the term logic convention, which is standardly used to

refer to the association of logic values to voltage values has an unintended implication that seems to confuse

people. Logic convention causes people to think that the voltages are preserved but the logic is changing,

which is no problem for analysis but causes unnecessary confusion in design. We could have used the term

voltage convention to refer to the same think because it is a design oriented term, i.e. it does not suggest

you are changing your logic, you are changing your voltage associations, but then people would get confused

in design. Once you become used to a term you are fine, but it is the learning I care about, and it is for

this reason I suggest logic-voltage convention (LVC). LVC does not have any connotation toward design or

analysis, and thus I hope will cause people to understand it better and use it more.

9.1 Logic-Voltage Conventions

The first LVC is positive logic, which is what most digital logic students think is the only one there is. Positive

logic is also called active-high, which is more in keeping with my pedantic aside from the introduction. See

Table 9.1.

The second LVC is negative logic, which becomes important in developing the other two canonical forms

in Section 9.2. Negative logic is also called active-low, which is more in keeping with my pedantic aside from

the introduction. See Table 9.2.

The final LVC is mixed logic, which uses either positive or negative logic rules on a wire by wire basis.

The key to using this is to have a system of marking the wires and the signal names so you can tell which

1These associations of true with 1 and false with 0 are conventions also, and we could play with them also, but we will leave
that off to a discussion of math for another book.

37

38 CHAPTER 9. LOGIC CONVENTIONS

Table 9.1: Positive Logic/Active-High
Logic Voltage
F L
T H

Table 9.2: Negative Logic/Active-Low
Logic Voltage
F H
T L

convention is in place.

• The traditional way to mark wires for positive logic (active-high) was to do nothing, i.e. just draw the

wire. The new (from 1984) IEEE standard has us put a flag on top of the wire at each end that points

in the direction of flow (into the device for inputs, out of the device for outputs), and is associated

with the term active-high. The flags look like a small right triangle with the base formed by the wire

and the hypotenuse pointing in the direction of the flow.

• Positive logic wire/signal names have a ‘.H’ or ‘.h’ appended to it. Some people append either a ‘+’

or a ‘↑’ but I find this more tedious. A final convention puts a lower case p in front. In other cases

nothing is added to the name for these, and the absence lets you know the convention, though this is

error prone as you can’t tell if the signal was just missed in the naming. I suggest you use the ‘.h’ to

be clear.

• Wires that use the negative logic convention have an open circle on all ends with the classic logic

shapes. Active-low flags (open arrow, only on the lower part, pointing in the direction of signal travel)

are used interchangeably with negative logic bubbles, though you should pick a convention and stick

with it. The flags look like a small right triangle with the base formed by the wire and the hypotenuse

pointing in the direction of the flow.

• Negative logic (active-low) name/signal has a ‘.L’ appended. Some people also append: a ‘−’, a ‘↓’, a
‘#’. Other notations put leading symbols of a ‘n’ or a slash, ‘/’, which is designed to look like an bar

over the signal, which is the final way. I don’t like the overbar or slash as it is easily confused with

not, though it is the most common2. The ‘_B’ notation is confusing as it could mean byte in other

contexts.

In general the bubbles go with the classic logic shapes, and the arrows go with the new IEEE 91-1984

standard, which calls for boxes with symbols. Mixed logic is much more flexible in the ability to use other

hardware devices to implement gates. One way of thinking of this is that we can implement a logic function

with a variety of hardware devices, or put the other way one hardware device can implement a variety of

logic gates. This is easiest to explain by an example.

Example 2 Say we need a ‘not’ gate. With either positive or negative logic we have only one choice, but

consider mixed logic. We could have the input as either positive or negative and a similar but independent

choice for the output. This means we have four possible mixed conventions. But how many devices? Is this

only an illusion of choice?

2It is an inconsistent use of the bubbles and slashes that causes so much confusion in digital logic students, so I will avoid
them. Hopefully when you feel comfortable with the conventions you will then have no problem reading the highly overloaded
syntax that is commonly used.

9.1. LOGIC-VOLTAGE CONVENTIONS 39

1. Positive logic to positive logic

Logic In Voltage In Voltage Out Logic Out
F L H T
T H L F

This requires a voltage inverter, which is what most people think a ‘not’ gate is.

2. Negative logic to negative logic

Logic In Voltage In Voltage Out Logic Out
F H L T
T L H F

This also requires a voltage inverter, so no new requirement is added.

3. Positive logic to negative logic

Logic In Voltage In Voltage Out Logic Out
F L L T
T H H F

The voltage is already correct so only a wire is needed to connect them. We now have something new,

a ‘bare wire not’. Think about this for a second, we have a wire that can do logical negation. That is

pretty cool.

4. Negative logic to positive logic

Logic In Voltage In Voltage Out Logic Out
F H H T
T L L F

Again the voltages are correct so only a wire is needed.

Our four logic combinations gave us two different devices (inverter or bare wire) that could fulfil our needs,

depending on the convention picked. That is one more than with either straight positive logic or straight

negative logic, which yielded the same one possibility (inverter) as each other. The increased design flexibility

is important in a real design situation.

Now lets try from a different perspective. The last example started with a requirement on the logic and

found what devices could work, now let’s start with the device and find out what it can do for our logic.

Example 3 The voltage characteristics of an inverter is
Voltage In Voltage Out

L H
H L

Now we just have to add the interpretation, i.e. the logic convention. We have four possibilities for a

single input, single output.

1. Positive logic to positive logic

Logic In Voltage In Voltage Out Logic Out
F L H T
T H L F

This is ‘not’, and as we noted in the last example this is why most people think an inverter is ‘not’.

2. Negative logic to negative logic

Logic In Voltage In Voltage Out Logic Out
F H L T
T L H F

This also is ‘not’.

40 CHAPTER 9. LOGIC CONVENTIONS

3. Positive logic to negative logic

Logic In Voltage In Voltage Out Logic Out
F L H F
T H L T

This is a logic convention changer. It preserves the interpretation (logic value) but switches conventions.

4. Negative logic to positive logic

Logic In Voltage In Voltage Out Logic Out
F H H T
T L L F

Again the we see the inverter also ‘inverts’ the convention.

We thus have that an inverter can serve one of two purposes: logic value inversion (not) or logic convention

inversion (converter).

The options are even larger with two input gates.

Example 4 Consider an ‘andn’ gate in positive logic. What could we use to make it with standard TTL

Gates (nand, nor, and, or, not, xor, xnor)?

Answer:

Let’s start by looking at the logic table of an andn gate.
A B A andn B
0 0 0
0 1 0
1 0 1
1 1 0

Since this is positive logic, we have to find a device or devices that give us the voltage pattern below.
In 1 In 2 Out
L L L
L H L
H L H
H H L

1. If we used positive logic everywhere, we would have an andn gate, which we have no implementation

for directly, so we could use an not on in2(B) and then and the result with in1(A).

A B̄ A and B̄
0 1 0
0 0 0
1 1 1
1 0 0

2. If we used negative logic on in2, we would have an and gate, and we could use an inverter (not) to

take the initial positive logic system on in2 to make it negative logic without negating the input.

A B.L A and B.L
0 1 0
0 0 0
1 1 1
1 0 0

9.1. LOGIC-VOLTAGE CONVENTIONS 41

3. If we used negative logic on in1, we would have a nor gate, and we could use an inverter (not) to take

the initial positive logic system on in1 to make it negative logic without negating the input.

A.L B A.L nor B
1 0 0
1 1 0
0 0 1
0 1 0

4. If we used negative logic on both inputs, we would have a norn gate, which is not implemented. The

negation of B.L can be handled by a bare wire not, which will also work to go from B.h to̸B.L. Going

from A.h to A.L can be handled by an inverter (not). The rest can be handled by a nor gate, so that

this is the same as the last case.

A.L B.L A.L norn B.L
1 1 0
1 0 0
0 1 1
0 0 0

5. If we used negative logic only on the output we would have nandn, which is not implemented. We need

a not on in2, and a bare wire not on the output handling the logic level and not of the output, leaving

the main gate as an and.

A B (A nandn B).L
0 0 1
0 1 1
1 0 0
1 1 1

6. If we used negative logic on in2 and the output, we would have an nand gate, and we could use an

inverter (not) to take the initial positive logic system on in2 to make it negative logic without negating

the input and similarly an inverter (not) could be used to take the initial negative logic output and

convert to positive logic.

A B.L (A nand B.L).L
0 1 1
0 0 1
1 1 0
1 0 1

7. If we used negative logic on in1 and the output, we would have a or gate, and we could use an inverter

(not) to take the initial positive logic system on in1 to make it negative logic without negating the input

and similarly an inverter (not) could be used to take the initial negative logic output and convert to

positive logic.

A.L B (A.L or B).L
1 0 1
1 1 1
0 0 0
0 1 1

8. If we used negative logic on both inputs and the output, we would have orn, which does not exist. We

could make it by using a bare wire not on in2 and inverters (not) on in1 and the output. The main

gate is now an (or).

42 CHAPTER 9. LOGIC CONVENTIONS

A.L B.L (A.L or B.L).L
1 1 1
1 0 1
0 1 0
0 0 1

The above cases reduce to four possibilities:

1. an and with a not on in2,

2. an nor with a not on in1,

3. an nand with a not on in2 and output,

4. an or with a not on in1 and output.

It is straightforward to show they are equivalent, the nice thing is that mixed logic can generate them all.

It is this flexibility is one great reason that mixed logic so popular.

9.2 Canonical Forms

Only in rare cases are problems easy enough to reduce to a single gate we can recognize. In most cases we

need to design more complicated circuits to achieve the desired result. An important result in boolean logic

is that every possible output pattern can be realized from input signals in two levels of logic if each gate can

have as many inputs as you need. The practical use of this is that we can create canonical forms. Two main

canonical forms are used, Sum-of-Products (SOP) and Product-of-Sums (POS). Each canonical is made up

of terms, and each term corresponds to one row of a truth table. Since each term corresponds to a row in

the truth table the terms can be referenced by the row number or the actual equation for the term (I will

show how to get the equations below) The names were designed to be descriptive, as follows.

9.2.1 Sum of Products

A sum is a series of terms connected by “+”, which is or in our case. A product is a series of terms connected

by “·”, which is and in our case, thus SOP is bunch of terms that only use and in them that are connected

together by or. We call each term in a SOP a Miniterm because it is only true for one combination of inputs

(since and is only true for one combination of inputs this follows directly). In essence each Miniterm places

one true (1) value in the output, and thus can be thought of as tracking the 1’s. Each Miniterm’s equation

is written such that it will be true for that row only of the truth table. Consider the following.

x y z Row Miniterm
0 0 0 0 x′ · y′ · z′
0 0 1 1 x′ · y′ · z
0 1 0 2 x′ · y · z′
0 1 1 3 x′ · y · z
1 0 0 4 x · y′ · z′
1 0 1 5 x · y′ · z
1 1 0 6 x · y · z′
1 1 1 7 x · y · z

Notice that the row number is just the decimal value of binary number (xyz). Also note that the Miniterm

is formed by placing complements where the corresponding variable is zero, this forces all the variables (or

9.2. CANONICAL FORMS 43

complements) to be true for the equation on that row. To get a better appreciation of what it means for a

Miniterm to be adding or tracking the 1’s consider a series of truth tables.

a1 = x · y · z a2 = x · y · z + x · y′ · z a3 = x·y·z+x·y′·z+x·y′·z′ a4 = x · y · z+x · y′ · z+
x · y′ · z′ + x′ · y · z′

x y z a
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

x y z a
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x y z a
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

x y z a
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Each time a term is added the truth table shows the output in the corresponding row to the new term

becomes 1. It is thus evident that we can go the reverse direction. We always want a shorter way to write

things, so since Miniterm implies small we can also represent the term by a small ”m” followed by the

row number, so m5 = x · y′ · z. Using this notation the designs above are a1 = {m7}, a2 = {m5, m7},
a3 = {m4, m5, m7}, and a4 = {m2, m4, m5, m7}.

This is nice and short but we want even shorter so we abbreviate the list of Miniterms by
∑

followed

by a list of the numbers of the terms (you might recall that
∑

means a series of ’+’ in math). While

it is not a general rule, I list the inputs as subscripts of
∑

, it makes it easier to tell the sequence and

what signals (wires) to connect. Thus our summation notation for the designs would be, a1 =
∑

x,y,z(7),

a2 =
∑

x,y,z(5, 7), a3 =
∑

x,y,z(4, 5, 7), and a4 =
∑

x,y,z(2, 4, 5, 7). Note the listing of inputs as subscripts

can be done with the listing of Miniterms, a1 = {m7}x,y,z, a2 = {m5, m7}x,y,z, a3 = {m4, m5, m7}x,y,z, and
a4 = {m2, m4, m5, m7}x,y,z.

9.2.2 Product of Sums

By the colloquial descriptions above for sum and product, POS is a bunch of terms that only use or gates

internally and are connect by and gates. We call each term in a POS a Maxiterm because it is true for every

input combination but one (since it is made of or gates). A Maxiterm is thus false for only one combination

of the inputs. In essence each Maxiterm places one false (0) value in the output, so it can be thought of as

tracking the 0’s. Each Maxiterm’s equation is written such that it will be true for that row only of the truth

table. Consider the following.

x y z Row Maxiterm
0 0 0 0 x+ y + z
0 0 1 1 x+ y + z′

0 1 0 2 x+ y′ + z
0 1 1 3 x+ y′ + z′

1 0 0 4 x′ + y + z
1 0 1 5 x′ + y + z′

1 1 0 6 x′ + y′ + z
1 1 1 7 x′ + y′ + z′

Notice that the row number is just the decimal value of binary number (xyz). Also note that the Maxiterm

is formed by placing complements where the corresponding variable is one, this forces all the variables (or

complements) to be false for the equation on that row. To get a better appreciation of what it means for a

Maxiterm to be adding or tracking the 0’s consider a series of truth tables.

44 CHAPTER 9. LOGIC CONVENTIONS

ā1 = (x+ y + z) ā2 = (x+y+z)·(x+y+z′) ā3 = (x+ y + z) · (x+ y +
z′) · (x+ y′ + z′)

a4 = (x + y + z) · (x +
y + z′) · (x + y′ + z′) ·
(x′ + y′ + z)

x y z a
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

x y z a
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

x y z a
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

x y z a
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Notice that each time a term is added the truth table shows the output in the corresponding row to the

new term becomes 0. It is thus evident that we can go the reverse direction. We always want a shorter way

to write things, so since Maxiterm implies large we can also represent the term by a capital ”M” followed by

the row number, so M5 = x′+ y+ z′. Using this notation the designs above are ā1 = {M0}, ā2 = {M0, M1},
ā3 = {M0, M1, M3}, and a4 = {M0, M1, M3, M6}.

This is nice and short but we want even shorter so we abbreviate the list of Maxiterms by
∏

followed

by a list of the numbers of the terms (you might recall that
∏

means product in math). While it is

not a general rule, I list the inputs as subscripts of
∏
, it makes it easier to tell the sequence and what

signals (wires) to connect. Thus our product notation for the designs would be, ā1 =
∏

x,y,z(0), ā2 =∏
x,y,z(0, 1), ā3 =

∏
x,y,z(0, 1, 3), and a4 =

∏
x,y,z(0, 1, 3, 6). Note the listing of inputs as subscripts can

be done with the listing of Maxiterms, ā1 = {M0}x,y,z, ā2 = {M0, M1}x,y,z, ā3 = {M0, M1, M3}x,y,z, and
a4 = {M0, M1, M3, M6}x,y,z.

As a final note, the last problem in this section is the same as the last one in the SOP section and so the

designs must be equivalent. We thus have a4 =
∏

x,y,z(0, 1, 3, 6) =
∑

x,y,z(2, 4, 5, 7), from which we can note

that the if we take all the numbers from the truth table and remove the ones from the
∏

list, we have the
∑

list and vice versa. This gives us a nice way to switch between the two forms provided we know how many

rows are in the table, which you can know from counting the number of inputs in our subscript (another

good reason for listing them).

Example

Obtain the sum of products form by algebra and the product of sums form by truth table for A + B ·
(C +A) · (B′ +A′ ·B).

A+B · (C +A) · (B′ +A′ ·B) = A+B · (B′ +A′ ·B) · (C +A)

= A+ (B ·B′ +B ·A′ ·B) · (C +A)

= A+A′ ·B · (C +A)

= A+A′ ·B · C +A′ ·B ·A
= A+A′ ·B · C
= A · (B +B′) · (C + C ′) +A′ ·B · C
= A ·B′ · C ′ +A ·B′ · C +A ·B · C ′ +A ·B · C +A′ ·B · C
= m4 +m5 +m6 +m7 +m3

= Σ(3, 4, 5, 6, 7)A,B,C

9.2. CANONICAL FORMS 45

A B C A+B · (C +A) · (B′ +A′ ·B)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

The three terms with 0’s are thus M0, M1, and M2, yielding Π(0, 1, 2)A,B,C .

46 CHAPTER 9. LOGIC CONVENTIONS

Chapter 10

Combinational Circuits

Combinational circuits are the most basic type of circuit that can be designed in that they have no memory

input. In a combinational circuit the outputs are completely determined by the inputs.

Consider a simple example. Say I have two hard disks on my computer and I want to hook up a light

that shows when either is accessed. Hard disks have an output line that signals when they are accessed so

we have two variables d1 and d2 which are the disk access output signals from the drives. Since I want the

light to come on when either drive is accessed the truth table describing this is
d1 d2 light comments
0 0 0 neither disk accessed, no light
0 1 1 second disk being accessed, light on
1 0 1 first disk being accessed, light on
1 1 1 both disks being accessed, light on

This table is identical to the definition of “or” so we have that light = d1 + d2. Thus by connecting

the signals from the disks to an “or” gate and using the output of the gate to drive the light. This is a

combinational circuit because it does not matter what happened in the past or what some variable’s value

is (the value of variables in a circuit with memory is known as state).

Combinational circuits are the foundation of digital design, as sequential circuits (the circuits with mem-

ory) can be handled as a combinational circuits driven by inputs and memory and the outputs not only drive

other circuits, they modify the memory that drives the input. You can thus consider all sequential circuits

as combinational ones with feedback.

10.1 Designing: Tables

If there are only a few trues (or falses) that need to be generated and a small number of input variables,

then it is easy to do the design off a truth table by reading the canonical terms. Even complex problems

can be designed with the use of decoders or multiplexors (mux).

10.1.1 Implementing With Sum of Products

Sum of Products design rules:

• For each row in the table where the output is a “1”, connect the inputs to a nand gate (or an and

gate) being sure to invert any input line that has a “0” in that row.

• Connect the outputs of the previous gates into another nand gate (or an or gate if you used and gates

in the previous step).

47

48 CHAPTER 10. COMBINATIONAL CIRCUITS

• The output of the last gate is the desired output.

10.1.2 Implementing With Product of Sums

Sum of Products design rules:

• For each row in the table where the output is a “0”, connect the inputs to a nor gate (or an or gate)

being sure to invert any input line that has a “1” in that row.

• Connect the outputs of the previous gates into another nor gate (or an and gate if you used or gates

in the previous step).

• The output of the last gate is the desired output.

10.1.3 Implementing With Decoders

Decoders have an enable input, n address lines, and 2n output lines that are true if the decoder is enabled

and the address on the address line is their line on the decoder. Decoder designs have a few simple rules:

• Enable the decoder.

• Connect the inputs to the address lines in the sequence of the table.

• Connect the decoder outputs that correspond to 1’s in the table to an or gate.

• The output of the or gate is the desired output.

It is easiest to see this by an example. Consider the following table from our canonical term section.

x y z a4
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

1

@
@

�
�

3 /

7

6

5

4

3

2

1

0

{x,y,z}

�
�

�
�
�
�
�
�

�
�
�������

HHHHH
a4

The technique can be seen to be fairly straightforward. It can require a large decoder if the 1’s and 0’s

are mixed, but it can be done with a small decoder if there are few tightly grouped 1’s or 0’s.

10.1.4 Implementing With Multiplexors

A mux has 2n input lines, n address select lines, and 1 output. The input line that corresponds to the

address is passed to the output. The design technique is a little tricky.

• All but one of the inputs are connected to the address select lines.

10.2. DESIGNING: KARNAUGH MAPS 49

• The remaining input is used to divide the table into pairs, each pair corresponding to one of the 2n

input lines.

– If both outputs in a pair in the table are both zero then the corresponding input line is grounded.

– If both outputs in a pair in the table are both one then the corresponding input line is set high.

– If both outputs in a pair in the table are the same as the one unconnected input, then that input

is connected to the corresponding input to the mux.

– If both outputs in a pair in the table are the opposite of the one unconnected input, then the

inverse of that input is connected to the corresponding input to the mux.

• The desired function is on the output of the mux.

Let us one more time examine our example from our canonical term section.

x y z a4 Mux Input
0 0 0 0 0
0 0 1 0
0 1 0 1 z’
0 1 1 0
1 0 0 1 1
1 0 1 1
1 1 0 0 z
1 1 1 1

�
�

@
@

/ 2

3

2

1

0

{x,y}

0

z’

1

z

a4

This one is hard to see at first but it is easy and compact once understood.

10.2 Designing: Karnaugh Maps

Karnaugh maps are a nice visual way to handle small design problems, i.e. those with less than 6-8 inputs.

Karnaugh maps are formed by making a table indexed in both rows and columns by the inputs which are

arranged in Grey code order (00,01,11,10)1.

Basic rules for all encirclements:

1. Always encircle only a number of items equal to a power of 2 (1, 2, 4, 8, 16, etc.).

2. Only encircle either 0’s or 1’s, but not a mixture. Since don’t cares, x, could be either a 0 or 1, you

can mix and match them.

3. Make only the largest encirclements possible.

4. Overlap encirclements (partial due to above rule) whenever possible to remove errors of type 1. Diagonal

overlaps will take care of errors of type 2.

Rules for encircling with and gates for SOP:

1. Only encircle 1’s.

2. Encirclements must be horizontally or vertically aligned rectangles.

Rules for encircling with or gates for POS:

1Veitch diagrams are just like Karnaugh maps, but they are in normal binary order. This makes them a pain to recognize
patterns and so they are rarely used.

50 CHAPTER 10. COMBINATIONAL CIRCUITS

1. Only encircle 0’s.

2. Encirclements must be horizontally or vertically aligned rectangles.

Rules for encircling with xor or equiv gates:

1. Only encircle 1’s.

2. Encirclements must be checkerboard patterned (diagonal).

Example 5 Make a Karnaugh map for Π(1, 2, 3, 6, 7, 9, 11, 15)A,B,C,D and use it to simplify the expression.

Implement your result using And, Or, and inverter gates in a HDL module to describe the circuit.

Sol:
A

1 1 1 1
0 1 1 0

∣∣∣ D
C
∣∣∣ 0 0 0 0

0 0 1 1

B
Three 4 entry encirclements of zeros (two squares and a row). This gives the simplification as:

(C ′ +D′) · (A+ C ′) · (B +D′)

Alternately you could make three 4 entry encirclements of ones (two squares and a row). The simplification

would then be:

C ′ ·D′ +B · C ′ +A ·D′

A HDL implementation of the simplified sum of products form is:

module my_circ(F,A,B,C,D);

input A,B,C,D;

output F;

wire c,d,e,x,y,z;

not g1(c,C);

not g2(d,D);

and g3(x,c,d);

and g4(y,B,c);

and g5(z,A,d);

or g6(e,x,y);

or g7(F,e,z);

endmodule

x a
Example 6 We wanted to design a system to check three lines, say A, B, C. If only one line is active we

want to receive a signal. We are also interested in knowing if lines A and C are active, and we want no

errors of type-1. The design is small, so we start with a Karnaugh map.

10.3. QUINE-MCCLUSKEY 51

A
0 1 0 1

C| 1 0 1 1

B

10.3 Quine-McCluskey

Originally proposed by Quine and then modified by McCluskey, this method provides an symbolic tabular

way to minimize a boolean algebraic function. Graphical methods like Karnaugh maps are great for up to

about 6 variables, but then they bog down really badly.

The idea of this method is to combine terms using the rule xy + xy′ = x, where x represents multiple

variables, but y is only one variable.

∑
abcd

(1, 3, 4, 5, 6, 7, 10, 14, 15) (10.1)

We begin by writing the minterms in binary. We then sort them so they will be in order of increasing index.

Index is defined to be the number of 1’s in the expression. In order to combine terms they may differ by

only 1 value, so we only need compare each index group with the group above it. Here is the term by term

combination to generate the 2-term implicants from the minterms. When a minterm is used it is checked to

note it cannot be a prime implicant, though we continue to use it to generate other terms as a minterm can

be in multiple groupings.

Minterms 2-terms
0001
0100
0011
0101
0110
1010
0111
1110
1111

Minterms 2-terms
0001 X 00-1
0100
0011 X
0101
0110
1010
0111
1110
1111

Minterms 2-terms
0001 X 00-1
0100 0-01
0011 X
0101 X
0110
1010
0111
1110
1111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X
0110
1010
0111
1110
1111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X
1010
0111
1110
1111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010
0111 X
1110
1111

52 CHAPTER 10. COMBINATIONAL CIRCUITS

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 01-1
0111 X
1110
1111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 01-1
0111 X 011-
1110
1111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 01-1
0111 X 011-
1110 X -110
1111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 X 01-1
0111 X 011-
1110 X -110
1111 1-10

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 X 01-1
0111 X 011-
1110 X -110
1111 X 1-10

-111

Minterms 2-terms
0001 X 00-1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 X 01-1
0111 X 011-
1110 X -110
1111 X 1-10

-111
111-

We now move on to generating the 4-term implicants from the 2-term implicants. We do it in the exact

same way as the preceding development.

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0100 X 0-01
0011 X 010-
0101 X 01-0
0110 X 0-11
1010 X 01-1 X
0111 X 011-
1110 X -110
1111 X 1-10

-111
111-

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0100 X 0-01 X 0- -1
0011 X 010-
0101 X 01-0
0110 X 0-11 X
1010 X 01-1 X
0111 X 011-
1110 X -110
1111 X 1-10

-111
111-

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0100 X 0-01 X 0- -1
0011 X 010- X 01- -
0101 X 01-0
0110 X 0-11 X
1010 X 01-1 X
0111 X 011- X
1110 X -110
1111 X 1-10

-111
111-

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0100 X 0-01 X 0- -1
0011 X 010- X 01- -
0101 X 01-0 X 01- -
0110 X 0-11 X
1010 X 01-1 X
0111 X 011- X
1110 X -110
1111 X 1-10

-111
111-

10.3. QUINE-MCCLUSKEY 53

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0100 X 0-01 X 0- -1
0011 X 010- X 01- -
0101 X 01-0 X 01- -
0110 X 0-11 X -11-
1010 X 01-1 X
0111 X 011- X
1110 X -110
1111 X 1-10

-111
111- X

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0100 X 0-01 X 0- -1
0011 X 010- X 01- -
0101 X 01-0 X 01- -
0110 X 0-11 X -11-
1010 X 01-1 X -11-
0111 X 011- X
1110 X -110 X
1111 X 1-10

-111 X
111- X

The prime implicants are thus:
0- -1 01- - -11- 1-10
A’D A’B BC ACD’

Now let’s add some don’t care conditions∑
abcd

(1, 3, 4, 5, 6, 7, 10, 14, 15) +DC(2, 9, 11) (10.2)

I will keep the old chart and just add in the new terms to save space.

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0010 0-01 X 01- -
0100 X 010- X -11-
0011 X 01-0 X
0101 X 0-11 X
0110 X 01-1 X
1001 011- X
1010 X -110 X
0111 X 1-10
1011 -111 X
1110 X 111- X
1111 X

Minterms 2-terms 4-terms
0001 X 00-1 X 0- -1
0010 0-01 X 01- -
0100 X 010- X -11-
0011 X 01-0 X
0101 X 0-11 X
0110 X 01-1 X
1001 011- X
1010 X -110 X
0111 X 1-10
1011 -111 X
1110 X 111- X
1111 X

54 CHAPTER 10. COMBINATIONAL CIRCUITS

Chapter 11

Synchronous Circuits

SR latches and flip-flops are the fastest, as they

are just the latch with possible clocking. Use them

when you need high speed.
Characteristic Excitation
S R Q q Q S R
0 0 q 0 0 0 x
0 1 0 0 1 1 0
1 0 1 1 0 0 1

1 1 x 0
D latches and flip-flops are primarily used in mem-

ory applications. The design process is simple be-

cause the simplicity of the excitation table.
Characteristic Excitation
D Q Q D
0 0 0 0
1 1 1 1
T latches and flip-flops are usually used for coun-

ters and dividers.
Characteristic Excitation
T Q q Q T
0 q 0 0 0
1 q’ 0 1 1

1 0 1
1 1 0

JK latches and flip-flops give such easy designs

that they are preferred for most every design. Usually

one of the others is only used in the special cases

mentioned above.
Characteristic Excitation
J K Q q Q J K
0 0 q 0 0 0 x
0 1 0 0 1 1 x
1 0 1 1 0 x 1
1 1 q’ 1 1 x 0
Typically, the characteristic tables are used when

doing analysis, and the excitation table is used for

design.

55

56 CHAPTER 11. SYNCHRONOUS CIRCUITS

11.1 Counters

11.2 General Design

Give the logic diagram using any flip-flops you want and a PAL for the state diagram in below.

Any undesignated states will go to 111/0, which will be our garbage state. You could also decide to send

it to 000/1, but since this state machine looks for words of the pattern ((01*01*0)*(10*10*1)*)*1, having the

undesignated states go to 000/1 would violate the pattern. Additionally I will use D flip-flops. I am doing

this at home, so I don’t have the drawing program, so I will leave the equations for the PAL, the connection

is straightforward.

1this is a regular expression that is equivalent to the state machine, regular expressions and their relation to FA/FSM is
covered in formal languages and automata theory. This is included for your information and is thus not expected for you to
know for the test.

11.2. GENERAL DESIGN 57

Present Next
State Input State Output

000 0 010 1
1 100 1

001 0 111 0
1 111 0

010 0 011 0
1 010 0

011 0 000 0
1 011 0

100 0 100 0
1 101 0

101 0 101 0
1 000 0

110 0 111 0
1 111 0

111 0 111 0
1 111 0

Most Significant Bit (S2)

S0,In\S2,S1 00 01 11 10
00 0 0 1 1
01 1 0 1 1
11 1 0 1 0
10 1 0 1 1

I will use SOP on the zeros then

complement (three encirclements)

D2 = ((S2′ · S1) + (S2′ · S0′ · In′)

+(S2 · S1′ · S0 · In))′

Middle Bit (S1)

S0,In\S2,S1 00 01 11 10
00 1 1 1 0
01 0 1 1 0
11 1 1 1 0
10 1 0 1 0

I will again use SOP on the zeros

then complement (three encirclements)

D1 = ((S2 · S1′) + (S1′ · S0′ · In)

+(S2′ · S1 · S0 · In′))′

Least Significant Bit (S0)
S0,In\S2,S1 00 01 11 10

00 0 1 1 0
01 0 0 1 1
11 1 1 1 0
10 1 0 1 1

I will again use SOP on the zeros

then complement (five encirclements)

D0 = ((S1′ · S0′ · In′) + (S2′ · S1′ · S0′)
+(S2′ · S0′ · In) + (S2′ · S1 · S0 · In′)

+(S2 · S1′ · S0 · In))′
Output

This can be read off the table trivially:

Out = S2′ · S1′ · S0′

58 CHAPTER 11. SYNCHRONOUS CIRCUITS

Chapter 12

Timing

12.1 Combinational Circuits

f(a,b,c):

1
0

0
1

1
2

1
3

0
4

0
5

1
6

0
7

a

c

b

12.2 Sequential Circuits

The timing on sequential circuits revolves around ensuring that the setup and hold times of a flip flop are

met in the circuit. We will be using a bunch of different measurements of a circuit so we will begin by

defining them.

Trigger The event which is used to start a sequential circuit, usually the rising or falling edge of a clock.

Setup time (Ts) The minimum time the inputs must be stable before a trigger so the correct value is

latched. Failing to do so is a setup violation.

Hold time (Th) The minimum time the inputs must be stable after a trigger so the correct value is latched.

Failing to do so is a hold violation.

Clock period (Tclk) The time between successive rising (or falling) edges in the clock signal.

Clock skew (Tskew) The propagation time difference between furthest components, which thus is the time

difference of them reading the same clock. You can think of it as the time error range.

Flip Flop Clock propagation (Tclk−xmit) The time from when a flip flop receives the trigger till when

the data is transmitted from it. This is sometimes referred to as the time from clock to q.

Combinational Logic Delay (Tcomb) Time for a signal to pass through the combinational circuit. Some-

times called propagation delay.

59

60 CHAPTER 12. TIMING

Now to ensure there is no problem in a sequential circuit, we must verify two conditions are met: the

loop time in Eq. 12.1, and the arrival time in Eq. 12.2.

Tclk ≥ Ts + Tcomb + Tclk−xmit + Tskew (12.1)

Th ≤ Tcomb + Tclk−xmit + Tskew (12.2)

Note that the loop time constrains the setup time, while the arrival time is a constraint on the hold time.

• In a new design, you use the arrival time equation to determine the flip flop to use, and the loop time

equation to determine the clock.

• In an FPGA, you are stuck with the logic, flip flops, and the clock, so those parameters are fixed. The

skew depends on position of the circuit elements (layout) is design dependent, so the equations are

checked to verify a design. If the design does not meet the clock timing an excessive skew warning is

issued.

12.3 Flip Flops and Hazards

In Table 12.1, I list the setup, hold, and the sum, which is the metastable interval or window.

12.4 How Often?

Since the primary failure mode for entering metastability is a data change during setup and hold, the smaller

these times the better, which means faster logic families. The equations for calculating mean time between

failures (MTBF) are

MTBF =
e

Tr
Tγ

FdFcTp
(12.3)

=
e

Tr+ 1
Fc

−Ts

Tγ

FdF 2
c T

2
p

(12.4)

Fd Data Frequency

Fc Clock Frequency

Tp Propagation delay of the flip flop

Ts Setup Time

Tr Resolve time (clock time minus the path time)

Tγ Resolution time of flip flop

12.4. HOW OFTEN? 61

Table 12.1: Interval when Metastability is most likely to occur
Device Ts[ns] Th[ns] Tms

SN74LS74A 20 5 25
SN74ALS74A 15 0 15
SN74AS74A 4.5 0 4.5
SN74F74 3 1 4
CD74ACT74-Q1 4 0 4
SN54AHC74 5 0.5 5.5
SN54AHCT74 5 0 5
SN54LVC74A-SP 3 1 4
SN74AC74 3 0.5 3.5
SN74AC74-EP 3 0.5 3.5
SN74ACT74 3.5 1 4.5
SN74ACT74-EP 4 1 5
SN74AHC74 5 0.5 5.5
SN74AHC74-EP 5 0.5 5.5
SN74AHC74Q-Q1 5 0.5 5.5
SN74AHCT74 5 0 5
SN74AHCT74-EP 5 0 5
SN74AHCT74Q-Q1 5 0 5
SN74AUC74 0.7 0.3 1
SN74HC74 21 0 21
SN74HC74-EP 150 0 150
SN74HC74-Q1 17 0 17
SN74HCT74 14 0 14
SN74LV74A-EP 3 2.15 5.15
SN74LV74A-Q1 5 0.5 5.5
SN74LVC74A 3 0 3
SN74LVC74A-EP 3 1 4
SN74LVC74A-Q1 3 1 4
SN74S74 3 2 5

62 CHAPTER 12. TIMING

Part III

Data Representation and
Manipulation

63

Chapter 13

Codes

Codes are used to represent members of a set by a sequence of symbols. For our purposes, the sequence of

symbols will always be a sequence of {0, 1}. Codes have an encoding for each member to be represented.

Codes can be fixed or variable in length. Fixed length codes like ascii have the same number of symbols

in every encoding of the code. Variable length codes use different numbers of symbols to represent the

encodings. For instance if ’1’ is ’a’, ’01’ is ’b’, and ’00’ is ’c’, then the code is variable length. The major

trouble with variable length codes is splitting the message up into the individual encodings. If the code is

prefix (postfix) then the code can be directly read from left to right (right to left).

13.1 Standard Codes

13.1.1 Unsigned

decimal Binary Gray BCD 2421 Residue(5,3) Residue(7,2)
0 0000 0000 0000 0000 000,00 000,0
1 0001 0001 0001 0001 001,01 001,1
2 0010 0011 0010 0010 010,10 010,0
3 0011 0010 0011 0011 011,00 011,1
4 0100 0110 0100 0100 100,01 100,0
5 0101 0111 0101 1011 000,10 101,1
6 0110 0101 0110 1100 001,00 110,0
7 0111 0100 0111 1101 010,01 000,1
8 1000 1100 1000 1110 011,10 001,0
9 1001 1101 1001 1111 100,00 010,1

10 1010 1111 000,01 011,0
11 1011 1110 001,10 100,1
12 1100 1010 010,00 101,0
13 1101 1011 011,01 110,1
14 1110 1001 100,10 -
15 1111 1000 - -

BCD is a decimal code designed to be compatible with standard binary numbers. It is sometimes called

8421 code due to the weights on the columns. The 2421 code was designed to be the same as BCD for 0-4

and make the 9’s complement, which is important for easy subtraction, of 0-4 (i.e. 9-5 respectively) be easy

to take because you can simply flip the bits.

Gray code is an alternate to binary. It is not a decimal code, and hence does not waste 6 codes for every

four bits. Gray code was designed to have only one bit flip at any given time. This is helpful in systems

65

66 CHAPTER 13. CODES

which have analog components and need to count. For instance in an NC drill, we might want to encode the

shaft position and hence put gray code bars on the shaft and have an ir sensor read them. Since only one

bit flips between each consecutive number, it is easy to verify if we are reading correctly and thus get a good

idea of how fast the shaft is spinning and where the shaft is. Gray code is also useful to us in Karnaugh

maps and code maps because the one bit flipping property lets us find errors of type one easily (Karnaugh

maps) and measure Hamming distance easily (code maps). Notice that the first bit of a gray code is just

like binary (all 0’s first then 1’s), while the rest follow a 0110 pattern on reducing scales.

The easiest way to read grey code is to start from the left and just copy the first bit. From then on if

the next digit to the right is 0 then repeat the last digit you wrote, if it is 1 flip the last digit you wrote.

Example 7 What is the value of 101111gray?

Starting at the left copy the first bit:

Gray 1 0 1 1 1 1
Binary 1

The next bit is a 0 so repeat the last bit you wrote (in this case a 1):

Gray 1 0 1 1 1 1
Binary 1 1

The next bit is a 1 so flip the last bit you wrote (in this case 1 flips to 0):

Gray 1 0 1 1 1 1
Binary 1 1 0

The next bit is a 1 so flip the last bit you wrote (in this case 0 flips to 1):

Gray 1 0 1 1 1 1
Binary 1 1 0 1

The next bit is a 1 so flip the last bit you wrote (in this case 1 flips to 0):

Gray 1 0 1 1 1 1
Binary 1 1 0 1 0

The next bit is a 1 so flip the last bit you wrote (in this case 0 flips to 1):

Gray 1 0 1 1 1 1
Binary 1 1 0 1 0 1

Binary 110101 is 53, so gray 101111 is 53.

Residue number systems (residue codes) are fun though rarely used because of the difficulty in converting

back from them to binary. Residue codes are specified by a series of remainders, taken to relatively prime

bases (listed parenthesis and separated by commas). The remainders are in the same order as the specified

bases and also separated by commas. The advantage of this system is you can perform fast addition,

multiplication, and subtraction (if the divisor is not zero in any of the residues you can also do division

efficiently), extremely fast, as the modulo terms are independently calculated by the modulo of the arithmetic

operation being performed.

Example 8 Calculate 7 + 3, 3 ∗ 4, 14 − 8, and 14/7 in Modulo(5,3). Note we can do division because 7

mod 5 = 2 > 0 and 7 mod 3 = 1 > 0.

7 + 3 = (010, 01) + (011, 00) = (010 + 011 mod 5, 01 + 00 mod 3) = (000, 01) = 10

3 ∗ 4 = (011, 00) ∗ (100, 01) = (011 ∗ 100 mod 5, 00 ∗ 01 mod 3) = (010, 00) = 12

14− 8 = (100, 10)− (011, 10) = (100− 011 mod 5, 10− 10 mod 3) = (001, 00) = 6

14/7 = (100, 10)− (010, 01) = (100/010 mod 5, 10/01 mod 3) = (010, 10) = 2

13.2. HUFFMAN CODES 67

13.1.2 Signed

decimal Signed Binary 1’s Comp 2’s Comp Excess-7 Excess 8
8 - - - 1111 -
7 0111 0111 0111 1110 1111
6 0110 0110 0110 1101 1110
5 0101 0101 0101 1100 1101
4 0100 0100 0100 1011 1100
3 0011 0011 0011 1010 1011
2 0010 0010 0010 1001 1010
1 0001 0001 0001 1000 1001
0 0000,1000 0000,1111 0000 0111 1000
-1 1001 1110 1111 0110 0111
-2 1010 1101 1110 0101 0110
-3 1011 1100 1101 0100 0101
-4 1100 1011 1100 0011 0100
-5 1101 1010 1011 0010 0011
-6 1110 1001 1010 0001 0010
-7 1111 1000 1001 0000 0001
-8 - - 1000 - 0000

Note that both signed binary and 1’s compliment have a positive and negative 0. Signed binary was an

early development, but is not that useful because you can’t use a standard adder/subtractor.

1’s compliment is easy to calculate (flip the bits to convert from positive to negative), and is useful in

turning an adder into a subtractor (the number to be subtracted is turned into the 2’s complement, by

finding the 1’s complement, then setting the carry-in bit of the adder to do the +1).

2’s compliment is the standard form for storing negative numbers in computers because you can easily

convert (either by flipping bits and adding 1, or by starting on the right and copying bits up to and including

the first 1, then flipping the remaining bits), and standard adder/subtractor circuits can be used.

Excess codes are most commonly used in floating point number exponents, as they preserve the numeric

order of greatness (you can use standard compare circuits to check size). The excess is either half the total

numbers (16/2 = 8 for excess 8) or half the total numbers minus 1 (16/2− 1 = 7 for excess 7).

13.2 Huffman Codes

Huffman codes are variable length codes that produce optimal expected code lengths.

ecl =
∑
l∈C

(freq(l)× length(l))

Example:

Consider the string ”adabaabcaabacadaccac” that we want to encode. There are four members of the set

(a, b, c, d) which means the members can be represented by a two bit fixed code. But consider the following

encoding (a=1, b=001, c=01, d=000). The frequencies of the members are (a=10/20=.5, b= 3/20=.15,

c=5/20=.25, d =2/20=.1). The ecl of the variable code is

ecl = .5 ∗ 1 + .15 ∗ 3 + .25 ∗ 2 + .1 ∗ 2
= 1.65

The expected code length is only 1.65 bits/character.

68 CHAPTER 13. CODES

13.2.1 Huffman Algorithm

1. Calculate the frequencies of each member

occurrences of member

Total occurrences

2. Form decode tree from forest

(a) make 1 node tree for each member with frequency and member name

(b) join two trees with the smallest frequency on root node by making them branches of a new root

node and giving the new root node the sum of the frequencies of the old root nodes

(c) put new tree in forest and repeat joining till only one tree remains (the answer)

3. encode or decode message

13.3 Error Detection and Correction

Errors can happen in a variety of ways. Bits can be added, deleted, or flipped. Errors can happen in fixed

or variable codes. For simplicity we will consider only bit flips in fixed codes. Note that variable codes can

be packed into fixed length blocks for transmission and storage, so this is not as restrictive as it might sound

at first.

The Hamming distance (dH) between two codewords is the number of bit flips to turn one codeword into

the other codeword. It can also be thought of as the number of bits that are different between two codewords.

The Hamming distance can be extended to a set, by defining it as the minimum distance between any two

codewords in the set. The Hamming distance is useful in codes because it tells us how many errors can be

detected (Ed) and how many errors can be corrected (Ec) The relations are given by

dH ≥ 1 + Ed

dH ≥ 1 + 2× Ec

Example

Consider the codes (00001, 01100).

1. What is the Hamming distance?

3

2. How many errors can be detected? How many can be corrected?

3 ≥ 1 + d thus detect 2

and

3 ≥ 1 + 2c thus correct 1

3. It is desired to add another codeword without reducing the Hamming distance. What codeword do

you suggest?

any of the following will work:

• 10010

• 10110

13.3. ERROR DETECTION AND CORRECTION 69

• 10111

• 11010

• 11011

• 11111

13.3.1 Hamming Code

To detect and/or correct errors, two pieces of information must be sent, the original data (Di) and check bits

(Cj). Consider numbering in binary each position in an array of bits to be sent starting at 1, and positioning

the check bits at the powers of two.
0 0 0 0 0 0 0 1 1 1

Address 0 0 0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0

Code C0 C1 D1 C2 D2 D3 D4 C3 D5 D6

The check bits are then calculated by taking the exclusive-or (xor) of all the data bits (Di), whose address

contains a 1 in the same place as the check bit. Thus,

0 0 0 0 0 0 0 1 1 1
Address 0 0 0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0

Code C0 C1 D1 C2 D2 D3 D4 C3 D5 D6

C0 = D1 ⊕D2 ⊕D4 ⊕D5

0 0 0 0 0 0 0 1 1 1
Address 0 0 0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0

Code C0 C1 D1 C2 D2 D3 D4 C3 D5 D6

C1 = D1 ⊕D3 ⊕D4 ⊕D6

And so on.

The Hamming distance is three, which will be proved in three cases.

1. If the data portion of two codewords differs by only one bit, then note that the address of each data

bit has at least two ones in it. This means that the data bit that is different will cause at least two

check bits to be different, yielding a Hamming distance of three.

2. If the data portion of two codewords differs by two bits, then note that no two data bits affect all the

same check bits. Thus, there exists at least one check bit that is affected by only one of the two data

bits that differs, and will thus be different between the two codewords, yielding a Hamming distance

of three.

3. If the data portion of two codewords differs by more than two bits the result is trivial.

Q.E.D.

70 CHAPTER 13. CODES

A Hamming distance of three means

3 ≥ 1 + Ed

2 ≥ Ed

3 ≥ 1 + 2× Ec

2 ≥ 2× Ec

1 ≥ Ec.

One error can be corrected or two detected. To find the error for correction you create its address by taking

the exclusive-or of the check bits and the data that created them. A 1 will result only if an odd number of

errors happened in the subset checked. The address that results is the address of the error, which is fixed

by toggling.

Example

the data ”1010” is to be sent by Hamming Code. Since there are only four bits of data, only three check

bits are needed. The data is put in place.

0 0 0 1 1 1 1
Address 0 1 1 0 0 1 1

1 0 1 0 1 0 1
Code C0 C1 1 C2 0 1 1

Next the check bits are calculated and

C0 = D1 ⊕D2 ⊕D4

= 1⊕ 0⊕ 1

= 0

C1 = D1 ⊕D3 ⊕D4

= 1⊕ 1⊕ 1

= 1

C2 = D2 ⊕D3 ⊕D4

= 0⊕ 1⊕ 1

= 0

Thus,

0 0 0 1 1 1 1
Address 0 1 1 0 0 1 1

1 0 1 0 1 0 1
Code 0 1 1 0 0 1 1

Now, assume an error happens. It could be anywhere, but for this example assume that the bit in position

6 is toggled.

0 0 0 1 1 1 1
Address 0 1 1 0 0 1 1

1 0 1 0 1 0 1
Code 0 1 1 0 0 0 1

13.3. ERROR DETECTION AND CORRECTION 71

To find it get the address by

A0 = C0 ⊕D1 ⊕D2 ⊕D4

= 0⊕ 1⊕ 0⊕ 1

= 0,

A1 = C1 ⊕D1 ⊕D3 ⊕D4

= 1⊕ 1⊕ 0⊕ 1

= 1,

A2 = C2 ⊕D2 ⊕D3 ⊕D4

= 0⊕ 0⊕ 0⊕ 1

= 1.

Yielding the address, A2A1A0 = 110 = 6, which is the error.

Example: Hello There

Compress ”hello there” using a Huffman code designed off it. Then use a Hamming code on 11 bit blocks

of the compressed message. How does the overall message size compare to the original? I will just list the

code, the tree is obvious from it. Note that other trees are possible.

letter frequency code
h 2

11 100
e 3

11 11
l 2

11 101
o 1

11 011
sp 1

11 010
t 1

11 001
r 1

11 000

Huffman code: 10011101101 01101000110 01100011

Hamming Code

Since I don’t have enough bits to do 3 groups of 11, I could pad with 0’s or 1’s or I could make the last

packet shorter. Alternately I could have made an EOF code in my Huffman code. In this case I will just

skip them so you see how that works. You should mention the problem and what you will do along with the

solution.

Data Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
First c0 c1 1 c2 0 0 1 c3 1 1 0 1 1 0 1
Second c0 c1 0 c2 1 1 0 c3 1 0 0 0 1 1 0
Third c0 c1 0 c2 1 1 0 c3 0 0 1 1

Data Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
First 1 c1 1 c2 0 0 1 c3 1 1 0 1 1 0 1
Second 1 c1 0 c2 1 1 0 c3 1 0 0 0 1 1 0
Third 0 c1 0 c2 1 1 0 c3 0 0 1 1

Data Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
First 1 0 1 c2 0 0 1 c3 1 1 0 1 1 0 1
Second 1 0 0 c2 1 1 0 c3 1 0 0 0 1 1 0
Third 0 0 0 c2 1 1 0 c3 0 0 1 1

72 CHAPTER 13. CODES

Data Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
First 1 0 1 0 0 0 1 c3 1 1 0 1 1 0 1
Second 1 0 0 0 1 1 0 c3 1 0 0 0 1 1 0
Third 0 0 0 1 1 1 0 c3 0 0 1 1

Data Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
First 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1
Second 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0
Third 0 0 0 1 1 1 0 0 0 0 1 1

The length is thus 42 bits for the compressed code with error correction. The original message was

11 chars× 7 bits/char = 77 bits. The new message is much smaller (less than 4/7).

Chapter 14

Integers

14.1 Integer numbers

unsigned All the bits are used for the magnitude of the number. (0 to 2n − 1)

signed int The first bit indicates the sign (1 is negative), the remaining n− 1 bits are used for magnitude.

(−2n−1 + 1 to 2n−1 − 1)

1’s complement Positive numbers are the same as signed int, but negative are found by inverting each bit

of the positive number with the same magnitude. (−2n−1 + 1 to 2n−1 − 1)

2’s complement As 1’s complement, but negative numbers have 1 added to them after the bitwise inversion.

This removes a −0 code, so the extra code is assigned to −2n−1. This is the natural way to handle

numbers if addition and subtraction of mixed sign numbers are needed. (−2n−1 to 2n−1 − 1)

2n−1 excess The code is found by adding 2n−1 to the value (hence the name). This gives a slightly larger

negative range. (−2n−1 to 2n−1 − 1)

2n−1 − 1 excess The code is found by adding 2n−1 − 1 to the value (hence the name). This gives a slightly

larger positive range. (−2n−1 + 1 to 2n−1)

Example 9 Convert the following

1. -39 to 8 bit 2’s complement

39
19 1
9 1
4 1
2 0
1 0
0 1

3910 = 1001112 = 001001112

−3910 = 110110012

2. 234 to 8 bit unsigned

73

74 CHAPTER 14. INTEGERS

234
117 0
58 1
29 0
14 1
7 0
3 1
1 1
0 1

23410 = 111010102

14.2 Addition

The basic addition routines can be modified to work for any of the codes as well as subtraction for the

codes. The special customizations will be considered later. Right now, the typical techniques for addition

are considered.

Example 10 Calculate the following in binary using 8 bits.

1. 42− 51

2. 51− 42

Sol:
42 51

+ 00101010 00110011
- 11010110 11001101

42 00101010 51 00110011
-51 11001101 -42 11010110

11110111 100001001
-9 -00001001 9 00001001

14.2.1 Ripple Adders

This is the technique that is covered in CSCI 310. Basically, full bit adders, see Figure 14.1, are created and

cascaded together. The carry bit from the previous full adder must arrive before the result is added. The

resulting valid carries thus ripple down to the most significant bit (hence the name). Adding n bit numbers,

thus takes the propagation time of n + 1 levels of logic, i.e. it is O(n) in time to calculate addition. Thus

if 32 bit numbers are added on fast logic (1ns per stage/gate) the process would take 33ns. This is way too

slow. On the bright side, none of the gates take more than 2 inputs so the size of the gates is O(1).

14.2.2 Conditional Sum

Conditional sum is a divide and conquer algorithm, and hence exploits binary tree parallelism. The algorithm

works by calculating both possible results for each bit (if carry in was 1 or 0), then performing paired

conditional concatenation using the actual carry bit of the lower number, see Figure 14.2.

1. form conditional terms for each digit in summation → (digit with carry, digit without carry) = (xi +

yi + 1,xi + yi)

2. group by twos from right and for both conditional values in the right parenthesis form the result as

follows:

14.2. ADDITION 75

Figure 14.1: (left) Half Adder, (right) Full Adder

Figure 14.2: Conditional Sum Adder (above), and its sub-blocks (below, left and right).

76 CHAPTER 14. INTEGERS

(a) the leftmost bit of the two terms on the right are the carry bits used to select the term on the left

(b) concatenate the appropriate term on the left (picked by carry) with each term on right after

removing the parity bits of the right terms

3. continue pairings until only 1 term remains. pick right number if cin = 0 else pick left.

Example 11 Add x = 0110 and y = 1111 by conditional sum and indicate if overflow occurred.

0+1 1+1 1+1 0+1
↓ ↓ ↓ ↓

(10,01) (11,10) (11,10) (10,01)
↘ ↙ ↘ ↙

(101,100 (110,101)
↘ ↙

(10110,10101)
1 0101

No overflow occurred (added a positive and negative number).

Example 12 Calculate 7− 8 by conditional sum.

7 = 0111 and −8 = 1000
0 1 1 1

+1 0 0 0
(10,01) (10,01) (10,01) (10,01)
↘ ↙ ↘ ↙
(100,011) (100,011)

↘ ↙
(10000,01111)

Since this was done as addition no carry-in was set so the solution is 0 1111 or −1 in signed base

ten.

Example 13 Add by conditional sum x = 01100110 and y = 00110011.

0 + 0 1 + 0 1 + 1 0 + 1 0 + 0 1 + 0 1 + 1 0 + 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(01, 00) (10, 01) (11, 10) (10, 01) (01, 00) (10, 01) (11, 10) (10, 01)
↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓

(010, 001) (110, 101) (010, 001) (110, 101)
↘ ↙ ↘ ↙

(01010, 01001) (01010, 01001)
↘ ↙

(010011010, 010011001)
0 10011001

Why go through this? First, by a folk theorem of Dr. Alan Laub, “What is hard for us tends to be

easy for computers (and vice versa).” In reality this process is really easy for a computer to do. Second,

the process is highly parallel, so it can be done very fast. If the numbers to be added are n bits long this

takes 2(log2(n) + 1) levels of logic, much better than the n+1 levels of logic required by ripple calculations.

Thus it is O(log(n)) in time complexity. For example, for adding the 32 bit numbers considered already,

conditional sum would take 2(log2(32) + 1) = 12 levels of logic, so on the fast logic described it would be

12ns, a huge improvement.

14.2. ADDITION 77

14.2.3 Carry-Lookahead

This is also referred to as lookahead carry. Assume x + y = z. Pre-generate all carries with 2-level logic.

Usually form (g,p,c) generate, propagate, carry.

Gi = xi · yi
Pi = xi + yi

Ci = Gi + Pi · Ci−1

= Gi + Pi · (Gi−1 + Pi−1 · Ci−2)

= Gi + Pi ·Gi−1 + Pi · Pi−1 · Ci−2

= Gi + Pi ·Gi−1 + Pi · Pi−1 ·Gi−2 + . . .+ Pi · Pi−1 · . . . · P0 · Cin

This method is very fast (regardless of size it take 5 levels of logic) but requires large gates for problems

of reasonable size (even 16 or 32 bit numbers) and thus has problems with fan-in, fan-out, and size.

Often blocks of a number are handled with lookahead, and the blocks are connected in some fashion (for

example ripple) to get the net result (i.e. just like single bit adds from a full adder are connected to propagate

the carry bit, blocks or 4, 8, or more could be handled lookahead then connected to propagate the carry

bit between them to handle a larger number, say 32 bits). Even better than cascading (ripple connection)

the adders, is to us group carry-lookahead, in which each of the carry-lookahead adders output their group

propagate and group generate variables to a circuit that generates the carry-in bits for each group. It takes

5 logic levels to generate the carries to each individual carry-lookahead adder, and each adder then takes 5

levels of logic to get the result, for a total of 10 levels of logic. For the example of adding 32 bit numbers with

fast logic, it would take 10ns with group carry-lookahead adders (probably four or eight bits in a group).

Example 14 Specify the equations of a two bit binary adder with carry in (i.e.: one equation for each of

the sum bits and one equation for the carry out). Put the equations in sum of products form.

Sol: Let the two numbers to be added be A1A0 and B1B0. Let the resulting sum be S1S0. Let the carries

be Cin and Cout. Finally, let C0 be the carry from the first bit added (saves writing).

S0 = A0 ⊕B0 ⊕ Cin

C0 = A0 ·B0 +A0 · Cin +B0 · Cin

S1 = A1 ⊕B1 ⊕ C0

Cout = A1 ·B1 +A1 · C0 +B1 · C0

78 CHAPTER 14. INTEGERS

Putting this in sum of products form yields

S0 = A′
0 ·B′

0 · Cin +A′
0 ·B0 · C ′

in +A0 ·B′
0 · C ′

in +A0 ·B0 · Cin

S1 = A′
1 ·B′

1 · (A0 ·B0 +A0 · Cin +B0 · Cin) +A′
1 ·B1 · (A0 ·B0 +A0 · Cin +B0 · Cin)

′ +

A1 ·B′
1 · (A0 ·B0 +A0 · Cin +B0 · Cin)

′ +A1 ·B1 · (A0 ·B0 +A0 · Cin +B0 · Cin)

= A′
1 ·B′

1 ·A0 ·B0 +A′
1 ·B′

1 ·A0 · Cin +A′
1 ·B′

1 ·B0 · Cin

+A′
1 ·B1 · (A′

0 ·B′
0 +A′

0 · C ′
in +B′

0 · C ′
in)

+A1 ·B′
1 · (A′

0 ·B′
0 +A′

0 · C ′
in +B′

0 · C ′
in)

+A1 ·B1 ·A0 ·B0 +A1 ·B1 ·A0 · Cin +A1 ·B1 ·B0 · Cin

= A′
1 ·B′

1 ·A0 ·B0 +A′
1 ·B′

1 ·A0 · Cin +A′
1 ·B′

1 ·B0 · Cin

+A′
1 ·B1 ·A′

0 ·B′
0 +A′

1 ·B1 ·A′
0 · C ′

in +A′
1 ·B1 ·B′

0 · C ′
in

+A1 ·B′
1 ·A′

0 ·B′
0 +A1 ·B′

1 ·A′
0 · C ′

in +A1 ·B′
1 ·B′

0 · C ′
in

+A1 ·B1 ·A0 ·B0 +A1 ·B1 ·A0 · Cin +A1 ·B1 ·B0 · Cin

Cout = A1 ·B1 +A1 · (A0 ·B0 +A0 · Cin +B0 · Cin)

+B1 · (A0 ·B0 +A0 · Cin +B0 · Cin)

= A1 ·B1 +A1 ·A0 ·B0 +A1 ·A0 · Cin +A1 ·B0 · Cin

+B1 ·A0 ·B0 +B1 ·A0 · Cin +B1 ·B0 · Cin

14.2.4 Other notes

Integer numbers larger than the word size of the computer can be handled by chaining. Two special assembly

commands are often available to aid in chaining: addc, subb. Normally when you add the first carry in is

zero, but for blocks of bits after the first block, the lower block might need to carry up. Addc uses the carry

bit as cin rather than assuming cin = 0.

Two different signals are used to warn that the integer result might not be valid1 : carry (c) and overflow

(v). Carry is used for unsigned integers, and overflow is used for two’s complement. Since both carry and

overflow bits are both calculated at the same time2 it is important to know what they mean, when they are

relevant, and how they are calculated.

Overflow set if last two carries are different.

14.2.5 Signed Int

Addition

• if signs are same then add two n− 1 digit numbers and keep sign

• else flip sign of second term and subtract (subtracting with same signs).

Subtraction (S1 − S2)

• if S1 ≥ S2 ≥ 0 or S1 ≤ S2 < 0 then preserve sign and subtract absolute magnitudes,

1Overflow and carry are two of the typical condition codes. It is possible for a condition code to be set but the result is still
valid. For instance carry could be set and overflow could be unset after an operation with 2’s complement numbers. In this
case the number is still valid since overflow is the signal for 2’s complement.

2On some machines every arithmetic operation generates the condition codes, on other machines, like the SPARC, the
condition codes are set only when special versions of the arithmetic commands that end in cc are used.

14.3. MULTIPLICATION 79

• if S2 > S1 ≥ 0 or S2 < S1 < 0 then flip sign and subtract absolute magnitudes reversed,

• else flip sign of second term and add (adding with same signs).

14.2.6 2’s Comp

For addition you just add the numbers normally with cin = 0(no special cases).

For subtraction you take the 1’s complement of the second number and add with cin = 1(no special cases,

note 1’s complement +1 is 2’s complement).

14.2.7 Excess

For addition, you need to carry extra bits while calculating, because you have to subtract the excess number

after adding. This is needed because the excess was in each of the numbers added, so an extra excess is

present which must be removed.

For subtraction, the excess gets removed in the process so it must be added back in after subtraction. Note

the subtraction can result in an intermediate negative number, so extra bits are needed during calculation.

14.3 Multiplication

14.3.1 unsigned

Algorithm 1

1. set v to 0

2. for each digit do:

(a) if lsb of x is 1, add y to v

(b) left shift y

(c) right shift x

This basically only handles numbers whose product fits in 1 register. In general multiplication could take

up to 2 registers.

Algorithm 2

1. group two regs (u,v) for product, set to 0

2. for each digit do:

(a) add (y and lsb(x)) to u hold carry in c

(b) right shift (c,u,v)

(c) circulant right shift x

Right shifting the product with carry is the same as left shifting (yhi,y), but without the need for a

second register to hold the high order bits. The algorithm can be implemented in a circuit as is done in

Figure 14.3.

Example 15 Multiply 10 and 12 in binary using algorithm 2

First we need to convert our numbers to binary: x = 1010 = 10102 and y = 1210 = 11002.

80 CHAPTER 14. INTEGERS

Figure 14.3: Unsigned Multiplier of Algorithm 2

c u v x Comments
0 0000 0000 1010 Setup (Step 1)

Round 1
0 0000 Step 2a: add y · 0 to u (0+0=0)
0 0000 0000 Step 2b: rotate right cuv

0101 Step 2c: circulant right shift x
0 0000 0000 0101 End of round 1

Round 2
0 1100 Step 2a: add y ·1 to u (0+12=12)
0 0110 0000 Step 2b: rotate right cuv

1010 Step 2c: circulant right shift x
0 0110 0000 1010 End of round 2

Round 3
0 0110 Step 2a: add y · 0 to u (6+0=6)
0 0011 0000 Step 2b: rotate right cuv

0101 Step 2c: circulant right shift x
0 0011 0000 0101 End of round 3

Round 4
0 1111 Step 2a: add y ·1 to u (3+12=15)
0 0111 1000 Step 2b: rotate right cuv

1010 Step 2c: circulant right shift x
0 0111 1000 1010 End of round 4

Note x is returned to its original value and uv = 011110002 = 12010.

Example 16 Multiply 14 and 7 in binary using algorithm 2

First we need to convert our numbers to binary: x = 1410 = 11102 and y = 710 = 01112.

14.3. MULTIPLICATION 81

c u v x Comments
0 0000 0000 1110 Setup (Step 1)

Round 1
0 0000 Step 2a: add y · 0 to u (0+0=0)
0 0000 0000 Step 2b: rotate right cuv

0111 Step 2c: circulant right shift x
0 0000 0000 0111 End of round 1

Round 2
0 0111 Step 2a: add y · 1 to u (0+7=7)
0 0011 1000 Step 2b: rotate right cuv

1011 Step 2c: circulant right shift x
0 0011 1000 1011 End of round 2

Round 3
0 1010 Step 2a: add y · 1 to u (3+7=10)
0 0101 0100 Step 2b: rotate right cuv

1101 Step 2c: circulant right shift x
0 0101 0100 1101 End of round 3

Round 4
0 1100 Step 2a: add y · 1 to u (5+7=12)
0 0110 0010 Step 2b: rotate right cuv

1110 Step 2c: circulant right shift x
0 0110 0010 1110 End of round 4

Note x is returned to its original value and uv = 011001002 = 9810.

14.3.2 2’s complement

Booth’s Algorithm

1. group two regs (u,v) for product, set to 0

2. set x−1 to 0 (this is a single bit)

3. for each digit do:

(a) if (lsb of x is 1,) and (x−1=0), subtract y from u

(b) if (lsb of x is 0) and (x−1=1), add y to u

(c) arithmetic right shift (u,v)

(d) circular right shift x

Booth’s algorithm can be implemented in a circuit as is done in Figure 14.4.

Example 17 Multiply 6 (x = 0110) and −1 (y = 1111) using Booth’s algorithm. Show the values at each

stage in a table.

Booth’s
u v x x−1

0000 0000 1111 0
1010 0000
1101 0000 1111 1
1110 1000 1111 1
1111 0100 1111 1
1111 1010 1111 1

Note the answer is 11111010, which is −6 in 2’s complement.

82 CHAPTER 14. INTEGERS

Figure 14.4: Booth’s Algorithm

Example 18 Multiply -3 and 5 using Booth’s algorithm and 4 bit numbers. Perform the indicated calcula-

tions showing all steps.

y = 5 = 0101

−y = −5 = 1011
u v x x−1

0000 0000 1101 0
1011
1011 0000 1101 0
1101 1000 1110 1
0101
0010 1000 1110 1
0001 0100 0111 0
1011
1100 0100 0111 0
1110 0010 1011 1
1111 0001 1101 1

The result is 11110001, which is −15 in 2’s complement.

Example 19 Multiply -3 and -6 using Booth’s algorithm and 4 bit numbers. Perform the indicated calcula-

tions showing all steps.

x = −3 = 1101, y = −6 = 1010 and −y = 6 = 0110.
U V X X−1

0000 0000 1101 0
0110 0000 1101 0
0011 0000 1110 1
1101 0000 1110 1
1110 1000 0111 0
0100 1000 0111 0
0010 0100 1011 1
0001 0010 1101 1

00010010 = 18

14.4. INTEGRATED EXAMPLES 83

14.3.3 Systolic Array

The preceding algorithms are O(n2) if implemented with ripple adders, O(n log(n)) if implemented with

conditional sum adders, or O(n) if implemented with look-ahead adders. The look-ahead adders have a large

constant, so the O(n) is not a perfect indicator of performance, and they are currently not practical beyond

about 8 bits. It would be nice to find a way to multiply that has O(n) and a small constant multiplier.

Systolic arrays are O(n), and have a constant multiplier of about 6 depending on your hardware, which is

about half what it takes with even block (group) carry look-ahead adders using serial routines.

14.4 Integrated Examples

Example 20 Calculate the following expression in binary using 2’s complement and 8 bits total. Show all

work.

(9 ∗ 9− 24)/3

Sol:

910 = 000010012 and 310 = 000000112
24
12 0
6 0
3 0
1 1
0 1

2410 = 000110002 thus −2410 = 111010002. Thus 9 ∗ 9,
0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 1
0 1 0 1 0 0 0 1

Then (subtracting 24),
0 1 0 1 0 0 0 1
1 1 1 0 1 0 0 0

1 0 0 1 1 1 0 0 1
0 0 1 1 1 0 0 1

Now perform the division:
1 0 0 1 1

1 1 1 1 1 0 0 1
1 1

0 1 0 0
1 1

1 1
1 1

0
The answer is thus 000100112 = 1910.

14.5 Residue Arithmetic

We have shown different ways of calculating the sum and product of binary numbers. In this section we

will examine a different way to represent numbers and thus to calculate. In residue arithmetic numbers are

84 CHAPTER 14. INTEGERS

Full
Adder

@
@

@
@

@
@

@

t t
And

cin

s

@
@

@@

cout

Figure 14.5: Individual Cell of Systolic Array

@
@
@
@

@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@@

@
@
@
@
@

@
@
@
@

@
@
@
@

@
@
@

@
@
@
@

@
@@

@
@

@
@
@
@

@
@
@
@

@
@
@

@
@
@
@

@
@
@
@

@@

0000

@
@
@
@

@
@
@

@
@
@
@

@
@
@
@

@
@
@

0

@
@
@
@

@
@
@

@
@
@
@

@
@@

0

@
@
@
@

@
@
@

@@

0

@
@
@
@

0

c7 c6 c5 c4 c3 c2 c1 c0

0

b3

b2

b1

b0

a0a1a2a3 0000

Figure 14.6: Systolic Array For 4 Bit Numbers

14.5. RESIDUE ARITHMETIC 85

represented by their remainders of a group of numbers that constitute the basis of the representation. Let’s

consider a simple example of how numbers can be represented in this method.

Number %2 %3
0 0 0
1 1 1
2 0 2
3 1 0
4 0 1
5 1 2

Note that each of the numbers from 0 through 5 can be represented uniquely by their remainders. Note

that the number 6 would be 0,0 and thus not distinguishable from 0. You can represent six numbers (1-5)

because the product of the basis numbers is 2 × 3 = 6. That we can represent the numbers is one thing,

being able to calculate easily is another. Lets consider addition first:

1=1,1 2=0,2
2=0,2 3=1,0
3=(0+1)%2,(1+2)%3 5=(0+1)%2,(2+0)%3
=1,0 =1,2

If you look up (1,0) in our table you will find it corresponds to 3, similarly (1,2) corresponds to 5. Now

lets try some multiplication problems:

2=0,2 1=1,1
2=0,2 3=1,0
4=(0× 0)%2,(2× 2)%3 3=(1× 1)%2,(1× 0)%3
=0,1 =1,0

If you look up (0,1) in our table you will find it corresponds to 4, similarly (1,0) corresponds to 3.

Subtraction is slightly more complex, similar to the 2’s complement3 an inverse of each remainder (the

representation) must be found. This is done by subtracting each remainder from the number it was modulused

from. This is easiest to see in an example.

Example 21 First, let’s get a table of the numbers and their negatives (additive inverses):

Number Residue Negative Negative
Decimal %2,%3 %2,%3 Decimal
0 0,0 (2-0)%2=0,(3-0)%3=0 0
1 1,1 (2-1)%2=1,(3-1)%3=2 5
2 0,2 (2-0)%2=0,(3-2)%3=1 4
3 1,0 (2-1)%2=1,(3-0)%3=0 3
4 0,1 (2-0)%2=0,(3-1)%3=2 2
5 1,2 (2-1)%2=1,(3-2)%3=1 1

Now let’s do some calculations.

5− 2 = (1, 2)− (0, 2)

= (1, 2) + (0, 1)

= (1 + 0, 2 + 1)

= (1, 0)

= 3

3In fact it is a radix complement, in particular since for our example their are 6 numbers in our example, we will be calculating
the 6’s complement and then finding its residue.

86 CHAPTER 14. INTEGERS

4− 4 = (0, 1)− (0, 1)

= (0, 1) + (0, 2)

= (0 + 0, 1 + 2)

= (0, 0)

= 0

2− 1 = (0, 2)− (1, 1)

= (0, 2) + (1, 2)

= (0 + 1, 2 + 2)

= (1, 1)

= 1

The basis of the representation must be relatively prime, that is they must have unique prime factors

(they cannot share prime factors with other basis numbers). This means that you can have a number like

4 (2 × 2) as long as no other basis had 2 as a factor, but you could not have 9 (3 × 3) and 12 (2 × 2 × 3),

or 6 (2 × 3) and 10 (2 × 5) in the same basis. To see why consider the basis (4,6), it should give unique

representations for 4× 6 = 24 numbers (0-23).
Number %4 %6 Number %4 %6

0 0 0 12 0 0
1 1 1 13 1 1
2 2 2 14 2 2
3 3 3 15 3 3
4 0 4 16 0 4
5 1 5 17 1 5
6 2 0 18 2 0
7 3 1 19 3 1
8 0 2 20 0 2
9 1 3 21 1 3
10 2 4 22 2 4
11 3 5 23 3 5

Notice the first and second column are the same, and thus do not give us the full range we wanted.

Chapter 15

Floating Point

The main goal of this chapter is to introduce floating point numbers and the issues around their use and

misuse. Toward that end, we will first cover fixed point numbers.

15.1 Fixed Point Numbers

Example:

Convert π to binary and hexadecimal. Assume you have four bits before the radix point and 8 bits after

the radix point.

Sol:

before the decimal we have 3 = 0011

after the decimal
0.1415926 . . .
0.2831852 0
0.5663704 0
1.1327408 1
0.2654816 0
0.5309632 0
1.0619264 1
0.1238528 0
0.2477056 0

combining gives 0011.00100100

To convert to hexadecimal we group the digits together in groups of four starting at the radix point, thus

we are forcing the hexadecimal digits to represent either integer or fractional portions.
0011 0010 0100
3 2 4

Thus the answer is 0x3.24.

Example:

Convert 25.6875 to binary.
25 /2 . *2 .6875
12 1 1 .375
6 0 0 .75
3 0 1 .5
1 1 1 0
0 1

87

88 CHAPTER 15. FLOATING POINT

11001.1011

15.2 Floating Point Numbers

I came up with the following program in my doctoral work at UCSB.

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main(){

double pi, e, result;

int i;

e=exp(1);

pi=atan(1)*4;

result=pi;

for(i=1;i<53;i++){

result=sqrt(result);

}

for(i=1;i<53;i++){

result=result*result;

}

cout << setiosflags(ios::showpoint | ios::fixed) << setprecision(16);

cout << "Pi = " << pi << endl;

cout << "Result = " << result << endl;

cout << "e = " << e << endl;

return 0;

}

The results are

Pi = 3.1415926535897931

Result = 2.7182818081824731

e = 2.7182818284590451

Press any key to continue

Notice that Result is e to 7 significant digits, but it should be π. This underscores the importance of

being numerically aware when writing programs.

15.3. IEEE 754 89

15.3 IEEE 754

Floating point numbers are based off scientific notation. Consider a typical number in base 10 scientific

notation,

−1.23× 103.

The number is composed of five pieces of information,

1. sign of the number (-),

2. significant or mantissa (1.23),

3. base (10),

4. sign of the exponent (+),

5. magnitude of the exponent (3).

There are two basic number formats called out in IEEE 754, single precision (float in c/c++), and double

precision (double in c/c++). In addition there are two extended formats, which are only used as intermediate

results while calculating.

e f Category Interpretation
1 . . . 11

1 . . . 11
... NaN See Codes

0 . . . 01
1 . . . 11 0 . . . 00 ±∞ ±∞
1 . . . 10 1 . . . 11

...
... Numbers (−1)s × 1.f × 2(e−127)

0 . . . 01 0 . . . 00
1 . . . 11

0 . . . 00
... Denormals (−1)s × 0.f × 2(−126)

0 . . . 00
0 . . . 00 0 . . . 00 ±0 ±0

NaN codes:

Dec Meaning Example

1 invalid square root
√
−1

2 invalid addition ∞+−∞
4 invalid division 0

0
8 invalid multiplication 0×∞
9 invalid modulo xmod0

For this discussion, the notation fl(x) will be used to mean the number x as it is represented in floating

point on a computer.

(−1)s · 1.f × 2e−127

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
s e f
This is equivalent to saying

90 CHAPTER 15. FLOATING POINT

(−1)s · 1.f × 2E

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
s e=E+127 f
They are the same because e− 127 = E is the same equation as e = E + 127. I think the latter is easier

to use because you read E from the number and want e. The first form (standard for most texts) involves

you guessing what number produced what you are seeing (rather than calculating it). It is like trying to

solve y = mx + b for y given x but using the form (y−b)
m = x to do it. It works, just not well. In any case,

consider some examples.

Example:

Convert 7.892 to single precision IEEE.

Step 1: Convert 7.892 to binary

7.892 = 111.1110010001011010000111

Step 2: Normalize and note sign

7.892 = (−1)01.111110010001011010000111× 22

Step 3: Calculate Excess 127 code for exponent

e = 2 + 127 = 129 = 10000001

Step 4:Round 1.f to 24 digits

fl(1.111110010001011010000111) = 1.11111001000101101000100

Step 5: Assemble

0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0

Example:

Calculate 3.75× 29.625 in IEEE-754 single precision floating point.

Convert:

3.75 = 11.11 = 1.111× 21

29.625 = 11101.101 = 1.1101101× 24

Multiply Significants:

1. 1 1 0 1 1 0 1
× 1. 1 1 1

1. 1 1 0 1 1 0 1
0. 1 1 1 0 1 1 0 1
0. 0 1 1 1 0 1 1 0 1
0. 0 0 1 1 1 0 1 1 0 1

1 1. 0 1 1 1 1 0 0 0 1 1

1.10111100011× 21

Add exponents to normalization exponent and put in excess 127:

1 + 4 + 1 + 127 = 133 = 10000101

Write in single precision:

0 10000101 1011 1100 0110 0000 0000 000

Example:

Perform the following for IEEE-754, single precision

15.3. IEEE 754 91

1. Show the representation of x = 93.3125

x = 93.12510 = 1011101.0012 = 1.011101001× 26

0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2. calculate x ∗ y for y equal to

0 1 0 1 0 0

exponent: 128+133-127=134

float: shortcut, note that y only has two 1’s in the expansion (hidden and near end) and they are

farther apart than the length of the significant portion of x. This will cause the x float to be placed

starting at these locations. The comma below notes where the last bit of precision lies.

zfl = 1.01110100100000000000101, 1101001

Note that the first bit after the comma is a 1 so the number gets rounded up.

z is

0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Example:

Convert 3.03125 to IEEE single precision
3 . 03125
1 1 0 0625
0 1 0 125

0 25
0 5
1 0

3.0312510 = 11.000012 = 1.1000012 × 21

1 + 127 = 128

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Now perform the following on your result and

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1. Addition

x = 1.00000001000000012 × 25

y = 1.1000012 × 21 = 0.00011000012 × 25

x+ y = 1.00000001000000012 × 25 + 0.00011000012 × 25

= (1.00000001000000012 + 0.00011000012)× 25

= (1.00011001010000012)× 25

0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

2. Multiplication

exponent is 132 + 128− 127 = 133

significant is 1.0000000100000001× 1.100001 = 1.1000010110000101100001

0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0

92 CHAPTER 15. FLOATING POINT

Example:

Perform the following for IEEE-754, single precision

1. Show the representation of x = 0.8125

0 0 1 1 1 1 1 1 0 1 0 1 0

2. calculate (show steps) x ∗ y for x from above and

y is

1 1 0 0 0 0 0 0 1 1 1 0

Exponent: (10000001 + 01111110)− 01111111 = 11111111− 01111111 = 1000000

float= 1.101 ∗ 1.11 = 10.11011 = 1.011011× 21, so add 1 to exponent

1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3. Perform the multiplication above in decimal and verify the answer.

.8125 ∗ (−7) = −5.6875 = −101.10112

15.4 Rounding versus Chopping

Rounding is almost always used because of two reasons. To see both, let the interval between two numbers

in the representation is 2δ then for rounding x− fl(x) ∈ [−δ, δ), while for chopping it is x− fl(x) ∈ [0, 2δ).

The first problem is that the error magnitude is up to twice as large for chopping. This is obviously bad,

but it is not as bad as the second problem. The second problem is that all the errors of chopping have the

same sign, so no error cancellation is possible when calculations are done. To see why this is bad, consider

the following.

Example:

Find out the error in calculating
∑n

i=1 xi on a computer. First note that what you actually calculate

is
∑n

i=1 fl(xi). The error (actual minus calculated) is thus Err = |(
∑n

i=1 xi)− (
∑n

i=1 fl(xi))|. Also let

fl(xi) = xi + γi for γi in the error interval of your method.

Err =

∣∣∣∣∣(
n∑

i=1

xi)− (

n∑
i=1

(xi + γi))

∣∣∣∣∣
=

∣∣∣∣∣(
n∑

i=1

xi)− (
n∑

i=1

xi +
n∑

i=1

γi)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

xi −
n∑

i=1

xi −
n∑

i=1

γi

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

γi

∣∣∣∣∣
≤

n∑
i=1

|γi|

For chopping the last inequality is actually an equality, i.e. chopping always has the worst case error. For

a typical case on rounding the errors are distributed with some positive and some negative, thus cancellation

can occur. For large sums (many terms) the law of large numbers and an assumed uniform distribution of

γi indicates that the error for rounding will go to 0! This is a great result.

15.5. EVALUATING A POLYNOMIAL 93

Example

Write C/C++ code to sum the following
∑100

i=1
1
i . Make sure you do it in the right order.

double sum=0;

int i;

for(i=100;i>=0;i--){

sum+=1.0/i;}

15.5 Evaluating a Polynomial

Figure 15.1: Close-up Look at Resulting Values of Two Evaluation Methods for y = x3 − 3x2 + 3x− 1

94 CHAPTER 15. FLOATING POINT

Part IV

Organization

95

Chapter 16

Arithmetic Operations

We have looked at number representation and calculation techniques, now we will look at how to specify the

operations to a computer. In order to do an arithmetic operation, we need to know where the two operands

(sources) are located and where the result should be placed (destination). Computers are classified by how

many of the addresses must be explicitly stated and how many are implicit.

16.1 Three Address Machines

This is the most flexible form. Each address can be specified by the user. The commands are of the form

command source1, source2, destination
or

command destination, source1, source2

Bus 1 Bus 2 Bus 3

�
�

@
@

��
@@ ALU

Regs.

-

-

-

�

�

�

16.2 Two Address Machines

The destination is also a source in this case. The commands are of the form

command destination, source

97

98 CHAPTER 16. ARITHMETIC OPERATIONS

16.3 One Address Machines

A special register, called the accumulator, is designated to be a source and destination. The accumulator

has two special instructions, load accumulator and store accumulator. Accumulator machines rarely use

additional registers, though it is not technically required. The arithmetic commands are of the form

command source

16.4 Zero Address Machines

The internal registers are arranged as a stack. The source operands are taken from the stack in order (first

operand on top, second operand below). The result is pushed on the stack. These are often called stack

machines. The arithmetic commands are of the form
command

16.5 Comparison Code

Consider the following equation:

y = x2 + 2x+ 3

= (x+ 2) ∗ x+ 3

Assume x is at 100, 2 is at 104, 3 is at 108, and y is at 112. The following uses a three address scheme

with destination first.

version 1 version 2
y = x2 + 2x+ 3 y = (x+ 2) ∗ x+ 3
mpy 112,100,100 add 112,100,104
mpy 116,100,104 mpy 112,112,100
add 112,112,116 add 112,112,108
add 112,112,108

The following shows the second version on different machines.

3 address 2 address 1 address 0 address
add 112,100,104 move 112,100 load 100 push 100
mpy 112,112,100 add 112,104 add 104 push 104
add 112,112,108 mpy 112,100 mpy 100 add

add 112,108 add 108 push 100
store 112 mpy

push 108
add
pop 112

Assume x is in R1, 2 is in R2, 3 is in R3, and y is in R4.

Chapter 17

Stack Machines

Stack machines are also known as 0-address machines, because no address must be specified for arithmetic

operations. The most common example of a stack machine is an HP calculator. The application ”Toy Stack”

is an executable for Windows XP, which is available at the website. It has 64 bytes of memory split into

32 for instructions and 32 for data. All variables are 1 byte long and stored in 2’s complement or unsigned

form. Instructions are 1 byte long, but can have two commands in it in some cases. There is no branch

delay slot. The commands are

Memory

0 0 P Addr

where,

P =

{
0, Push;
1, Pop.

Addr = 5-bit address in memory.

Branching

0 1 C Addr

where,

C =

{
0, Always;
1, Less (i.e. the top number on the stack is negative).

Addr = 5-bit address in memory to branch to.

Note: branch less is also branch bit set, for the most significant bit on the top of the stack.

Arithmetic

1 0 Op1 Op2
where,

Opi =



000, halt (Op1) or nop (Op2);
001, addition;
010, subtraction;
011, negation;
100, unsigned multiplication;
101, signed multiplication;
110, unsigned division;
111, signed division.

99

100 CHAPTER 17. STACK MACHINES

Note: Nop is no operation, and is used to allow, just one arithmetic command to execute rather than two.

Halt is used to terminate the program run. If something other than nop is in Op2 after a halt then that

command is executed before termination.

Shifting
1 1 0 L/R mode times

where,

L/R =

{
0, left shift;
1, right shift.

mode =


00, fill with 0’s;
01, fill with 1’s;
10, arithmetic shift;
11, circulant shift.

times = shift (1+times) bits (times is a two bit number).

Push Signed Constant
1 1 1 0 Const

where, Const is a four bit number that is sign extended to eight bits and pushed on the stack.

Logic
1 1 1 1 0 Op

where,

Op =



000, or;
001, nor;
010, orn;
011, xor;
100, and;
101, nand;
110, andn;
111, equivalence.

Note: all logic functions are bitwise.

Undefined
1 1 1 1 1 Op

where, Op is a three bit operand. This operation is left undefined.

At the moment you have to enter your programs and data values manually, sorry I just started writing

this. A load and save feature has been added which saves the memory to a file in encrypted format. You can

only load programs that were encrypted with your exact name (spelling and caps count). Essentially this

removes sharing data files as you need to submit your solutions electronically to me, with the exact spelling

of your name (so I can load them). I will not give credit to you unless the name is yours.

17.1 Affine Encryption Program

Affine encryption is one of the simplest methods for doing encryption. Let Pi be the ith character in the

plain text message, and let Ci be the corresponding encoded character. Let there be n possible characters

to encode, then the basic idea is to pick two numbers (a, b) to encode a message such that gcd(a, n) = 1 (so

a has an inverse). No requirement on b is needed if your modulus function has been encoded correctly. The

encoded character can then be found by

a× Pi + b = Ci mod n.

17.1. AFFINE ENCRYPTION PROGRAM 101

Note that the ” mod n” at the end says the equation holds in Zn, the set of integers mod n with appropriately

defined arithmetic.

To decrypt the message, the equation

ā× (Ci + d) = Pi mod n

is used. The term ā is the inverse of a in Zn, which is found by solving

a× ā = 1 mod n

or

a× ā = m× n+ 1.

Note that m is any whole number. The term d is the additive inverse of b in Zn, which is found by solving

d = n− (b mod n).

We can summarize this by saying an affine cipher is an encryption technique that encodes using three

integers: a, b, and n. If plain is the character to be encoded (with ‘A’=0 and ‘Z’=25) then code = (a∗plain+b)

mod n. Decoding is also done using three integers: c, d, and n. If code is the character to be encoded (with

‘A’=0 and ‘Z’=25) then plain = (c ∗ (code+ d)) mod n. The requirements on (a, b, c, d, n) are:

• gcd(a, n) = 1

• (ac) mod n = 1

• (b+ d) mod n = 0

Below is C code to implement a particular case of affine cyphers.

char affine_encode(char plain){

// affine codes capital letter in plain using a=5, b=12 thus this is modulo 26

int iCode, iPlain, a=3,b=0;

// convert char to integer and shift so A=0

iPlain=int(plain)-65;

// do the encoding

iCode = (a*iPlain+b)%26;

// return the result as a char

return char(iCode+65);

}

char affine_decode(char code){

// affine decodes capital letter in plain using c=21, d=8 thus this is modulo 26

int iCode, iPlain, c=9, d=0;

// convert char to integer and shift so A=0

iCode=int(code)-65;

// do the decoding

102 CHAPTER 17. STACK MACHINES

iPlain = (c*(iCode+d))%26;

// return the result as a char

return char(iPlain+65);

}

Using this we consider affine encryption for standard ASCII including the control codes. In this case

n = 27 = 128. Note that the standard arithmetic on our stack machine is Z28 so we can calculate normally

then drop the leading bit to get Z27 . As long as a does not have 2 as a factor it will meet the requirement

gcd(a, n) = 1. Let a = 3 then 3 × ā = m × n + 1 for some m ∈ {1, 2, . . .}. Start with m = 1, then

ā = 129/3 = 43. Since the result is an integer, it is an inverse. If the result was not an integer, m would be

incremented and the process would continue. Finally, let b = 57 then d = 128− 57 = 71.

Let the memory locations of the variables be:
Variable Address Value

P 00000 your choice
C 00001 per calculation

P (calc) 10000 per calculation
a 11100 00000011
ā 11101 00101011
b 11110 00111001
d 11111 01000111

The variable P (calc) was added so the decoded plain text would not overwrite the original. The program

to encode is thus:
Machine Assembly ;Comment
00011110 push b ;load data
00011100 push a ;
00000000 push P ;

unsigned multiply ;aP+b
10100001 add ;
11000000 shl0 1 ;drop leading bit
11010000 shr0 1 ;
00100001 pop C ;store
10000000 halt ;done

The program to decode is thus:
Machine Assembly ;Comment
00011101 push ā ;load data
00011111 push d ;
00000001 push C ;

add ;ā(C + d)
10001100 unsigned multiply ;
11000000 shl0 1 ;drop leading bit
11010000 shr0 1 ;
00110000 pop P (calc) ;store
10000000 halt ;done

17.2 Babylonian Algorithm

Implement the following Babylonian algorithm to find Pythagorean Triples1 on the Toy Stack.

• Start with 2 (unsigned) integers p, q with p > q (assume these are present)

1The algorithm actually predates Pythagoras.

17.2. BABYLONIAN ALGORITHM 103

• calculate the three numbers by: n1 = 2pq, n2 = p2 − q2, n3 = p2 + q2

To understand how this works note that

n2
1 = (2pq)2

= 4p2q2

and

n2
2 = (p2 − q2)2

= p4 − 2p2q2 + q4

and

n2
3 = (p2 + q2)2

= p4 + 2p2q2 + q4

thus

n2
1 + n2

2 = (4p2q2) + (p4 − 2p2q2 + q4)

= p4 + 2p2q2 + q4

= n2
3

The assembly is

push 0 ! calculate 2pq

push 1

push #2

umul

umul

pop 16 ! 2pq stored in 16

push 0 ! calculate p^2

push 0

umul

pop 2 ! p^2 stored in 2

push 1 ! calculate q^2

push 1

umul

pop 3 ! q^2 stored in 3

push 3 ! calculate p^2 - q^2

push 2

sub

pop ! p^2 - q^2 stored in 17

push 3 ! calculate p^2 + q^2

push 2

add

pop ! p^2 + q^2 stored in 17

For the machine code see the website.

104 CHAPTER 17. STACK MACHINES

Chapter 18

Instruction Set Architecture

18.1 RISC vs. CISC

RISC reduced instruction set computer- For high level language programmers (reduces time for each instruc-

tion)

CISC complex instruction set computer- For assembly programmers (reduces instructions for same program)

RISC CISC
Number of addressing modes few many
Access to main memory Only in loads and stores (hence

load-store architecture)
One or more operands in most in-
structions can access

Size of instruction set small large
Complexity of each instruction small large

RISC is currently and has been more efficient.

18.2 Memory Access

Most machines are byte addressable (i.e. each byte in memory has an address). Memory access typically

come in three sizes and are often distinguished by the operand suffix .b (byte), .h (halfword), .w (word).

18.3 Branching

Conditional branching

Three ways: compare two, compare to zero, condition registers

cmp

Branch delay and pipelining

short circuit (positional) put in sum of expressions form and then do a series of conditional branches

Bitwise (and,or,xor,andn,orn)

bb (bitbranch reg,bit,targ)

bset

bclr

shift L/R

105

106 CHAPTER 18. INSTRUCTION SET ARCHITECTURE

zero fill

one fill

rotate

usually to carry

Chapter 19

Addressing

• .bss

• .data

• .text

.bss (block started by symbol) memory, reserved only

.data memory, predefined values

.text instructions

.reserve val (alternately ”.skip val”) sets aside val bytes of memory

.equate name, val (alternately ”.set name, val”) makes name a constant with value val

.byte val (alternately .b, ub, sb) specifies the operation to be on a byte

.half val (alternately .h, uh, sh) specifies the operation to be on a half word (2 bytes)

.word val (alternately .w) specifies the operation to be on a word (4 bytes)

.align val aligns the memory location counter

Note that val may be a constant expression for readability.
Name Generic Sparc Uses
memory direct mX [%r0+X]
register direct rX %rX
immediate #X X
memory indirect @mX - pointers
register indirect @rX [%rX] pointers
memory indexed label[mX] - arrays
register indexed label[rX] [%rY + %rX] arrays

(note %rY is loaded with label)
pre-increment +[rX] - increments by size (stride) each time
post-increment [rX]+ - increments by size (stride) each time
pre-decrement -[rX] - decrements by size (stride) each time
post-decrement [rX]- - decrements by size (stride) each time
memory displaced mX → label - struct
register displaced rX → label [%rX + label] struct

107

108 CHAPTER 19. ADDRESSING

m0 0x00 0x00 0x00 0x12
m4 0x00 0x00 0x00 0x08
m8 0x01 0x23 0x45 0x67
m12 0x89 0xAB 0xCD 0xEF
m16 0x12 0x34 0x56 0x78
m20 0x9A 0xBC 0xDE 0xF0
m24 0x11 0x11 0x11 0x11

r0 0x00 0x00 0x00 0x00
r1 0x00 0x00 0x00 0x08
r2 0x00 0x00 0x00 0x0C
r3 0x00 0x00 0x00 0x04
r4 0x00 0x00 0x00 0x10

Let var1 be a label for the value 8.

Representation X=4 Effective Address Expression
mX m4 0x00000004 0x00000008
rX r4 - 0x00000010
#X #4 - 0x00000004
@mX @m4 0x00000008 0x01234567
@rX @r4 0x00000010 0x12345678
var1[mX] 8[m4] 0x00000010 (i.e.: 8+8) 0x12345678
var1[rX] 8[r4] 0x00000018 (i.e.: 8+16) 0x11111111
+[rX] +[r4] 0x00000014 0x9ABCDEF0

r4 ← 0x00000014 before
[rX]+ [r4]+ 0x00000010 0x12345678

r4 ← 0x00000014 after
-[rX] -[r4] 0x0000000C 0x89ABCDEF

r4 ← 0x0000000C before
[rX]- [r4]- 0x00000010 0x12345678

r4 ← 0x0000000C after
mX → var1 m4 → 8 0x00000010 (i.e.: 8+8) 0x12345678
rX → var1 r4 → 8 0x00000018 (i.e.: 8+16) 0x11111111

19.0.1 Arrays

For instance consider an array of 10 integers.

int my_int[10];

This creates both the array of integers and a pointer to the first element. The elements are numbered

0 to 9 and are accessed by myint[i] for i ∈ {0, 1, . . . , 9}. They can also be accessed by ∗(myint + i). In

assembly we would have:

my_int: .skip 10*4 ; each int is 4 bytes

The contents can be accessed by:

set i, %r2

ld [%r2], %r2

umul %r2, 4, %r3

set my_int, %r4

ld [%r4 + %r3], %r5

or if my int (the address) fits in a 13 bit signed constant:

109

set i, %r2

ld [%r2], %r2

umul %r2, 4, %r3

ld [%r3+my_int], %r5

Essentially the address is my int + i*4, but this assumes that start of my array is zero. How about a

language like Pascal or VB which allows other starting values? Consider defining an array (-m,-m+1,. . . , -1,

0, 1, . . . , n). To use the address my int + i*size we have

.skip m*size ! negatives

.skip (n+1)*size ! zero and positives

Alternately,

.skip (m+n+1)*size ! whole thing

This causes the address to be my int + (i+m)*size. Now you might think this will be longer, but note

that it can be rewritten as

my int + (i+m)*size
my int + i*size + m*size
(my int + m*size) + i*size

That is, rather than constantly biasing the index, it makes more sense to bias the base. Essentially it

makes the second method look like the first, but it works for a positive starting number (by making m a

negative). Since it is more general the later form is what is used in practice.

19.0.2 String Storage

string256 (aka length plus value) length of string in first byte, string following

NULL terminated string followed by 0

19.0.3 Structs

struct book{

int pages;

float price;

char title[20];

}library[100];

Would be implemented:

.set pages, 0

.set price, 4

.set title, 8

.set book_size, 28

.bss

library: .skip 100*book_size

.bss is done in .data on some assemblers or machines

110 CHAPTER 19. ADDRESSING

Chapter 20

Subroutines

20.1 Basic Overview

Before we get into this, let’s establish some basic definitions.

Caller the section of code that initiates the call

Callee the section of code that is called

Return Address The address of the instruction to be executed after the call is done (usually the one

following the branch or jump)

Subroutine Linkage data structure used to share information between caller and callee

20.1.1 What needs to be passed?

A subroutine can be called from different sections of code and with different parameters. The subroutine

needs to know what data it must operate on and where to resume execution when it finishes. Additionally

the subroutine usually must return some data, and thus it must place the data in an easy to locate area.

The basic data that must be exchanged is thus,

• return address

• return value

• parameters

20.1.2 General Call Sequence

Caller Callee

Startup → Prologue
Sequence Body
Cleanup Body
Sequence ← Epilogue

111

112 CHAPTER 20. SUBROUTINES

20.2 Return Addresses in Leaf and Non-Leaf Subroutines

For the moment we will look only at the issues surrounding return addresses. The following distinctions

must be made:

Leaf subroutines do not make subroutine calls, where as non-leaf subroutines call at least one

subroutine (itself or another subroutine).

The most basic leaf subroutine call looks like:
Caller Callee

address+(4 or 8) to r31 → none
branch sub Body

none Body
none ← branch @r31

The basic leaf routine is quick and easy, but it cannot be used on non-leaf procedures as the return

address would be lost. Consider the following subroutine to calculate xn:
Code Sample run

!!

!! name: pow

!! desc: calculates x^n

!! meth: recursive function call

!! x*(x^{n-1})

!! parm: x in r8

!! n in r9

!! pre : nothing in r16, it is used as

!! a temporary variable

!! post:

!! ret : x^n in r8

!! date: 20 May 2003

!! rev : 1.0

!! revh:

!!

pow: cmp r9,r0 ! see if x^0

breq,a pow_done ! if n=0

add r0,1,r8 ! then ans=1

cmp r9,1 ! see if x^1

breq pow_done ! if n=1

nop ! then ans=x

mv r8,r16 ! else n>1

call pow ! calc r8=x^{n-1}

sub r9,1,r9 !

pow_r: smul r16,r8,r8 ! ans = x*x^{n-1}

pow_done: retl

nop

Assume the call was to calculate 52 and re-
turn to the label ”retn”. For our machine the
return address is stored in r31. We will as-
sume that annulled commands become nop’s
(they really do, the results are just sent to r0
and the condition codes are not set).
Instruction r8 r9 r16 r31
cmp r9,r0 5 2 - retn
breq,a pow done 5 2 - retn
nop 5 2 - retn
cmp r9,1 5 2 - retn
breq pow done 5 2 - retn
nop 5 2 - retn
mv r8,r16 5 2 5 retn
call pow 5 2 5 pow r

Notice at this point we lost the return ad-
dress!
Instruction r8 r9 r16 r31
sub r9,1,r9 5 1 5 pow r
cmp r9,r0 5 1 5 pow r
breq,a pow done 5 1 5 pow r
nop 5 1 5 pow r
cmp r9,1 5 1 5 pow r
breq pow done 5 1 5 pow r
nop 5 1 5 pow r
retl 5 1 5 pow r
nop 5 1 5 pow r
smul r16,r8,r8 25 1 5 pow r
retl 25 1 5 pow r
nop 25 1 5 pow r

At this point it should have gone back to
”retn” but since that address was lost it will
loop endlessly.

20.3. PARAMETER PASSING 113

If the subroutine is non-leaf and not part of a cycle (recursive or otherwise) then the following modification

will work nicely.

Caller Callee

address+(4 or 8) to r31 → r31 to mem
branch sub Body

none mem to r31
none ← branch @r31

the two versions can be combined as:

Caller Callee

address+(4 or 8) to r31 → if nonleaf r31 to mem
branch sub Body

none if nonleaf mem to r31
none ← branch @r31

20.3 Parameter Passing

We now turn our attention on the parameters. First we need to consider how to represent the data. For

instance if you just need to send an integer to do a calculation but you don’t want it modified then you

would pass by value. If on the other hand you need to pass an instance of a class you must pass by reference.

The three ways data may be handled are

1. pass by value (not returned)

2. pass by value/result (modify and return)

3. pass by ref (pointer to actual object)

Beyond these basic considerations, there is a question as to where to locate the data for the subroutine

call. The information could be located in the registers for speed, or in static variables in RAM (parameter

block). Neither of the options discussed so far will handle cyclic subroutines or dynamic local variables. If

either cyclic subroutines or dynamic local variables are needed the information must be passed on the stack

(dynamic variables in RAM). The methods are:

1. register

• fast

• leaf subroutine

2. parameter block

• larger data

• non-leaf and non-cyclic subroutines

3. stack

• larger data

• (dynamic) local variables

• cyclic and recursive calls

114 CHAPTER 20. SUBROUTINES

20.4 Register

Caller Callee

mv params into r8 to r13
address+(4 or 8) to r31 none

branch sub ↗ Body
none mv result to r8
none ↖ branch @r31

Example

We have discussed affine ciphers already. You might have noticed that the equation for encoding and

decoding is very similar. We can combine them with only a small alteration to the decoding formula and

one of the requirements. Decoding is still done using three integers: c, d, and n. If code is the character to

be decoded (with ‘A’=0 and ‘Z’=25) then plain = (c ∗ code+ d) mod n. The requirements on (a, b, c, d, n)

are:

• gcd(a, n) = 1

• (ac) mod n = 1

• (cb+ d) mod n = 0

Below is C code to implement a particular case of affine cyphers.

char affine(char letter, int scale, int offset){

// affine codes capital letter in ’letter’ thus this is modulo 26

int iCode, iLetter;

// convert char to integer and shift so A=0

iLetter=int(plain)-65;

// do the encoding

iCode = (scale*iLetter+offset)%26;

// return the result as a char

return char(iCode+65);

}

The SPARC syntax is then

affine

! calculates affine encryption:

! crypt = (a*(orig-off)+b) mod p + off

! a is passed in r8

! b is passed in r9

! n is passed in r10

! off is passed in r11

! orig is passed in r12

20.4. REGISTER 115

! crypt is returned in r

.text

affine: sub r12, r12, r11 ! orig-off

mult r8, r12, r8 ! a*(orig-off)

add r8, r8, r9 ! a*(orig-off)+b

div r9, r8, r10 ! x= y mod z = y - y/z*z

mult r9, r9, r10

sub r8, r8, r9 ! (a*(orig-off)+b) mod n

add r8, r8, r11 ! done

retl

encrypt call

! affine encrypt

! a is passed in r8

! b is passed in r9

! n is passed in r10

! off is passed in r11

! orig is passed in r12

! crypt is returned in r8

.text

set r8, 3 ! given

set r9, 0 ! given

set r10, 26 ! letters in alphabet

set r11, 65 ! A in ascii

call affine ! call and link

ld.b r12, add_plain ! assume have label add_plain

! where plain text is stored

st.b r8, add_code ! assume have label add_code where

! cypher text is to be stored

decrypt call

! affine decrypt

! a is passed in r8

! b is passed in r9

! n is passed in r10

! off is passed in r11

! orig is passed in r12

! crypt is returned in r8

.text

set r8, 9 ! given

set r9, 0 ! given

set r10, 26 ! letters in alphabet

set r11, 65 ! A in ascii

call affine ! call and link

ld.b r12, add_code ! assume have label add_code

! where cypher text is stored

116 CHAPTER 20. SUBROUTINES

st.b r8, add_plain ! assume have label add_code where

! plain text is to be stored

Example

Write the MIPS assembly code for the following function. Assume the array a has been defined as size

n. The following registers are to be used to pass the values:

pointer to a $a0

n $a1

sum $v0

You do not need to write the code to call the function.

int sum(int* a, int n){

int sum;

sum=0;

for(int i=0;i<n;i++){

sum+=a[i]}

return sum;}

Solution

sum:

add $v0, $zero, $zero # sum=0

sll $a1, $a1, 2 # 4*n

add $a1, $a1, $a0 # one element after last in array

ble $a1, $a0, sum_done # array empty

sum_loop:

lw $t0, 0($a0) # get element

addi $a0, $a0, 4 # increment pointer

add $v0, $v0, $t0 # add element to sum

bne $a0, $a1, sum_loop # check if more elements

sum_done:

jr $ra # return

20.5 Parameter Block

Caller Callee

store params into block using labels allocate block and labels in .data
store address+(4 or 8) to block none

branch sub ↗ Body
load result to desired register store result to block

none ↖ ld return address to r31
none branch @r31

20.6. STACK 117

20.6 Stack

The stack is a large block of RAM which data is pushed onto. Any piece of information can be pushed

onto the stack. All the data passed to and from the subroutine with all the local variables composes a

block of information on the stack called the frame. The frame is created in the startup and prologue and

removed in the epilogue and cleanup. The startup allocates space for all the information that must be passed

(return address, parameters, and return values), and the cleanup removes it. The prologue allocates any

local variables or storage to protect registers and the epilogue removes this local information.
Caller Callee

push params
allocate return value push registers to protect
push return address ↗ push local variables

branch sub Body
pop result to desired register store result to stack at offset

pop params ↖ pop locals (remove)
pop register back

pop return address to r31
branch @r31

!!

!! name: pow

!! desc: calculates x^n

!! meth: recursive function call

!! x*(x^{n-1})

!! parm: stack passing:

!! x at fp+20

!! n at fp+16

!! return value at fp+12

!! return address at fp+8

!! pre :

!! post:

!! ret : x^n at fp+12

!! date: 22 May 2003

!! rev : 1.1

!! revh:

!!

.set s16,0 ! offset to save r16

.set s17,4 ! offset to save r17

.set ra,8 ! offset to ret add

.set rv,12 ! offset to ret val

.set n,16 ! offset to n

.set x,20 ! offset to x

pow: sub sp,8,sp ! allocate save space

mv sp,fp ! set frame

st r16,[fp+s16] ! save r16

st r17,[fp+s17] ! save r17

ld [fp+n],r17 ! load n

118 CHAPTER 20. SUBROUTINES

cmp r17,r0 ! see if x^0

breq,a pow_done ! if n=0

add r0,1,r16 ! then ans=1

cmp r17,1 ! see if x^1

breq pow_done ! if n=1

ld [fp+x],r16 ! then ans=x

! else n>1

sub sp,4,sp ! decrement pointer

st r16,[sp] ! push x

sub r17,1,r17 ! calc n-1

sub sp,4,sp ! decrement pointer

st r17,[sp] ! push n-1

sub sp,8,sp ! decrement pointer

! for return value

! and address

call pow ! calc r8=x^{n-1}

st r31,[sp] ! push return address

ld [sp],r16 ! get x^{n-1}

add sp,12,sp ! deallocate

mv sp,fp ! restore frame

ld [fp+x],r17 ! get x

smul r16,r17,r16 ! ans = x*x^{n-1}

pow_done: st r16,[fp+rv] ! store return value

ld [fp+s16],r16 ! restore r16

ld [fp+s17],r17 ! restore r17

ld [fp+ra],r31 ! get return address

retl

add sp,12,sp ! deallocate ra, s16, s17

20.7 Temperature Conversion

Write a function that converts Fahrenheit to Celsius by following the steps below. A C/C++ command to

do the conversion is:

celsius = ((fahrenheit - 32)* 5) / 9;

Note: I added an extra set of parenthesis to let you know you must do the multiplication first! Why does

the multiplication have to be done first? Include an example.

If you do not multiply first, you can loose precision. ex: 2/9*5=0, while 2*5/9=1 (in integer math).

1. State the passing convention you will use (include what needs to be passed and where you will pass it)

and any other reasonable assumptions on the machine.

20.7. TEMPERATURE CONVERSION 119

I will use register passing and will use register r8 to pass both the parameter and the result. Since

this is a leaf procedure and I do not need other registers, I will use the book’s leaf procedure (return

address in r31). I will further assume that my machine has call and retl that automatically store and

access the return address. Finally, I will assume there is a branch delay slot, the destination is always

the first location, and I have all addressing modes. (your choices may be different).

2. Write the function.

fahr_2_cels: sub r8, r8, 32

mpy r8, r8, 5

retl

div r8, r8, 9

3. Show how it would be called. Assume that the Fahrenheit temperature is stored in a memory location

specified by the label ”fahr temp”. The result should be stored at the memory location specified by

the label ”cels temp”.

set r1, fahr_temp

call fahr_2_cels

ld.w r8, @r1

set r1, cels_temp

st.w @r1, r8

120 CHAPTER 20. SUBROUTINES

Chapter 21

MIPS Assembly

R-Format op rs rt rd shamt funct
Bits 6 5 5 5 5 6
add $r1,$r2,$r3 0 $r2 $r3 $r1 0 32
addu $r1,$r2,$r3 0 $r2 $r3 $r1 0 33
sub $r1,$r2,$r3 0 $r2 $r3 $r1 0 34
subu $r1,$r2,$r3 0 $r2 $r3 $r1 0 35

I-Format op rs rt address
Bits 6 5 5 16
lw $r1,off($r2) 35 $r2 $r1 off
sw $r1,off($r2) 43 $r2 $r1 off

121

122 CHAPTER 21. MIPS ASSEMBLY

21.1 Registers

Number Name Use
0 $zero 0
1 $at assembler use
2 $v0 return value (value)
3 $v1 return value (value)
4 $a1 parameters (arguments)
5 $a2 parameters (arguments)
6 $a3 parameters (arguments)
7 $a4 parameters (arguments)
8 $t0 temp (not saved)
9 $t1 temp (not saved)
10 $t2 temp (not saved)
11 $t3 temp (not saved)
12 $t4 temp (not saved)
13 $t5 temp (not saved)
14 $t6 temp (not saved)
15 $t7 temp (not saved)
16 $s0 saved temp
17 $s1 saved temp
18 $s2 saved temp
19 $s3 saved temp
20 $s4 saved temp
21 $s5 saved temp
22 $s6 saved temp
23 $s7 saved temp
24 $t8 temp (not saved)
25 $t9 temp (not saved)
26 $k0 OS
27 $k1 OS
28 $gp global pointer (0x10008000) points to middle of 64k block
29 $sp stack pointer
30 $fp frame pointer
31 $ra return address

21.2 Keeping Your Ends Straight

Big (LR) and little (RL) endian

Consistent (same for bits)

Sparc is inconsistent big-endian.

Endian Consistent Inconsistent

Big
0 1 . . . n

0. . . 7 0. . . 7 . . . 0. . . 7
0 1 . . . n

7. . . 0 7. . . 0 . . . 7. . . 0

Little
n . . . 1 0

7. . . 0 7. . . 0 . . . 7. . . 0
n . . . 1 0

0. . . 7 0. . . 7 . . . 0. . . 7

21.3. DATA STRUCTURES 123

21.3 Data Structures

Implement the following data structure in assembly then write a MIPS function to calculate mykey.block =

mykey.p×mykey.q.

struct keys{

int p;

int q;

int public;

int private;

int block;

};

.data

mykey:

mykey_p: .word 0

mykey_q: .word 0

mykey_public: .word 0

mykey_private: .word 0

mykey_block: .word 0

.set mykey_off_p=mykey_p - mykey

.set mykey_off_q=mykey_q - mykey

.set mykey_off_public=mykey_public - mykey

.set mykey_off_private=mykey_private - mykey

.set mykey_off_block=mykey_block - mykey

.text

! Since this operates on data we know the location of,

! we don’t need to pass anything

la $t1, mykey

lw $t2, mykey_off_p($t1)

lw $t0, mykey_off_q($t1)

mul $t0,$t2

mflo $t0

sw $t0,mykey_off_block($t1)

21.4 Register Passing

21.4.1 Exponentiation by Multiplication

Write code to calculate nm for n a non-zero finite integer and m a non-negative integer.

n^m by loop

n !=0 finite in a0

m >=0 finite in a1

n^m in v0

0 in

pow_by_loop:

124 CHAPTER 21. MIPS ASSEMBLY

ensure arguments are ok

mov $v0,$zero

beqz $a0,pow_done

bltz $a1,pow_done

m=0 and setup

addi $v0,$v0,1

beqz $a1,pow_done

m>0, loop

pow_loop:

mul $v0,$a0

mflo $v0

subi $a1,$a1,1

bgtz $a1,pow_loop

pow_done:

jr $ra

Now how do we call it? Assume that n is in $s0 and m is at address ”int m” and we want the result in

$s1.

mov $a0,$s0

la $t1,int_m # note I use $t1 for address scrap space

lw $a1,0($t1)

jal pow_by_loop:

mv $s1, $v0

21.4.2 Polynomial Evaluation

Write the MIPS assembly code for the following function. Assume the array a has been defined as size

n+1. You do not need to write the code to call the function but you need to state where you assume the

parameters and return address will be.

int poly_eval(int* a, int n, int x){

y=a[n];

for(i=n-1;i>=0;i--){

y=y*x+a[i];

}

return y;

}

###

poly_eval

leaf procedure to evaluate polynomials

parameters:

a1 : pointer to array of coefficients

a2 : largest index in array

a3 : point to evaluate polynomial

return value:

v0 : value of polynomial

temporary values:

21.4. REGISTER PASSING 125

t0 : offset in array

t1 : address in array

poly_eval: add $t0, $a2, $a2 # four bytes per integer

add $t0, $t0, $t0

add $t1, $t0, $a1 # address of element to get

lw $v0,0($t1) # initialize the answer

beq $t0,$zero, poly_done # if only one element then done

poly_do: mul $v0, $v0, $a3 # y=y*x

subi $t0, $t0, 4 # next coefficient is four bytes down

add $t1, $t0, $a1 # next coefficient’s address

lw $t2, 0($t1) # next coefficient

add $v0, $v0, $t2 # add next coefficient

bne $t0,$zero, poly_do # more coefficients left

poly_done: jr $ra # return

21.4.3 Xor Encryption

Consider the problem of xor encryption. The ith cipher text character, Ci is given by

Ci = Pi ⊕Ki

where Pi is the ith plain text character and Ki is the ith key character. The decryption is then given by

Pi = Ci ⊕Ki.

This encryption method is thus symmetric.

#

xor

#

$a0 contains plaintext

$a1 contains key

$a2 contains ciphertext

xor:

mov $t3,$a1

lb $t0,0($a0)

lb $t1,0($a1)

xor_loop:

xor $t2,$t0,$t1

sb $t2,0($a2)

addi $a0,$a0,1

addi $a1,$a1,1

addi $a2,$a2,1

lb $t0,0($a0)

beqz $t0, xor_done

xor_load:

lb $t1,0($a1)

bgtz $t1, xor_loop

mov $a1,$t3

126 CHAPTER 21. MIPS ASSEMBLY

j xor_load

xor_done:

jr $ra

21.4.4 Bubble Sort

procedure bubbleSort(A : list of sortable items)

n = length(A)

repeat

swapped = false

for i = 1 to n-1 inclusive do

if A[i-1] < A[i] then

swap(A[i-1], A[i])

swapped = true

end if

end for

n = n - 1

until not swapped

end procedure

#

Bubble Sort

#

$a0 points to start of array

$a1 points to last element in array

move $t0, $a0

move $t1, $a1

outter: move $t4, $0 # swapped this round is false

lw $t2, 0($t0) # get the left compare value

inner: lw $t3, 4($t0) # get the right compare value

addi $t0, $t0, 4 # increment the left pointer

ble $t2, $t3, no_swap # if right>left swap, else don’t

swap: sw $t2, 0($t0) # place left value on right in array

sw $t3, -4($t0) # place right value on left in array

ori $t4, $0, 1 # set swapped true

blt $t0, $t1, inner # if not at end then keep going

subi $t1, $t1, 4 # if at end then shorten the list

move $t0, $a0 # reset the first element

b outter # start another major loop

no_swap: move $t2, $t3 # no swap, so right element is new left

blt $t0, $t1, inner # if not at end then keep going

subi $t1, $t1, 4 # if at end then shorten the list

move $t0, $a0 # reset the first element

bnez $t4, outter # start another major loop if swapped

21.5 Block Passing

Let us reconsider affine encryption as outlined in Section 17.1

21.5. BLOCK PASSING 127

We will be passed a pointer to a string of plaintext, *P, and the length of the string, len. Additionally

we need the affine parameters a, b, and n. Five parameters cannot be passed in registers, as we only have

four, so we will use a block. Modulus is handled nicely by div in mips so we have no problems there. To be

really careful I will use divu (unsigned division).

If an error is detected I will use break $zero to halt execution. You could also write your own error

handler but that did not seem reasonable given the length of the code already (3 pages). I have tried to

exhibit good commenting techniques. They greatly simplify others reading and editing.

128 CHAPTER 21. MIPS ASSEMBLY

##

_affine_encrypt

#

#

Author: Keith Schubert

Date : Nov 4, 2005

Desc : Affine encryption of a string

Method: calculate then modulus.

BlkPtr: _affine_encrypt_block_pointer

var contents offset

Return:

RetAdd: _affine_encrypt_off_ra

Params: *P plaintext _affine_encrypt_off_p

len plaintext.length _affine_encrypt_off_len

*C ciphertext _affine_encrypt_off_c

a affine scale _affine_encrypt_off_a

b affine shift _affine_encrypt_off_b

n # of code chars _affine_encrypt_off_n

Pre :

Post : contents of $t0-$t8 changed, $ra changed

#

##

.data

_affine_encrypt_block_pointer:

_affine_encrypt_base_ra:

.word 0

_affine_encrypt_base_p:

.word 0

_affine_encrypt_base_c:

.word 0

_affine_encrypt_base_len:

.word 0

_affine_encrypt_base_a:

.word 0

_affine_encrypt_base_b:

.word 0

_affine_encrypt_base_n:

.word 0

_affine_encrypt_block_bottom:

.set _affine_encrypt_off_ra =

_affine_encrypt_base_ra - _affine_encrypt_block_pointer

.set _affine_encrypt_off_p =

_affine_encrypt_base_p - _affine_encrypt_block_pointer

.set _affine_encrypt_off_c =

_affine_encrypt_base_c - _affine_encrypt_block_pointer

.set _affine_encrypt_off_len =

_affine_encrypt_base_len - _affine_encrypt_block_pointer

21.5. BLOCK PASSING 129

.set _affine_encrypt_off_a =

_affine_encrypt_base_a - _affine_encrypt_block_pointer

.set _affine_encrypt_off_b =

_affine_encrypt_base_b - _affine_encrypt_block_pointer

.set _affine_encrypt_off_n =

_affine_encrypt_base_n - _affine_encrypt_block_pointer

.set _affine_encrypt_block_size =

_affine_encrypt_block_bottom - _affine_encrypt_block_pointer

.text

_affine_encrypt:

#

Setup

#

t0 = current char index

t1 = *p

t2 = *c

t3 = len

t4 = a

t5 = b

t6 = n

t7 = current char

t8 = effective address

#

la $t1, _affine_encrypt_block_pointer

lw $t2, _affine_encrypt_off_c($t1)

lw $t3, _affine_encrypt_off_len($t1)

bgtz $t3,_affine_encrypt_len_ok

break $zero #error stop execution

_affine_encrypt_len_ok

lw $t4, _affine_encrypt_off_a($t1)

lw $t6, _affine_encrypt_off_n($t1)

#

Data validity

#

see if gcd(a,n)=1

mov $t5, $t4

mov $t0, $t6

break $zero # MIPS error

break $zero

Euclid’s alg

_affine_encrypt_Euclid:

divu $t5,$t0

mov $t5,$t0

mfhi $t0

bgez $t0,_affine_encrypt_Euclid

subi $t5,$t5,1

130 CHAPTER 21. MIPS ASSEMBLY

beqz $t5,_affine_encrypt_ab_ok

break $zero

_affine_encrypt_ab_ok:

#

Finish loads

#

lw $t5, _affine_encrypt_off_b($t1)

lw $t1, _affine_encrypt_off_p($t1)

mov $t0,$zero

#

main loop

#

get char, scale, shift, mod, then store

#

_affine_encrypt_loop:

add $t8,$t0,$t1

lbu $t7,0($t8)

mulu $t7,$t4

mflo $t7

add $t7,$t7,$t5

divu $t7,$t6

mfhi $t7

add $t8,$t0,$t2

sb $t7,0($t8)

addi $t0,$t0,1

sle $t8,$t0,$t3

beqz $t8,_affine_encrypt_loop

#

Return

#

la $t1,_affine_encrypt_block_pointer

lw $ra,_affine_encrypt_off_ra($t1)

jr $ra

21.6 Stack Passing

On some machines you can/must manually allocate your own stack using .bss and .skip. On MIPS the stack

is predefined and the OS initializes the stack pointer for you. We are going to define two macros, push and

pop. To define a macro we use .macro and .endmacro.

.macro push arg1

addui $sp,$sp,-4 # allocate space

sw arg1,0($sp) # place contents

.endmacro

.macro pop arg1

21.6. STACK PASSING 131

lw arg1,0($sp) # get contents

addui $sp,$sp,4 # deallocate space

.endmacro

Let’s consider Euclid’s algorithm for finding the GCD of two numbers

1. Let a,b be positive numbers

2. a=b and b=a mod b

3. repeat 2 until b=0

4. gcd=a

iteration a b iteration a b
1 15 12 1 49 84
2 12 3 2 84 49
3 3 0 3 49 35

4 35 14
5 14 7
6 7 0

###

#

_euclid_alg_gcd

#

Author: Keith Schubert

Date : Nov 4, 2005

Desc : greatest common divisor

Method: Euclid’s Algorithm, recursive

var offset

Return: gcd _euclid_alg_gcd_off_gcd

RetAdd: ra _euclid_alg_gcd_off_ra

Params: a _euclid_alg_gcd_off_a

b _euclid_alg_gcd_off_b

Pre :

Post : contents of $t0-$t8 changed, $ra changed

#

##

_euclid_alg_gcd:

21.6.1 Towers of Hanoi

Implement a recursive function to solve the towers of Hanoi in MIPS.

#

hanoi

#

Frame: Return address

*Answer

Answer Size

132 CHAPTER 21. MIPS ASSEMBLY

Number of disks

Free

Destination

Source

.set hanoi_off_ra=0

.set hanoi_off_ans=4

.set hanoi_off_size=8

.set hanoi_off_num=12

.set hanoi_off_free=16

.set hanoi_off_dest=20

.set hanoi_off_source=24

.set hanoi_allocate=-28

.set hanoi_deallocate=28

.set newline="\n"

.set arrow=">"

hanoi:

lw $t0,hanoi_off_num($t0)

subi $t0,$t0,1

blez $t0,done

#

move stack-1 to free

mov $fp,$sp

addiu $sp,$sp,hanoi_allocate

sw $t0,hanoi_off_num($sp) # num-1

lw $t0,hanoi_off_ans($fp) # same string

sw $t0,hanoi_off_ans($sp)

lw $t0,hanoi_off_size($fp) # same size

sw $t0,hanoi_off_size($sp)

lw $t0,hanoi_off_free($fp) # new dest=free

sw $t0,hanoi_off_dest($sp)

lw $t0,hanoi_off_dest($fp) # new free=dest

sw $t0,hanoi_off_free($sp)

lw $t0,hanoi_off_source($fp) # source same

sw $t0,hanoi_off_source($sp)

la $t0,back1 # return address

sw $t0,hanoi_off_ra($sp)

j hanoi

back1:

#don’t deallocate yet, we are calling another in a sec

#

store "source>dest\nNull"

lw $t1,hanoi_off_ans($sp)

lw $t0,hanoi_off_size($sp)

add $t1,$t1,$t0

lw $t2,hanoi_off_source($sp)

sb $t2,0($t1)

li $t2,arrow

sb $t2,1($t1)

21.6. STACK PASSING 133

lw $t2,hanoi_off_dest($sp)

sb $t2,2($t1)

li $t2,newline

sb $t2,3($t1)

sb $zero,4($t1)

addi $t0,$t0,4

sw $t0,hanoi_off_size($sp)

#

move stack-1 to dest

lw $t0,hanoi_off_dest($fp) # same dest

sw $t0,hanoi_off_dest($sp)

lw $t0,hanoi_off_source($fp) # new free=source

sw $t0,hanoi_off_free($sp)

lw $t0,hanoi_off_free($fp) # new source=free

sw $t0,hanoi_off_source($sp)

la $t0,back2 # return address

sw $t0,hanoi_off_ra($sp)

j hanoi

back2:

addiu $sp,$sp,hanoi_deallocate

lw $ra,hanoi_off_ra($sp)

jr $ra

done:

store "source>dest\nNull"

lw $t1,hanoi_off_ans($sp)

lw $t0,hanoi_off_size($sp)

add $t1,$t1,$t0

lw $t2,hanoi_off_source($sp)

sb $t2,0($t1)

li $t2,arrow

sb $t2,1($t1)

lw $t2,hanoi_off_dest($sp)

sb $t2,2($t1)

li $t2,newline

sb $t2,3($t1)

sb $zero,4($t1)

addi $t0,$t0,4

sw $t0,hanoi_off_size($sp)

lw $ra,hanoi_off_ra($sp)

jr $ra

21.6.2 Tracing Code

The code that follows, implements the algorithm

nk+1 =

{
3nk + 1 if nk is odd

nk

2 if nk is even

134 CHAPTER 21. MIPS ASSEMBLY

in MIPS. Trace the code by showing how the register values change. What is the value that is returned?

Note: this code is a somewhat famous problem in number theory. The problem is to prove that starting at

any number, the algorithm will bring you to 1.

! code $t0 | $a0 | $v0

! | 3 |

!--

secret: ! | |

bgtz $a0, ok ! | |

break $zero ! | |

ok: ! | |

addi $v0,$zero,1 ! | |

subi $t0,$a0,1 ! | |

beqz $t0, end ! | |

loop: ! | |

addi $v0,$v0,1 ! | |

andi $t0,$a0,1 ! | |

beqz $t0, even ! | |

sll $t0,$a0,1 ! | |

add $a0,$a0,$t0 ! | |

addi $a0,$a0,1 ! | |

b loop ! | |

even: ! | |

sra $a0,$a0,1 ! | |

subi $t0,$a0,1 ! | |

bgtz $t0, loop ! | |

end:

I will show changes on successive loops by placing a comma and then the new value

code $t0 | $a0 | $v0

| 3 |

#---

secret: bgtz $a0, ok # | 3 |

break $zero # | |

ok: addi $v0,$zero,1 # | 3 | 1

subi $t0,$a0,1 # 2 | 3 | 1

beqz $t0, end # 2 | 3 | 1

loop: addi $v0,$v0,1 # 2,6,4 ,10,7,3,1| 3,10,5 ,16,8,4,2| 2,3,4,5,6,7,8

andi $t0,$a0,1 # 1,0,1 ,0 ,0,0,0| 3,10,5 ,16,8,4,2| 2,3,4,5,6,7,8

beqz $t0, even # 1,0,1 ,0 ,0,0,0| 3,10,5 ,16,8,4,2| 2,3,4,5,6,7,8

sll $t0,$a0,1 # 6 ,10 | 3 ,5 | 2 ,4

add $a0,$a0,$t0 # 6 ,10 | 9 ,15 | 2 ,4

addi $a0,$a0,1 # 6 ,10 | 10 ,16 | 2 ,4

b loop # 6 ,10 | 10 ,16 | 2 ,4

even: sra $a0,$a0,1 # 0 ,0 ,0,0,0| 5 ,8 ,4,2,1| 3 ,5,6,7,8

subi $t0,$a0,1 # 4 ,7 ,3,1,0| 5 ,8 ,4,2,1| 3 ,5,6,7,8

bgtz $t0, loop # 4 ,7 ,3,1,0| 5 ,8 ,4,2,1| 3 ,5,6,7,8

end:

Returns 8.

Chapter 22

Data Transfer

22.1 I/O

Transmission of data from one device to another is the essence of I/O. Usually, I/O is accomplished by

defining registers to hold the information necessary to transmit the data. The registers that handle the

transmission are called the I/O port. At least three registers are used, one for the data, one for the control,

and one for the Status.

Data the codes to be transmitted. These can be traditional codes, such as ASCII, or even an address of

data being requested.

Control the commands specifying what is to be done.

Status a series of bits specifying what is going on with the bus and the current transaction.

Accessing the registers (reading from or writing to) can be accomplished in two ways.

Memory Mapped the registers of the I/O port, have addresses in regular memory, and thus can be treated

as a regular memory location for access purposes.

Isolated the registers are in a separate (isolated) memory address scheme, and thus the memory must be

access through special commands.

22.2 Busses

Internal vs. External (relative to cpu)

Master/Slave (initiator/target)

(Transaction) Master the initiator of a transaction.

(Transaction) Slave the target of a transaction.

Bus Master any device that can be a (transaction) master.

Burst Mode Transaction transaction which transmits several values.

Bus Transaction data transfer on an external bus.

135

136 CHAPTER 22. DATA TRANSFER

Synchronous Bus Lines
Line/Signal Num Owner
Clock 1 Bus
Start 1 Master
Address k Master
R/W 1 Master
Data n Master/Slave
Done 1 Slave

Arbitration is usually overlapped

22.2.1 Synchronous/Asynchronous Transfer

Busses have to have a way to specify when to transfer and if data has been received. The two basic schemes

for transfer is synchronous and asynchronous.

Synchronous transfers uses a clock signal to coordinate communication, and is thus very fast. For a data

request, we only need to spend one bus cycle to sent the request, the access time to find the data, and one

bus cycle to send the answer. The time to transmit the data is thus

Ttransmit =
2

fbus
+ Ta,

were Ta is the time to access the data, and fbus is the bus clock rate1. The faster the clock the less time to

transmit the data. The bandwidth of the bus in terms of transactions is

BWtransaction =
Wbus

Ttransmit
,

where Wbus is the width of the bus2. Frequently however, buses are measured not by an actual transaction

but by what a one way message would be

BW =
Wbus

Tbus

= Wbusfbus.

Let’s consider a few examples. Note that we will be reporting bandwidth in megabytes per second (MB/s).

A byte is 8 bits, and a megabyte is 220 bytes. Bus frequencies (sometimes called speeds) are reported in

megaHertz (MHz), but here mega is in base 10 not base 2, so it is 106 Hertz. Recall a Hertz is a reciprocal

second. Sometimes this distinction is ignored to simplify calculations.

Example 22 (PCI) A basic PCI bus is 32 bits wide (4 bytes) and runs at 33.3 MHz. Thus the bandwidth

is

BW = Wbusfbus (22.1)

=

(
4[B]

1[MB]

220[B]

)(
33.3[MHz]

106[Hz]

1[MHz]

)
(22.2)

=

(
1

218[MB]

)(
3.33× 107[Hz]

)
(22.3)

=

(
1

218[MB]

)(
3.33× 107[Hz]

)
(22.4)

≈ 127[MB/s] (22.5)

1A one way transmission must finish in this time.
2How much data can be sent simultaneously, i.e. the number of wires measured in bits or bytes. A bus that has 32 data

wires is 32 bits wide or 4 bytes wide.

22.2. BUSSES 137

Clock signals take time to transfer down the wire and thus is subject to clock skew. To understand clock

skew, consider a simple example of two clocks 3 kilometers apart. The clocks are synchronized by a beam of

light, which travels at 3× 105 km/s, and thus it takes 10µs for the synchronization pulse to arrive from the

master clock. If the clocks were only synchronized once per second the fraction of the synchronization time

used to transmit the pulse would be 10µs
1s = .001%, which is basically insignificant. What if we wanted to

synchronize the clocks every tenth of a milisecond (.1ms)? The fraction of time to transfer now is 10µs
.1ms = 10%,

which is very significant. When the clock pulse arrives it is off by 10%! That is called clock skew, when the

transmission time of the clock pulse takes a significant portion of the clock frequency. Clock skew is effected

by the distance (d) and the clock rate (f). If the clock skew is some fraction (s) and we assume that the

clock signal is carried at the speed of light (c) then the relation between the variables is

d

c
=

s

f

Assuming we want the skew to be less than a third (s = .33 . . .), the distance is measured in meters and the

bus clock will be measured in megahertz, then

df = 100.

In other words a 100MHz bus (f=100) can only be 1 meter long (d=1) to keep clock skew under 33.3%!

Given that bus speeds of 400MHz are very reasonable, this would limit bus length to about 9in. Thus we

see that clock skew limits bus length, and thus synchronous buses are fast but short.

Asynchronous transfers get around the problem of clock skew by doing a procedure called handshaking.

Basically two units that want to talk send messages back and forth letting each other know what is going

on. A basic handshaking protocol between a sender (S) and a receiver (R) to request data from R is

1. S to R: Here is the address of the data I want.

2. R to S: I got your request and will look it up.

3. S: Drop request when recieve

4. R: looking up data.

5. R to S: Here is your data.

6. S to R: I got it.

7. S: Wait till see data signal drop then drop acknowledgement.

Call the time for the signal to travel from sender to receiver or vice versa Th (for handshake time), and the

time to get the data as Ta(for access time). If we are clever we can overlap items 2,3 with item 4, so that

we will only take the longer of 2Th or Ta rather than 2Th + Ta. The total time for one transfer is thus

Ttransfer = 4Th +max(2Th, Ta).

The bandwidth of the bus is the rate at which data can be sent, and thus

BW =
Wbus

Ttransfer
,

where Wbus is the width of the bus.

22.2.2 Polling and Interrupts

There are two basic ways to handle bus communication with the CPU: polling, interrupts. Direct Memory

Access (DMA) is a special case of interrupts.

138 CHAPTER 22. DATA TRANSFER

Polling - CPU Controlled Data Transfer

Fraction of CPU Time =
Cycles Per Second used on Polls

Clock Frequency

=

Polls
Sec

Cycles
Poll

Clock Frequency

=

Data Rate
Poll Size

Cycles
Poll

Clock Frequency

Interrupt Driven - CPU Controlled Data Transfer

Fraction of CPU Time =
Cycles Per Second used on Interrupts

Clock Frequency

=

Interrupts
Sec

Cycles
Interrupts

Clock Frequency

=

Data Rate
Packet Size

Cycles
Interrupt

Clock Frequency

Interrupt Driven - Direct Memory Access (DMA)

TTransfer =
Size Transfer

Speed Transfer

=
Data Size

Data Rate
Cycles to Handle = Ch

=
Cycles to Start + Cycles to Complete + fe × Cycles to handle errors

1− fe

Fraction of CPU Time =
Cycles Per Second used to handle DMA

Clock Frequency

=

Ch

TTransfer
Clock Frequency

=
Ch

TTransferClock Frequency

Example

You are given a 32-bit asynchronous bus with a handshaking time of 15 ns. Your computer has the

following equipment attached:
Hard Drive RAM
Total Latency: 7.2 ms Access Time: 40ns
Disk Transfer Rate: 10MB/s No Burst Mode
Number of Disks: 4

Showing all work calculate the following:

22.2. BUSSES 139

1. the band width of the bus,

2. the percent of the bus utilized by continuous paging of a virtual memory system with 32KB pages,

3. the number of cache to RAM transfers that can occur if: The bus is continuously paging and 10%

of the bandwidth must be left for other transactions (Hint: calculate the available bandwidth for the

RAM transactions and use the size of the transactions).

The bandwidth of the bus is:

BW =
Data Transfered

Time to Transfer

=
Bus Width

4THand +max 2THand, TRAM

=
4B

4(15ns) + max 2(15ns), 40ns

=
4B

100ns
= 40MB/s

The effective transfer rate of the pages from the disks is:

RateDisk =
Data Transfered

Time to Transfer

=
Data Transfered

Total Latency + Data Transfered
Combined Disk Transfer Rate

=
32KB

7.2ms+ 32KB
4×10MB/s

=
32KB

7.2ms+ .8ms
= 4MB/s

Thus the bandwidth available to RAM is 40− 4− 4 = 32 MB/s. Since each transfer is 4 B, the transfers

per second is 8× 106 transfers/sec or 1 cache miss every 125 ns.

140 CHAPTER 22. DATA TRANSFER

Chapter 23

Memory and Cache

23.1 Memory

2D

2.5D

A synchronous memory bus for a system with 2k addresses of n bit words would require at least:

• k address lines

• n data lines

• 4+ control lines

or a total of k + n+ 4 parallel lines. See Section 22.2

Memory is usually byte-addressable, but I don’t just load it one byte at a time. In a typical 2D or

2.5D RAM configuration though, if I had all of memory in one large module/array, I would only be able

to access one byte at a time. To allow access to more than one byte at a time, memory is interleaved: the

first byte is stored in the first location of the first module/array, the second byte in the first location of the

second module/array, and so on. When all the module/arrays have their first location addressed, the second

locations are specified, see Table 23.1.

Module Address Module 1 Module 2 . . . Module N
0 0 1 . . . N − 1
1 N N + 1 . . . 2N − 1
...

...
...

. . .
...

2k − 1 (2k − 1)N (2k − 1)N + 1 . . . 2kN − 1

Table 23.1: Mapping Memory Module’s Addresses to the Computer’s Memory Addresses

A number of potential problems can arise. Consider the four byte integer, 0x12345678, stored starting

in address 2 on a machine with four modules. In the easiest and fastest way to implement the hardware, the

first byte of the returned number comes from the first module, the second byte from the second module and

so on. By examining Table 23.2 you will notice that this means the value sent back is 0x56781234 or even

0xABCD1234 depending on how the addresses are selected!

To prevent such problems, systems adopt standards of how memory must be stored. The simplest method

is justified, in which the first byte of any new memory item must start in the first module. Justified can

obviously lead to some inefficiencies in memory utilization. A more sophisticated method is aligned, in which

141

142 CHAPTER 23. MEMORY AND CACHE

First Byte Address Module 1 Module 2 Module 3 Module N
0 0xAB 0xCD 0x12 0x34
1 0x56 0x78 0x00 0x00

Table 23.2: Memory Contents of Non-Aligned Integer

a new memory item must start at an address that is divisible by the number of bytes in the memory item

(e.g.: a 4 byte integer can start at any address that can be expressed as 4i for i a non-negative integer).

23.1.1 Endian

Big (LR) and little (RL) endian

Consistent (same for bits)

Sparc is inconsistent big-endian.
Endian Consistent Inconsistent

Big
0 1 . . . n

0. . . 7 0. . . 7 . . . 0. . . 7
0 1 . . . n

7. . . 0 7. . . 0 . . . 7. . . 0

Little
n . . . 1 0

7. . . 0 7. . . 0 . . . 7. . . 0
n . . . 1 0

0. . . 7 0. . . 7 . . . 0. . . 7

23.2 Cache Design

In general DRAM has a cycle-time of about 50ns to 80ns, and SRAM has a cycle-time of 5ns to 20ns. Main

memory is almost exclusively DRAM due to size and cost, so access will be slow. Strategies must be used

to speed up access to main memory. Several common techniques are:

Wide Memory memory that passes multiple words at a time.

Interleaving memory that has successive addresses stored in different components that can be accessed

simultaneously.

Prefetching buffer that fetches most likely instructions (or sometimes data) when memory is idle.

Cache data and instructions that have been accessed are stored in fast memory (SRAM) that is close to

the CPU often as well as in main memory.

Usually, a variety of techniques are used, and often multiple levels of cache (l1, l2, and even l3).

Cache can be:

fully associative any main memory location can be stored in any cache location.

2k-way set associative each main memory location must be stored in one of n prescribed cache locations.

Usually, 16 ≥ k ≥ 1.

direct mapping each main memory location must be stored in a particular cache location. This is the

same as 1-way set associative.

Let’s introduce some formalisms. Let 2k be the associativity of the cache, 2l be the size of a cache location

(block size, usually less than 16 words), 2m be the number of cache locations, and 2n be the size of main

memory.

23.2. CACHE DESIGN 143

Then

number of sets = m− k

size of the cache = 2(l×m)

address bits inferred by location = m− k + l

tag address bits = n− (m− k + l)

n-(m-k+l) m-k l
tag address bits set address bits offset in block

Example: Cache for Toy Stack

Design a 4 way associative, 8 byte cache for a 64 byte system (i.e.: the Toy Stack). Show an example of

how your system would do a cache lookup (ie: through all the steps for a lookup, you may pick memory and

cache to have any values you want)

The numbers of our design are as follows.

• 64 bytes means 6 bit addresses

• 8 byte cache means 3 bit addresses

• 4 way associative means the high two bits of each cache address do not need to match the corresponding

bits in main memory, but the least bit does.

• 5 bits of address from main memory need to be identified for each cache location, with the valid bit,

this makes 6 tag bits for each cache location.

• the least significant bit of the main memory address to be checked for is used as a lookup on the cache

to provided the 4 specific locations in cache that must be checked

• the 5 address tag bits of each of the 4 cache locations is compared with the high 5 bits of the main

memory address.

• if any of them match and the corresponding valid bit is set then we have a cache hit and the data is

sent

• if there is no match or the match is not valid main memory is accessed.

lookup

Let the address to be checked for be 010111, and let the cache be
Tag Bits Address Contents

High Address Valid Bit
0 0 1 1 0 1 0 0 0 11011101
0 1 0 1 0 1 0 0 1 11010110
0 0 0 0 0 0 0 1 0 00011100
1 0 0 0 0 0 0 1 1 10010100
1 1 0 1 1 1 1 0 0 11101101
1 0 1 0 1 0 1 0 1 11011110
1 0 0 0 0 1 1 1 0 11111111
0 1 0 1 1 1 1 1 1 11010000

First, the low bit (a 1) of the address tells us to look at the 4 odd addresses in cache:

144 CHAPTER 23. MEMORY AND CACHE

Figure 23.1: 8-Way Set Associative Cache

Tag Bits Address Contents
High Address Valid Bit

0 1 0 1 0 1 0 0 1 11010110
1 0 0 0 0 0 0 1 1 10010100
1 0 1 0 1 0 1 0 1 11011110
0 1 0 1 1 1 1 1 1 11010000

The 5 address tag bits are checked against the high five bits of the address (01011):
Tag Bits Address Contents

High Address Valid Bit
0 1 0 1 1 1 1 1 1 11010000

The address matches and the valid bit is set so 11010000 is sent as the contents.

Example: 8-way set associative

Consider a machine with 32 bit addressing (up to 4GB of RAM) and 512k (219) of data cache with 1

byte blocks. To define the 8-way set association, it will be required that main memory addresses must have

the same last 16 bits (19-3=16) as a cache location to be stored in that cache location. Every cache location

has 17 extra bits, 16 for addressing, and one for validity. Eight location in cache must be checked for each

main memory access (it is 8-way for a reason). The main memory address to be checked is split into the

upper and lower 16 bits. The lower 16 bits are used to identify the eight cache locations, whose 16 address

tag bits are then compared to the 16 high bits of the main memory address, see Figure 23.1. This generates

eight signals (true if match was found) that are then logically and’ed together with the corresponding 8

validity bits (might have the same address but might not be current). If any generates a hit (is true) then

its contents are sent as the data.

Replacement policies

LRU Least Recently Used

FIFO First-in First-out

23.2. CACHE DESIGN 145

LFU Least Frequently Used

Random Random

23.2.1 Neat Little LRU Algorithm

Let the number of cache slots (locations) be 2k, then we create a matrix of bits that is 2k × 2k (so we can

associate the cache address with both a row and column). Initially they are all cleared. When a cache slot,

say address p, is accessed:

1. 1’s are placed in every bit of the matrix row p,

2. 0’s are placed in every bit of the matrix column p.

Note that the second step will delete one of the 1’s you placed in the first step.

The the address that was least recently used corresponds to the number of the row that has a sum of

zero. Equivalently, the address that was least recently used corresponds to the number of the column with

the largest sum.

Example: Fully Associative Cache With 4 Slots

For simplicity we will assume main memory has 256 (28) bytes, and the data length is 1 byte. The cache

starts empty.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 0 0 0 0 0 0x00 0x00
0 0 0 0 0 0 0x00 0x00
0 0 0 0 0 0 0x00 0x00
0 0 0 0 0 0 0x00 0x00

Address 0x1A, which contains 0x49, is accessed.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 1 1 1 1 0 0x1A 0x49
0 0 0 0 0 0 0x00 0x00
0 0 0 0 0 0 0x00 0x00
0 0 0 0 0 0 0x00 0x00

Address 0x05, which contains 0x11, is accessed.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 0 1 1 1 0 0x1A 0x49
1 0 1 1 1 0 0x05 0x11
0 0 0 0 0 0 0x00 0x00
0 0 0 0 0 0 0x00 0x00

Address 0x25, which contains 0xFF, is accessed.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 0 0 1 1 0 0x1A 0x49
1 0 0 1 1 0 0x05 0x11
1 1 0 1 0 0 0x25 0xFF
0 0 0 0 0 0 0x00 0x00

146 CHAPTER 23. MEMORY AND CACHE

The value 0x33 is stored to address 0x05.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 0 0 1 1 0 0x1A 0x49
1 0 1 1 1 1 0x05 0x33
1 0 0 1 0 0 0x25 0xFF
0 0 0 0 0 0 0x00 0x00

The value 0xF5 is stored to address 0x06.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 0 0 0 1 0 0x1A 0x49
1 0 1 0 1 1 0x05 0x33
1 0 0 0 0 0 0x25 0xFF
1 1 1 0 1 1 0x06 0xF5

The value 0x07 is stored to address 0x07.

NLLRU Tag Bits Data
0 1 2 3 V D Address
0 1 1 1 1 1 0x07 0x07
0 0 1 0 1 1 0x05 0x33
0 0 0 0 0 0 0x25 0xFF
0 1 1 0 1 1 0x06 0xF5

23.2.2 Cache Performance

We will be concerned with some basic numbers

Hit Ratio (HR) The number of cache hits over the number of lookups.

Miss Ratio (MR) The number of cache misses over the number of lookups.

Effective Access Time (EAT or Teff) The average time spent in a memory access.

First let us consider the hit and miss ratios. For a series of lookups, the number of hits was “Hit” and

the number of misses was “Miss”, thus Hit+Miss = lookups. Given this,

HR =
Hit

Hit+Miss

MR =
Miss

Hit+Miss
1 = HR+MR

thus,

Teff =
Hit× THit +Miss× TMiss

Hit+Miss
= HR× THit +MR× TMiss.

Usually, the miss time is the access time (THit), plus a miss penalty (say TPenalty).

23.3. VIRTUAL MEMORY 147

TMiss = THit + TPenalty

Teff = HR× THit +MR× TMiss

= HR× THit +MR× (THit + TPenalty)

= (HR+MR)× THit +MR× TPenalty

= THit +MR× TPenalty

Example

Use the following chart to show the state of a 4 location, 2-Way associative cache, that uses LRU. If a

location has a number printed in it, the address is valid, if no number appears the contents are invalid. For

simplicity the computer only has 16 locations in memory. If the cache takes 5ns to access and RAM takes

60ns, what is the effective access time given the sequence?
Time 0 1 2 3 4 5 6 7 8 9 10
Lookup Address - 2 5 6 B 5 2 2 B C 5
Cache location 00 A
Cache location 01 B
Cache location 10
Cache location 11

Time 0 1 2 3 4 5 6 7 8 9 10
Lookup Address - 2 5 6 B 5 2 2 B C 5
Cache location 00 A A A 6 6 6 6 6 6 C C
Cache location 01 B B B B B B B B B B B
Cache location 10 2 2 2 2 2 2 2 2 2 2
Cache location 11 5 5 5 5 5 5 5 5 5

MR=.4

Teff = Tcache +MR(TRAM)

= 5ns+ .4(60ns)

= 29ns

23.3 Virtual Memory

A 32-bit virtual memory system has a 64KB page size, and 1 GB of RAM. How large is the physical page

number in bits? Assuming that the each entry in the table is word aligned, how large is the lookup table in

bytes?

64KB = 216

1GB = 230

So the physical page number takes 30-16=14 bits or almost 2B to store in the table. We also need to add

memory protection, ownership, validity, location, etc. I will assume that I can fit all this in 4B.

The table size is 2(32−16) × 4B = 218B = 256KB

148 CHAPTER 23. MEMORY AND CACHE

Chapter 24

CPU Control

24.1 Tiny Accumulator

Acc

6LDacc

-

�

@0
1

�

@1
0

?

6
S̄/D

�
�

@
@

��

@@
ALU

6ALUcmd

-

-

-

-
-
0

-0
-

Regs.

@

�

�

@

66IR[1:0]

� LDreg

�

The tiny accumulator has four commands
Mach. Assem.
Code Lang. Description.
00MN STC MN Store Acc to location MN and clear Acc
01MN ADD MN Add Acc and location MN placing result in Acc
10MN SUB MN Sub location MN from Acc, placing result in Acc
11MN BRL MN if Acc is negative, Branch to nPC +MNN̄

STC MN The store and clear command not only allows storage, but due to the clear, allows a load if it

is followed by adding the desired value to load. The instruction is implemented as follows. The signal

S̄/D is set to 1, which puts a zero both on the accumulator and the second input of the ALU. The

ALUop is set to add, which thus does ACC plus zero, and so the value of the ACC is placed on the

answer line. Both the ACC and the register file is told to read, which results in the ACC loading zero,

and register M loading the value that had been in the ACC.

ADD MN This instruction makes it easy to load the ACC as mentioned in STC MN, as well as providing

an arithmetic command. The instruction is implemented as follows. The signal S̄/D is set to 0, which

149

150 CHAPTER 24. CPU CONTROL

allows the selected register to go to the second input of the ALU and allows the result of the ALU

to go to the ACC input. the ALUop is set to add, and finally the ACC is told to load, so the result

becomes stored.

SUB MN This instruction is very similar to ADD. The instruction is implemented as follows. The signal

S̄/D is set to 0, which allows the selected register to go to the second input of the ALU and allows

the result of the ALU to go to the ACC input. the ALUop is set to sub, and finally the ACC is told

to load, so the result becomes stored.

BRL MN This instruction allows loops and conditional executions to be handled. The offset is taken to

be a three bit, two’s compliment number, of which the first two are MN and the last bit is the flip of

N. While this may sound strange it makes the displacements to be

MN MNN̄ displacement
11 110 -2
10 101 -3
01 010 2
00 001 1

The negative numbers allow loops which include one or two instructions besides the branch, and the

positive numbers allow for conditional statements of one or two instructions. Note the negative numbers

are larger in magnitude by one to include the branch statement.

This gives us a full architecture that can be programmed, but is small enough to be built by hand.

24.2 GST ISA

Gomez-Schubert-Tafas Instruction Set Architecture.

My thought is to implement 1k-word of memory for each processor, and to do memory mapped IO so

we don’t need special commands. The word size is 16 bits and this is the smallest addressable size, again

for simplicity. The “network” port should have a buffer of, say, 16 words. Initially there will not be a cache

because since this will be a SOC there is no access time advantage.

The ISA is load-store. I have broken the 16 bit instruction into 4 nibbles for different purposes as seen

below. I have tried to pair commands by opcode to make for easier control. I left two unused in case there

is anything you want to add.

We only use register, immediate, and indexed addressing, to keep things simple and still provide flexibility.

These three modes allow us to do anything.

I am only considering two’s complement numbers, so no unsigned numbers. While this is a limitation for

real computers, I don’t think it will matter for this test architecture.

24.2.1 R Type Commands

FEDC BA98 7654 3210
Opcode RD RS1 RS2
or

FEDC BA98 7654 3210
Opcode RD RS1 Imm1

24.2.2 I Type commands

FEDC BA98 76543210
Opcode RD Imm2

24.2. GST ISA 151

24.2.3 B Type commands

FEDC BA9876543210
Opcode Imm3

24.2.4 Commands

Opcode Assembly Comments
0000 load RD(RS1+RS2) RD ←M [RS1 +RS2]
0001 store RD(RS1+RS2) RD →M [RS1 +RS2]
0010 ldi RD,Imm2 RD[F : 8]← Imm2
0011
0100 add RD,RS1,RS2 RD ← RS1 +RS2
0101 sub RD,RS1,RS2 RD ← RS1−RS2
0110
0111
1000 sll RD,RS1,Imm1 RD ← RS1 << Imm
1001 sra RD,RS1,Imm1 RD ← RS1 >> Imm
1010 nand RD,RS1,RS2 RD ← (RS1 ·RS2)′

1011 nor RD,RS1,RS2 RD ← (RS1 +RS2)′

1100 brlt RD,RS1,Imm1 (RD < RS1)⇒ (PC ← nPC + {Imm1[3 : 0], ̸ Imm1[0]})
1101 brle RD,RS1,Imm1 (RD ≤ RS1)⇒ (PC ← nPC + {Imm1[3 : 0], ̸ Imm1[0]})
1110 br Imm3 PC ← PC + Imm3
1111 j RD PC ← PC +RD
Note: SE is sign extend.

24.2.5 Registers

0 R0 Zero 8 L0 Local Register 0
1 R1 General Purpose Register 1 9 L1 Local Register 1
2 R2 General Purpose Register 2 10 L2 Local Register 2
3 R3 General Purpose Register 3 11 L3 Local Register 3
4 R4 General Purpose Register 4 12 L4 Local Register 4
5 R5 General Purpose Register 5 13 L5 Local Register 5
6 R6 General Purpose Register 6 14 SP Stack Pointer
7 R7 General Purpose Register 7 15 RA Return Address

152 CHAPTER 24. CPU CONTROL

Part V

Performance

153

Chapter 25

Performance

25.1 Cost

Cost of IC =
Cost of die + Cost of Testing + Cost of Packaging

Final Yield

Cost of Die =
Cost of Wafer

Dies per Wafer×Die Yield

Die Yield =
WaferY ield(

1 +
Defects per Area×Die Area

α

)α

List Price =
4

3
Average Selling Price

=
4

3

4

3
Production Cost

=
4

3

4

3

6

5
Component Cost

=
32

15
Component Cost

≈ 2Component Cost

25.2 Power, Energy, and Heat

These are probably the most misused terms in computers (and many other fields as well). They are not

synonyms and should not be used as such.

Work Electrical work is electrical force applied on a charge over a distance. Usually Electrical force is

calculated by the the charge times the electrical field. For computers a computation involves moving

charges from one place to another by applying a voltage, i.e.: electrical work. The work done does not

change with the time it takes to do the computation. Think of it as this is what you want to do.

155

156 CHAPTER 25. PERFORMANCE

Energy The ability to do work. You can also consider this the cost of doing work. In a computer Energy

use is primarily due to dynamic operations (switching transistors), so

Ed =
1

2
CV 2

, where Ed is the dynamic energy, C is the capacitive load of the computer (consider it constant for

a computer design), and V is the voltage of the computer. Energy for laptops are stored in batteries,

and since this is a fixed source energy is a major issue to laptops (i.e. we care about the work done

which is proportional to the computations we do).

Power The rate at which energy is used (and thus work done). Total power is the sum of dynamic power

and static power. We are primarily concerned with dynamic power (again from switching transistors),

so assuming the capacitance does not change,

Pd =
d

dt
Ed (25.1)

= CV (t)
dV (t)

dt
, (25.2)

where Pd is dynamic power, C is capacitive load, and V is voltage. A standard assumption is that

the voltage is an ideal square wave with a duty cycle of 1
2 with a switching frequency of fs, which is

proportional to the clock frequency of the processor, thus

Pd =
1

2
CV 2fs. (25.3)

Static power loss is caused primarily from leakage current in the transistors and thus is constant even

for inactive circuits (the computer must be on of course though). Static power, Ps is given by Ps = ic·V ,

where ic is the static current (leakage current in one transistor time the number of transistors), and

V is still voltage. Static power accounts for more than 25% in current computers. Computers that

have a continuous power source are more concerned with power, as power also tells us the rate of heat

production. We are at the limits of air cooling, so this is a major issue.

25.3 Performance

Response Time (aka execution time) the time between the start and completion of a task.

Throughput The number of task completed in a period of time.

There are four tasks (a, b, c, and d) which are composed of four subparts (1, 2, 3, 4 for each of a, b,

c, and d) that are independent (i.e. you can do a1 and a2 simultaneously). You are to run them on a four

processor machine. Ignoring memory and overhead, we can schedule the processes as:
Time

P
r
o
c
e
s
s
o
r

1 2 3 4
1 a1 a2 a3 a4
2 b1 b2 b3 b4
3 c1 c2 c3 c4
4 d1 d2 d3 d4

or

25.4. TIME 157

Time
P
r
o
c
e
s
s
o
r

1 2 3 4
1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3
4 a4 b4 c4 d4

25.4 Time

Time can be different things. There is time that we exist in, sometimes called “wall time” due to measure-

ments by wall clocks. There is the CPU time of the program, but even here do we mean the total time from

start to finish, or just the time spent on the program without counting system functions or other programs

(execution time). We will in general speak of only the execution time or CPU Time (CPUT, TCPU) of the

program, for simplicity.

The longer a process takes to run the worse the performance, this should be obvious as who wants a

slower machine. We could also say, the less time a process takes the better the performance. Execution time

and performance are thus inversely related:

Perf =
1

Execution Time

If the performance of system A is n times better than system B then

PerfA = nPerfB
PerfA
PerfB

= n.

Alternately we note

PerfA = nPerfB
1

Execution TimeA
= n

1

Execution TimeB
Execution TimeB
Execution TimeA

= n.

Putting all this together we obtain:

PerfA
PerfB

=
Execution TimeB
Execution TimeA

.

25.5 Measuring CPU Time

CPUT = # cycles× cycle time

= # cycles× 1

cycle rate

Cycle rate is easily known for a machine so only the # cycles is needed.

158 CHAPTER 25. PERFORMANCE

25.5.1 First Approximation

cycles = # instruct× # cycles

instruct

= IC × CPI

CPI is the cycles per instruction, and IC is the instruction count. It can be measured on average for a

running program, and theoretical predictions of it can be made fairly easily.

25.5.2 Second Approximation

CPI for different types of instructions are different. For instance, arithmetic instructions like addition are

usually much faster than memory access instructions.

cycles = ICtotalCPIavg

= ICtotal

n∑
i=1

fi × CPIi

= ICtotal

n∑
i=1

ICi

ICtotal
× CPIi

=
n∑

i=1

ICi × CPIi

where fi is the frequency of instruction type i. These frequencies can be measured for a large number of

software packages to give typical results.

Consider, for example, a program that executes 50,000 instructions running on a machine that is typified

by
ALU Branch Memory

CPI 1 3 4
freq 0.5 0.2 0.3

In this case the average CPI of the machine would be given by

CPIavg =
n∑

i=1

fi × CPIi

= .5× 1 + .2× 3 + .3× 4

= .5 + .6 + 1.2

= 2.3

It is interesting to note that memory accounts for more of the CPI than the other two combined, and

branching accounts for more than ALU operations even though there are over twice as many ALU operations.

25.6 Amdahl’s Law

The performance difference between two machines, or two configurations of the same machine for that matter,

can be compared by setting them as a ratio as we have seen. Let’s refer to the performance difference of the

two machines as the speedup (S). From what we have seen we can write for two machines a and b that

25.6. AMDAHL’S LAW 159

S =
Pa

Pb

=
Tb

Ta

=
ICbCPIb

1

cycle rateb

ICaCPIa
1

cycle ratea

=
ICbCPIbcycle ratea
ICaCPIacycle rateb

Now, let’s assume that we are dealing with two versions of the same machine, one enhanced and one

not enhanced. If the time of the original code was Toriginal, and the instructions that would be speed up

by the enhancement took up a fraction, f of the original time and resulted in that portion be completed in
1

Senhanced
the time, then

Tenhanced = Toriginal

(
(1− f) + f

1

Senhanced

)
.

The speedup, per the second form above is

Soverall =
Toriginal

Tenhanced

=
Toriginal

Toriginal

(
(1− f) + f 1

Senhanced

)
=

1

(1− f) + f
Senhanced

This result can be extended to cover many enhancements, say n of them.

S =
1

(1−
∑n

i=1 fi) +
∑n

i=1
fi
Si

25.6.1 Alternate Approach

We could have assumed that the enhanced time took Tenhanced, and that the instructions using the enhanced

mode took up a fraction g of the enhanced time. If the speedup of the enhanced mode was still Senhanced

then

Toriginal = Tenhanced ((1− g) + gSenhanced)

We can relate f and g by noting that

TenhancedgSenhanced = Toriginalf

gSenhanced = fSoverall

By observing that Soverall ≤ Senhanced, with strict inequality if Senhanced > 1, we find that g ≤ f , with

strict inequality for the same condition. Alternately, we could note that

Tenhanced(1− g) = Toriginal(1− f)

1− g = (1− f)Soverall

1− g = Soverall − gSenhanced

Soverall = (1− g) + gSenhanced

160 CHAPTER 25. PERFORMANCE

An alternate way of finding the overall speedup is by using the formula for speedup directly.

Soverall =
Toriginal

Tenhanced

=
Tenhanced ((1− g) + gSenhanced)

Tenhanced

= (1− g) + gSenhanced

Since the speedup must be the same, we can also find a formula to calculate the speedup for the enhanced

portion in terms of just f and g.

(1− g) + gSenhanced =
1

(1− f) + f
Senhanced

((1− g) + gSenhanced)

(
(1− f) +

f

Senhanced

)
= 1

1− g − f + fg + (1− g)
f

Senhanced
+ (1− f)gSenhanced + fg = 1

g(Senhanced − 1) + f

(
1

Senhanced
− 1

)
= fg

(
Senhanced − 1 +

1

Senhanced
− 1

)
= fg(Senhanced − 1) + fg

(
1

Senhanced
− 1

)
g(1− f)(Senhanced − 1) = f(1− g)

(
1− 1

Senhanced

)
g(1− f)(Senhanced − 1) = f(1− g)

Senhanced − 1

Senhanced

g(1− f)Senhanced = f(1− g)

Senhanced =
f

1− f

1− g

g

Senhanced =
f

g
Soverall

We can thus calculate the overall speedup a number of ways

Soverall = Senhanced
g

f

=
1− g

1− f

= (1− g) + gSenhanced

=
1

(1− f) + f
Senhanced

Consider, for example, that on an unenhanced machine a piece of code runs in 10 seconds, and the

instructions that could have used the enhanced mode (were it available) took up 6 seconds of that time. On

an enhanced machine the same code uses the enhanced mode for a total of 1 second of the time. What is f

and g? What is the speedup of the enhancement and the overall system?

We can find f directly.

f =
6sec

10sec
= 0.6

25.6. AMDAHL’S LAW 161

We can find g by noting that the original code has 4 seconds that are not speed up, so the total time after

must be 5 seconds.

g =
1sec

5sec
= 0.2

If you did not make this observation you could have first found the speedup of the enhanced mode and used

it to find g. The speedup of the enhancement is simple, given this information.

Senhanced =
6sec

1sec
= 6

Using this, we could have found

Senhanced =
f

1− f

1− g

g

6 =
0.6

0.4

1− g

g

4 =
1− g

g
5g = 1

g = 0.2

The same we found before. The overall speedup is equally easy to get, by a bunch of ways.

Soverall =
Toriginal

Tenhanced

=
10sec

5sec
= 2

Or

Soverall = Senhanced
g

f

= 6
.2

.6
= 2

Or

Soverall =
1− g

1− f

=
1− .2

1− .6

=
.8

.4
= 2

Or

Soverall = (1− g) + gSenhanced

= (1− 0.2) + 0.2× 6

= 0.8 + 1.2

= 2

162 CHAPTER 25. PERFORMANCE

Or

Soverall =
1

(1− f) + f
Senhanced

=
1

(1− 0.6) + 0.6
6

=
1

0.4 + 0.1

=
1

0.5
= 2

As you can see, it doesn’t matter which formula you use, they all give the same answer. You should also

notice that if you improve the enhanced mode more, you will gain almost nothing in the overall speedup.

For example consider allowing Senhanced =∞, then

Soverall =
1

(1− f) + f
Senhanced

= lim
x→∞

1

(1− 0.6) + 0.6
x

=
1

0.4
= 2.5

In this case g = 0 so some of the equations have the indeterminate form 0×∞, which we avoid by using a

form that does not have this problem. The really big thing to see though is that even a huge increase in the

speedup of the enhanced mode made little difference, because the non-enhanced portions are dominating.

This brings up one of the most basic interpretations of Amdahl’s Law, always improve the most common

case.

25.6.2 Relating the CPIs

Assuming we are dealing with enhancements to a machine, it is thus reasonable that the code length would

not change, so ICa = ICb. Additionally we will assume it is not a trivial improvement of increasing the

clock speed, so cycle ratea = cycle rateb. Thus

S =
CPIoriginal
CPIenhanced

CPIenhanced = CPIoriginal

(
(1−

n∑
i=1

fi) +
n∑

i=1

fi
Si

)

Without changing the clock or reducing instructions, we can then find that the maximum speedup possible

for a single issue system is CPIoriginal, since the ideal CPI for a single issue system is 1.

25.7 Putting It All Together

Example

You are to select a compiler to develop applications for a company with two types of computers. The

company wants the best average performance with both machines. Assume all the machines are 1GHz

machines.

25.7. PUTTING IT ALL TOGETHER 163

Type CPI 1 CPI 2 Compiler 1 Compiler 2
Arithmetic 1 1 35% 30%
Branch 6 3 25% 20%
Memory 3 5 40% 50%

If the code is 10000 lines (for either compiler) when assembled how long does it take to run on each

machine?
Compiler 1 Compiler 2

Machine 1 1× .35 + 6× .25 + 3× .4 = 3.05 1× .3 + 6× .2 + 3× .5 = 3
Machine 2 1× .35 + 3× .25 + 5× .4 = 3.1 1× .3 + 3× .2 + 5× .5 = 3.4
Average 3.075 3.2

Since time is the inverse of performance, we want the lowest average and ergo pick compiler 1. If each

command runs only once (a bad assumption in reality but we will use it for now), the code will run in:

machine 1: 10000×3.05
109 = 3.05× 10−4 seconds.

machine 2: 10000×3.1
109 = 3.1× 10−4 seconds.

164 CHAPTER 25. PERFORMANCE

Chapter 26

Instruction Level Parallelism

26.1 Trouble In Paradise

There are three types of hazards we can encounter.

Structural hardware cannot support the instruction combo. Big problem in multi-cycle execution, out of

order execution, and superscalar, but it can also happen in simple pipelines with things like memory

access. Fixing this requires hardware design.

Data data is not available to proceed. Typical solutions fall into two categories, wait till the answer is here

or send the answer from where it is now. These are discussed more below.

Control at branch, which do I take and how can I rearrange code around branches in dynamic execution?

26.1.1 Data Hazards

Dependence Hazard Example When
True RAW add r2,r3,r4 When: read happens before the write can finish
(data) add r5,r2,r6 Requires: pipelining (without forwarding), multi-

cycle
units, out of order execution, etc.

Output WAW add r2,r3,r4 When: instructions finish out of order.
(name) brgtz r7, label Requires: out of order execution or multiple can

add r2,r5,r6 multi-cycle execution units.
Antidependence WAR add r3,r2,r4 When: instructions start out of order.
(name) add r2,r5,r6 Requires: out of order execution
None RAR add r3,r2,r4 There is no problem here, and it is not a

add r5,r2,r6 hazard. I put it in because people kept asking.

Read after write (RAW) data hazards are also called true dependence or data dependence, because the

second instruction actually needs the result from the first. It is the strongest dependence in the sense that

it cannot be broken - the second instruction must have the result of the first instruction. Since it is so

fundamental, it is the easiest to have happen. RAW occurs when the second instruction tries to access a

result before it has been written by the first instruction. This commonly occurs in pipelines, as there are

typically multiple cycles after the execute cycle completes till the result is updated in the registers. Each

cycle of delay till the update could cause an instruction being decoded to access the wrong value. The two

most common solutions to this problem are slips and register forwarding, though register renaming will also

handle it (explained in subsection 26.1.2.

165

166 CHAPTER 26. INSTRUCTION LEVEL PARALLELISM

Write after write (WAW) hazards is the second most easy data hazard to generate, but the last most

people think about. Usually people look at this and wonder if this can ever be a problem. This is actually

the most dangerous data hazard in terms of potential to harm your results. Most machines today allow

instructions to finish out of order, either by starting out of order, or because some instructions are slower

and the fast ones are allowed to pass. If two instructions finish out of order and are writing to the same

register, then we have a WAW hazard. The severity of the problem is caused by the number of instructions

that are impacted. Normally, the first instruction would finish and its result would be available for use till

the second one finished in which case the second answer would be available from then on. When a WAW

hazard occurs, the second one finishes first and its result is available in the intermediate time, then the

first ones result is available from then on. Unlike a RAW hazard which impacts one instruction (and those

dependent on it), WAW can effect many instructions (and those dependent on them). The entire problem

is based on the output so it is often called an output dependence. The problem is also due to the reuse of

a register for different values, so it is called name dependence (it depends on the register name you picked).

It can be fixed by a reorder buffer or register renaming.

Write after read (WAR) hazards are the hardest to occur, and have a small impact, but seem to make

reasonable sense to most people. They occur when instructions start out of order causing one instruction to

read the result of an instruction that was supposed to happen after it. It can only happen with out of order

execution units, and it only effects the instruction that did the read (and those which use its results - but this

is true of all data hazards). The dependence is in reverse order so it is sometimes called anti-dependence, but

it is also based on reuse of a register so it is also considered a name dependence as WAW is. Both reorder

buffers and register renaming will work to solve WAR hazards. The most commonly known algorithm for

solving this problem is by Tomasulo and is covered in chapter 28.

26.1.2 Hazard Solutions

What can we do with data hazards. Remove all performance measures and execute single instructions slowly.

I’m not kidding, it will work for all problems. The problems are challenges that come from performance

improvements, so if you are willing to run non-pipelined, single threaded, non-superscalar processors at a

few hundred megahertz you will never hit one of these problems. Your performance will stink, you won’t be

able to play modern games or movies, but you won’t have any problems. Most people want speed, and so

we have to come up with other solutions. Here are some of the most famous.

• register interlocking

This is basically a stop until the data is available. Two variety exists

Stall Entire processor is held for an instruction (or more), particularly important for structural haz-

ards such as multi-cycle units or memory operations, since the units between the pipeline buffer

registers keep running, and thus can finish what they are doing. Essentially this is like slowing

the clock down when you need to. This tends to kill performance, but it avoids errors. Stalling

will not solve the problems register forwarding will. It is the easiest method to implement.

Slip only the held-up instruction and those after must wait, others can proceed. Note it could be one

of these that produces the desired answer, so this handles the same problems as forwarding, and

can handle the problems that stalling does. Overall it is the most versatile (it handles everything

stalling and forwarding does), but it is not the fastest solution (same as stalling on performance).

It is the second easiest to implement.

• register forwarding

Often the value exists, it is just not in the final destination yet. This technique sends the value that

is missing, to the execution unit. There is no delay if you can do it. It cannot handle multi-cycle

26.1. TROUBLE IN PARADISE 167

execution or memory accesses, and it adds cost and complexity to the design (though not bad for what

you get). This is straightforward to implement, but does add several multiplexors, wires, and control

circuits to track where the result is (comparators or counters are common).

• register renaming

Used to solve WAR and WAW hazards. Register renaming adds a status field to each register, which

contains the address of the instruction that is calculating its current value or 0, which means it has the

correct value. Instructions are fetched and issued in order, so the registers have the correct values in

the status field, but are then buffered and executed when the system is ready (kind of like giving them

a number and sticking them in a waiting room). It can do almost anything (it can’t handle control

hazards). The most basic (and famous) of these algorithms is Tomasulo’s algorithm, see chapter 28.

• reorder buffer

Instructions are held in a buffer for writing to the register files, then they are written in the order of

the original code. These are different buffers than the pipeline buffers. This preserves the order of the

writes and thus solves WAR and WAW hazards, but increases the latency of the instruction execution.

On the bright side it can handle control hazards (the only one listed that can).

168 CHAPTER 26. INSTRUCTION LEVEL PARALLELISM

Chapter 27

Pipelining

27.1 Basic Architecture

Consider the following architecture.

Bus 1 Bus 2 Bus 3

�
�

@
@

��
@@ ALU

Regs.

-

-

-

�

�

�

Fetch

?
Decode

?
Execute

?
Store

?

Architecture Fetch/Execute

The architecture and Fetch/Execute loop, lend themselves to a four stage pipeline. We will make each

of the stages in the Fetch/Execute loop to be a stage in our pipeline.

Use registers at boundaries of hardware portions that do the stages of the IFetch (more fully to separate

the clock cycles).

27.1.1 Calculating efficiency

Our basic equations of pipeline performance are

speedup =
Toriginal

Tmodified

efficiency =
actual speedup

ideal speedup

169

170 CHAPTER 27. PIPELINING

Consider m instructions running on a computer with n stages. If this is not pipelined then the time of

execution will take Tnopipe = m × n × Tclock. To get this we just used that T = # cycles × Tclock. If it is

pipelined then the execution will take Tpipe = (m+ n− 1)× Tclock. To see why consider this for m¿¿n (the

usual case)
Cycle

Instruction 0 1 . . . n-1 n . . . m-1 . . . m+n-1
Inst 1 x x . . . x
Inst 2 x . . . x x
...

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

Inst m x . . . x
Using this we can find that as the speedup of pipelining for m instructions in an n stage machine as m

gets very large (long program run) is

speedup =
Tnopipe

Tpipe

= lim
m→∞

mnTclock

(m+ n− 1)Tclock

= lim
m→∞

mn

m+ n− 1
= n

Yielding the famous result that the ideal speedup is the number of stages in a pipeline. If a stall were to

happen a finite number of times it would not effect the asymptotic speedup, however if a stall happened a

fraction of the time that is a different matter. For instance, assume the pipeline stalls Perr cycles in fT,err

of all instructions of type T (m × fT total instructions) then the time of the pipelined machine would be

Tpipe = (m+ n− 1 +mfT ferrPerr)× Tclock. The non-ideal speedup would be

speedup =
Tnopipe

Tpipe

= lim
m→∞

mnTclock

(m+ n− 1 +mfT ferrPerr)Tclock

= lim
m→∞

mn

m+ n− 1 +mfT fT,errPerr

=
n

1 + fT fT,errPerr

=
n

1 + ferrPerr

where ferr = fT fT,err. Note that the numerator is the CPI of the non-pipelined machine and the denominator

is the CPI of the non-ideal pipelined machine. Thus we see that CPI for a pipelined machine is

CPI = 1 +

n∑
i=1

fiPi.

If there are no errors the ideal CPI is thus 1. Consider an example of this with branches incurring a penalty

when they taken (i.e. the machine assumes branch not taken).

CPIavg = (1− Pb)CPIno branch + Pb((1− Ptake)CPIno branch + Ptake(1 + b))

27.1. BASIC ARCHITECTURE 171

CPI Cycles per instruction. The smaller the better. Nominally for a RISC machine this will be 1, but

bubbles will increase it and pipelining will decrease it.

P Probability that something will happen (the event is indicated by the subscript).

b Branch penalty, which indicates how large the bubble in the pipeline is, that is caused by taking a branch.

27.1.2 Branch Prediction

Normally branches are assumed to be not taken but this is a simplistic assumption. A more sophisticated

choice is to do what was done most recently. So for instance if the second instruction is a branch, and last

time I was there I took it, I would have:

Address Taken
0 0
1 0
2 1
3 0

This would require an extra bit for every memory location, most of which would be unused.

Performance

A pipelined RISC computer has 8 stages, and runs at 1.25 GHz. The cache has a miss rate of 1% for data

and instructions, and a miss penalty of 24 ns. The system has a dynamic branch predictor that is wrong

only 10% of the time. Branch errors cost 5 cycles.

1. What is the ideal (no stalls) speedup over a non-pipelined machine?

2. What is the impact to the CPI due to cache misses on a non-memory operation?

3. What is the impact to the CPI due to cache misses on a memory operation?

4. What is the impact to the CPI due to branch errors on branching instructions?

5. If memory operation make up 20% of the commands in a typical program and branching make up 15%

of the commands, what is the average CPI?

1. n =
Time Without Pipeline
Time With Pipeline

= I×8
I+8 ≈ 8 for large I (number of instructions).

2. ∆CPI = Miss Rate×Miss Penalty× Clock Frequency = (.01)(24ns)(1.25GHz) = .3

3. Twice above or (0.6).

4. ∆CPI = Branch Error Rate× (BranchPenalty) = .1× 5 = .5

5. CPIavg = .2(1 + .6) + .15(1 + .3 + .5) + .65(1 + .3) = .32 + .27 + .845 = 1.435

172 CHAPTER 27. PIPELINING

Superscalar

Superscalar pipelines have multiple pipelines to execute commands on (for example the latest pentium has

2). The advantage is that a machine with n pipelines could have a CPI of 1
n . They have their own challenges

in programming though.

Consider the following section of a program:

loop: lw $t3,0($t1) # first data

add $t5, $t5, $t3 # running sum

addi $t1, $t1, 4 # increment counter

brne $t0, $t1, loop # check if done

exit:

And place the commands to be scheduled on two pipelines in the most obvious way.

Pipeline 1 Pipeline 2
lw $t3,0($t1) Nop
add $t5, $t5, $t3 addi $t1, $t1, 4
brne $t0, $t1, loop Nop

Granting myself a perfect branch predictor, so I have no stalls due to branching (in class we considered

stalls), I still only get:

CPI =
3

4
= .75

Now consider a clever rearrangement:

Pipeline 1 Pipeline 2
lw $t3,0($t1) addi $t1, $t1, 4
add $t5, $t5, $t3 brne $t0, $t1, loop

Granting myself a perfect branch predictor, I get:

CPI =
2

4
= .5

Can I always do such a rearrangement? Sorry but no. Consider the following:

loop: lw $t3,0($t1) # first data

mult $t3, $t1 # multiplication

mflo $t3 # get the product

add $t5, $t5, $t3 # running sum

addi $t1, $t1, 4 # increment counter

brne $t0, $t1, loop # check if done

exit:

And place the commands to be scheduled on two pipelines in the most obvious way.

Pipeline 1 Pipeline 2
lw $t3,0($t1) Nop
mult $t3, $t1 addi $t1, $t1, 4
mflo $t3 Nop
add $t5, $t5, $t3 brne $t0, $t1, loop

Granting myself a perfect branch predictor, so I have no stalls due to branching, I still only get:

27.2. UNROLLING 173

CPI =
4

6
= .66

And note that the second pipeline is only half used.

27.2 Unrolling

Now let us unroll the loop, by considering two runs through at once. Note that on the second run through

the data accessed is at four bytes higher than the first run.

loop: lw $t3,0($t1) # first data

lw $t4,4($t1) # second data

mult $t3, $t1 # multiplication

mflo $t3 # get the product

add $t5, $t5, $t3 # running sum

addi $t1, $t1, 4 # increment counter

breq $t0, $t1, exit # check if done

mult $t4, $t1 # multiplication

mflo $t4 # get the product

add $t5, $t5, $t4 # running sum

addi $t1, $t1, 4 # increment counter

brne $t0, $t1, loop # check if done

exit:

Pipeline 1 Pipeline 2
lw $t3,0($t1) lw $t4,4($t1)
mult $t3, $t1 addi $t1, $t1, 4
mflo $t3 mult $t4, $t1
add $t5, $t5, $t3 breq $t0, $t1, exit
mflo $t4 addi $t1, $t1, 4
add $t5, $t5, $t4 brne $t0, $t1, loop

Granting myself a perfect branch predictor, so I have no stalls due to branching, I now get:

CPI =
6

12
= .5

As a general rule you unroll n copies of the loop for a machine with n pipelines. In this case I unrolled

2 copies because I had two pipes to fill.

27.3 Unrolling, Part II

Consider the following code to calculate the Fibonacci numbers.

top: add r4, r3, r2

mov r2, r3

mov r3, r4

addi r1, r1, -1

brgtz r1, top

174 CHAPTER 27. PIPELINING

The first three instructions are the data manipulations, and the last two are loop overhead (indexing

and branching). There is a large amount of wasted effort spent in moving data around. Consider two loops

worth of just the data manipulation portions.

add r4, r3, r2

mov r2, r3

mov r3, r4

add r4, r3, r2

mov r2, r3

mov r3, r4

Note that the “mov” commands are only to set up the problem for the next loop. In particular the

contents of r2 are removed and the contents of r3 and r4 are shuffled. Consider the following change.

add r2, r3, r2

add r4, r3, r2

mov r3, r4

The contents of the registers are the same at the end of the loop, as the original, but considerable savings

have been achieved. by noting the last mov command only shifts the results of the second add, we note that

it is equivalent to the following

add r2, r3, r2

add r3, r3, r2

Thus by unrolling we can see the loop is equivalent to

top: add r2, r3, r2

add r3, r3, r2

addi r1, r1, -2

brgtz r1, top

mov r4, r3

breqz r1, exit

mov r4, r2

exit:

Note the last three commands are cleanup only, so two iterations of the original loop can be done in less

instructions than the unoptimized code. The loop can be scheduled efficiently on a two pipeline machine as
top: add r2, r3, r2 addi r1, r1, -2

add r3, r3, r2 bgtqz r1, top
mov r4, r3 breqz r1, exit
mov r4, r2

exit:

27.4 Software Pipelining

Returning to the original code

top: add r4, r3, r2

mov r2, r3

mov r3, r4

addi r1, r1, -1

brgtz r1, top

27.4. SOFTWARE PIPELINING 175

And let us again consider two iterations of the Fibonacci number loop.

add r4, r3, r2

mov r2, r3

mov r3, r4

add r4, r3, r2

mov r2, r3

mov r3, r4

First note that each pair of moves can be done simultaneously.

add r4, r3, r2

mov r2, r3 mov r3, r4

add r4, r3, r2

mov r2, r3 mov r3, r4

Now we will move the second add ahead in the scheduling so it is simultaneous with the first moves.

add r4, r3, r2

mov r2, r3 mov r3, r4 add r4, r4, r3

mov r2, r3 mov r3, r4

Now note that the mov r2, r3 commands are useless and can be dropped.

add r4, r3, r2

mov r3, r4 add r4, r4, r3

mov r3, r4

This suggests the following parallel execuation
mov r2, r3 add r3, r3, r2 addi r1, r1, -1 brgtz r1, top

time r3 r2 r1
0 1 1 3
1 2 1 2
2 3 2 1
3 5 3 0

27.4.1 Example

Consider the following code

top: ld r2, 0(r1)

addi r3, r2, 1

st r3, 0(r1)

addi r1, r1, 4

brlt r1, r4, top

st r3, 0(r1) addi r3, r2, 1 ld r2, 8(r1)

176 CHAPTER 27. PIPELINING

Chapter 28

Tomasulo

28.1 Multiple Issue Tomasulo

To illustrate the method we will consider a simple piece of code.

loop:

mul $t4,$t2

mflo $t4

subi $t3,$t3,1

bgtz $t3,loop

This code will calculate $t4 = $t2$t3, assuming $t4 = 1 initially and $t2 > 0 and $t3 > 1.

Further lets assume add/sub/move takes 1 cycle of execution, multiply takes 2 cycles, and branches take

2 cycle. The branch predictor will always predict branch taken in this example. Let’s schedule this for our

machine.
Cycle 1

Reorder Buffer
Entry Busy Instruction State Destination Value

1 yes mul $t4,$t2 Issue $Hi, $Lo
2 yes mflo $t4 Issue $t4
3
4
5
6
7
8
9
10

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 2
$t4 1 #2 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #1 #2
Add2
Add3
Add4
Mul1 mul 1 5 #1
Mul2
Br1
Br2

177

178 CHAPTER 28. TOMASULO

Cycle 2

Reorder Buffer
Entry Busy Instruction State Destination Value

1 yes mul $t4,$t2 Exec $Hi, $Lo
2 yes mflo $t4 Issue $t4
3 yes subi $t3,$t3,1 Issue $t3
4 yes bgtz $t3,loop Issue
5
6
7
8
9
10

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 2 #3 yes
$t4 1 #2 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #1 #2
Add2 subi 2 1 #3
Add3
Add4
Mul1 yes mul 1 5 #1
Mul2
Br1 bgtz #3 #4
Br2

Cycle 3

Reorder Buffer
Entry Busy Instruction State Destination Value

1 yes mul $t4,$t2 Exec $Hi, $Lo
2 yes mflo $t4 Issue $t4
3 yes subi $t3,$t3,1 Exec $t3
4 yes bgtz $t3,loop Issue
5 yes mul $t4,$t2 Issue $Hi, $Lo
6 yes mflo $t4 Issue $t4
7
8
9
10

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 2 #3 yes
$t4 1 #6 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #1 #2
Add2 yes subi 2 1 #3
Add3 mflo #5 #6
Add4
Mul1 yes mul 1 5 #1
Mul2 mul 5 #2 #5
Br1 bgtz #3 #4
Br2

28.1. MULTIPLE ISSUE TOMASULO 179

Cycle 4

Reorder Buffer
Entry Busy Instruction State Destination Value

1 no mul $t4,$t2 Commit $Hi, $Lo 5
2 yes mflo $t4 Exec $t4
3 no subi $t3,$t3,1 done $t3 1
4 yes bgtz $t3,loop Exec
5 yes mul $t4,$t2 Issue $Hi, $Lo
6 yes mflo $t4 Issue $t4
7 yes subi $t3,$t3,1 Issue $t3
8 yes bgtz $t3,loop Issue
9
10

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 1 #7 yes
$t4 1 #6 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 yes mflo 5 #2
Add2 subi 1 1 #7
Add3 mflo #5 #6
Add4
Mul1
Mul2 mul 5 #2 #5
Br1 yes bgtz 1 #4
Br2 bgtz #7 #8

Cycle 5

Reorder Buffer
Entry Busy Instruction State Destination Value

1
2 no mflo $t4 Commit $t4 5
3 no subi $t3,$t3,1 Commit $t3 1
4 yes bgtz $t3,loop Exec
5 yes mul $t4,$t2 Exec $Hi, $Lo
6 yes mflo $t4 Issue $t4
7 yes subi $t3,$t3,1 Exec $t3
8 yes bgtz $t3,loop Issue
9 yes mul $t4,$t2 Issue $Hi, $Lo
10 yes mflo $t4 Issue $t4

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 1 #7 yes
$t4 5 #10 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #9 #10
Add2 yes subi 1 1 #7
Add3 mflo #5 #6
Add4
Mul1 mul 5 #6 #9
Mul2 yes mul 5 5 #5
Br1 yes bgtz 1 #4
Br2 bgtz #7 #8

180 CHAPTER 28. TOMASULO

Cycle 6

Reorder Buffer
Entry Busy Instruction State Destination Value

1 yes subi $t3,$t3,1 Issue $t3
2 yes bgtz $t3,loop Issue
3
4 no bgtz $t3,loop Commit
5 yes mul $t4,$t2 Exec $Hi, $Lo
6 yes mflo $t4 Issue $t4
7 no subi $t3,$t3,1 Done $t3 0
8 yes bgtz $t3,loop Issue
9 yes mul $t4,$t2 Issue $Hi, $Lo
10 yes mflo $t4 Issue $t4

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 1 #1 yes
$t4 5 #10 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #9 #10
Add2 subi 0 1 #1
Add3 mflo #5 #6
Add4
Mul1 mul 5 #6 #9
Mul2 yes mul 5 5 #5
Br1 bgtz #2 #2
Br2 yes bgtz 0 #8

Cycle 7

Reorder Buffer
Entry Busy Instruction State Destination Value

1 yes subi $t3,$t3,1 Issue $t3
2 yes bgtz $t3,loop Issue
3
4
5 no mul $t4,$t2 Commit $Hi, $Lo 25
6 yes mflo $t4 Exec $t4
7 no subi $t3,$t3,1 Done $t3 0
8 yes bgtz $t3,loop Exec
9 yes mul $t4,$t2 Issue $Hi, $Lo
10 yes mflo $t4 Issue $t4

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 1 #1 yes
$t4 5 #10 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #9 #10
Add2 subi 0 1 #1
Add3 yes mflo 25 #6
Add4
Mul1 mul 5 #6 #9
Mul2
Br1 bgtz #2 #2
Br2 yes bgtz 0 #8

28.1. MULTIPLE ISSUE TOMASULO 181

Cycle 8

Reorder Buffer
Entry Busy Instruction State Destination Value

1 yes subi $t3,$t3,1 Exec $t3
2 yes bgtz $t3,loop Issue
3 yes mul $t4,$t2 Issue
4 yes mflo $t4 Issue
5
6
7
8 no bgtz $t3,loop Flush
9 yes mul $t4,$t2 Exec $Hi, $Lo
10 yes mflo $t4 Issue $t4

Registers
Field Data Reorder Busy
$t0
$t1
$t2 5
$t3 0 #1 yes
$t4 25 #4 yes
$t5
$t6
$t7
$t8
$t9

Reservation Station
Name Busy Op V1 V2 S1 S2 Dest A
Add1 mflo #9 #10
Add2 yes subi 0 1 #1
Add3 mflo #3 #4
Add4
Mul1 yes mul 25 5 #9
Mul2 mul 5 #10 #3
Br1 bgtz #2 #2
Br2
At this point the buffers and stations will be flushed, the executions cancelled, and the registers not

updated (they are at the right point). New commands will be loaded from after the branch, and execution

proceeds normally.

182 CHAPTER 28. TOMASULO

Chapter 29

Thread Level Parallelism

29.1 Taxonomy

Flynn

SISD Single Instruction Single Data (Modern uniprocessors)

SIMD Single Instruction Multiple Data (Vector machines, and some multimedia)

MISD Multiple Instruction Single Data (No commercial, possible in special applications)

MIMD Multiple Instruction Multiple Data (Modern multiprocessors)

MIMD is broken into two groups based on memory configuration. Memory is either shared equally by

all processors or distributed among the processors.

29.2 Shared Memory

The first group centralizes the memory and has each processor with its cache connect via a shared memory

bus.

Figure 29.1: Centralized shared memory multiprocessor

183

184 CHAPTER 29. THREAD LEVEL PARALLELISM

The first group is also referred to by

• Centralized Shared Memory

• Symmetric Multiprocessors (SMP)

• Uniform Memory Access (UMA)

These alternate titles are used since the the memory is central and shared, it is thus symmetric to all, and

thus the access for each processor is uniform. The main problem here is that as the number of processors

grows, the need for memory bandwidth grows. Without the needed bandwidth, requests will have to be

scheduled resulting in increased latency.

Example 23 Using Figure 6.10 in the book, fill in the table, assuming all events are for an address relative

to a cache in a SMP system.
Event Source State
Startup - Invalid
Read Miss CPU
Read Miss Bus
Write Hit CPU
Write Miss Bus
Write Miss CPU
Read Miss Bus

Event Source State
Startup - Invalid
Read Miss CPU Shared
Read Miss Bus Shared
Write Hit CPU Exclusive
Write Miss Bus Invalid
Write Miss CPU Exclusive
Read Miss Bus Shared

29.3 Distributed Memory

The second group distributes the memory to each processor so the memory bandwidth grows with the need.

This results in the problem of data sharing and communications between the nodes. We could just treat the

distributed memories like one big memory, giving each an address (shared address space). This would allow

the memories to be shared. Access to different parts of memory is no longer uniform (addresses corresponding

to “local” memory will be fast and the addresses corresponding to “remote” memory will be slow). This

scheme is referred to as

• Distributed Shared Memory (DSM)

• Nonuniform Memory Access (NUMA)

Alternately we could keep each address space separate (local addresses) and pass messages between nodes

containing the data or communications. This scheme makes each machine look like an individual computer

(multi-computers) and often each processor is a separate machine (clusters).

Shades of grey exist between the two, for instance a network OS can use message passing to pass a page

of memory and implement what looks like shared address space by utilizing paging capabilities.

29.4. PERFORMANCE 185

ProcessorProcessor

… CacheCache

NICNIC BusBus

I/OMemoryI/OMemory

Interconnection Network

Figure 29.2: Distributed memory multiprocessor

29.4 Performance

Amdahl’s Law, for n processors is

S =
1∑n

i=1

(
fi
i

) , (29.1)

where fi is the fraction of time when i processors are busy. Note that

n∑
i=1

fi = 1. (29.2)

Example 24 Consider a 4 processor machine. What must the fractions be to ensure a speedup of at least

3.

3 =
1

f1
1 + f2

2 + f3
3 + f4

4

1 = 3

(
f1
1

+
f2
2

+
f3
3

+
f4
4

)
4 = 12f1 + 6f2 + 4f3 + 3f4

Note that if the least common multiple of the numbers 1 through n is denoted LCM , then for an n processor

system trying to achieve a speedup of s we can say

LCM

s
=

n∑
i=1

LCM

i
fi

is the equation describing this situation that has integer coefficients. We also know

1 = f1 + f2 + f3 + f4.

Combining yields

[
4
1

]
=

[
12 6 4 3
1 1 1 1

]
f1
f2
f3
f4

 .

186 CHAPTER 29. THREAD LEVEL PARALLELISM

This is indefinite (more unknowns than equations), but we can solve for the fractions in terms of f1 and f2.

8f1 + 2f2 = f4

1− 9f1 − 3f2 = f3

The second equation implies that individually f1 < 1
9 ≈ .11 and f2 < 1

3 ≈ .33 and together 3f1 + f2 ≤ 1
3 .

Further, if f3 is negligible then .67 ≤ f4 ≤ .88 is the minimum range to ensure a speedup of 3.

The last example shows how great the required thread level parallelism is to achieve a reasonable speedup.

The lack of thread level parallelism is one of the two great problems/challenges in multiprocessing. The other

great problem/challenge is the latency of remote accesses, which effectively adds a fixed penalty to the CPI

of each processor thereby limiting performance.

The efficiency is given by

E =

n∑
i=1

(
fi

i

n

)
≤ 1 (29.3)

Scientific programs are often used to benchmark multiprocessor performance. For the following table n

is the problem size, p is the number of processors, and the α numbers are the scaling factors.

Application αcompute αcommunicate

FFT n logn
p

n
p

LU/Ocean n
p

√
n
p

Barnes-Hut n logn
p

√
n
p log n

Example 25 An Ocean application takes 1 hour to run on a uniprocessor, and 33 minutes on a dual

processor. How long will it take to run the Ocean application on a problem 16 times the original size on a

128 processor machine?
Processors(p) Size(n) Time Computation Communication
1 1 1 hour 1 0

2 1 33 min 1
2

√
1√
2

128 16 16
128

√
16√
128

1
8

1
2
√
2

From the table, if we call the base time of computation x, and the base time of communication y then we

get (using minutes to be consistent):

60 = 1x+ 0y (29.4)

33 = .5x+
1√
2
y (29.5)

from the first equation, x = 60min and from the second equation y = 3
√
2min. Thus the time for the

third case (problem solution) is

T =
1

8
x+

1

2
√
2
y

=
1

8
60 +

1

2
√
2
3
√
2

= 7.5 + 1.5

= 9min

29.4. PERFORMANCE 187

Example 26 An LU application runs in 4000 seconds on a uniprocessor. The same problem runs in 1020

seconds on a four processor machine. How long will it take to run on a 16 processor machine? How long

will it take to run on a 64 processor machine?

4000 = 1x+ 0y

1020 = .25x+ .5y

So x = 4000 and y = 40. Using this,

1

16
4000 +

1

4
40 = 250 + 10

= 260

So a 16 processor machine runs it in 260 seconds.

1

64
4000 +

1

8
40 = 62.5 + 5

= 67.5

Note that communication takes up 20
1020 ≈ .0196 or just under 2% of the time on a four processor. When we

have a sixteen processor machine it takes up 10
260 ≈ .0385 or about 3.85% of the time. On the 64 processor

machine the communication took up 5
67.5 ≈ .0385 or about 7.41% of the time. Communication takes ever

increasing fraction of the time, and becomes a limit to performance. Consider running this on a 4096

processor machine. It would take

1

4096
4000 +

1

64
40 ≈ .977 + .625

≈ 1.6

Thus communication takes .625
1.6 ≈ .391 or almost 40% of the time!

188 CHAPTER 29. THREAD LEVEL PARALLELISM

Part VI

Appendices

189

Appendix A

Sample Computers

A.1 32 Bit Pipelined Computer

Consider a 32 bit pipelined computer with a 1.0 GHz clock and an ISA that has three categories of commands:
Freq

Branch .2
Memory .3
Other .5

The computer has a 64 bit memory bus that operates at 500 MHz. The bus requires that requests and

responses take 1 cycle. The memory takes 40ns to respond to a request and can do burst sends with a delay

of 10ns. The bus requires 3 cycles to initiate a request and 2 cycles to transmit the response. The bus is

DMA and requires 710 CPU cycles to set up a transfer, 275 cycles to complete, 500 cycles to handle errors

(1% of the time).

The machine has two disks that have a combined transfer rate of 20MB/s, and a total latency of 6.8 ms.

The computer has virtual memory with a page size of 64KB.

1. What is the bandwidth of the bus?

We have been assuming the installed RAM to be integral in the bus design, so the answer would be:

Bandwidth =
Data Transferred

Time of Transfer

=
Data Transferred

Number of Cycles× Time of 1 Cycle

=
Data Transferred× Bus Clock Frequency

Cycles to Initiate + Cycles to Respond + Cycles to Get Data

=
8Bytes× 500MHz

3 + 2 + (40ns× 500MHz)

=
4000MB/s

25
= 160MB/s

You might have noted that be RAM supports a burst transfer mode. As the size of the burst increases

the effective time to get the data approaches the burst time of 10 ns (down from 40 ns). If you assumed

this you would have found the bandwidth to be 400 MB/s.

191

192 APPENDIX A. SAMPLE COMPUTERS

2. If the computer had to continually page, how much of the CPU’s time and the bus’s bandwidth would

it use?

Note that in memory KB = 210 bytes, but in networks KB = 103 bytes. As they are similar, we will

ignore the difference as the book does. Additionally, we will assume the pages are spread across both

disks so as to maximize the transfer.

The time it takes to transfer one page is given by:

Ttransfer = time to get the data + time to send the data

= total latency +
Data Sent

Transmission Rate

= 6.8ms +
64KB

20MB/s

= 6.8ms + 3.2ms

= 10ms.

The data rate for the transfer is:

RData =
Data Sent

Ttransfer

=
64KB

10ms
= 6.4MB/s.

Using the figure of 160 MB/s for the bus’s bandwidth we find:

Percent Utilization of Bus =
Bandwidth Used

Bandwidth Available
× 100%

=
6.4MB/s

160MB/s
× 100%

= 4%.

Now let’s look at the impact on the CPU. We need to find the number of cycles the CPU must use to

handle the transfer.

Cycles Per Transfer =
Cycles to Set Up + Cycles to Finish + error rate× Cycle to Handle Errors

1− error rate

=
710 + 275 + .01× 500

1− .01

=
990

.99
= 1000

The utilization of the CPU is thus:

Percent Utilization of CPU =

Cycles Per Transfer
Ttransfer

CPU Clock Frequency
× 100%

=
1000
10ms
1GHz

× 100%

= 0.01%

Thus we have a negligible impact.

A.1. 32 BIT PIPELINED COMPUTER 193

3. What block size of the cache would cause the least impact on the CPI of the computer due to misses,

assuming the instruction and data miss rate are equal?

Block Size 2 words 4 words 8 words 16 words
Miss Rate 4% 2% 1.2% 1%

The average increase to a command’s CPI due to cache misses depends on if the command accesses

memory just for the instruction fetch or also for the commands implementation. We will therefor assess

the impact to memory commands separate from branch and other commands. The average increase

for branch and other commands is given by:

∆CPI = miss rate× Bus Cycles to Transfer× CPU Clock Rate

Bus Clock Rate
= miss rate× Bus Cycles to Transfer× 2.

The average impact for branch commands is twice the increase of branch and other commands.

The bus cycles to transfer 2N words is given by:

Cycle to Transfer = Cycles to Initiate + Cycles to Get First 2 Words

+(N − 1)× Cycle to Burst Get 2 Words

+N × Cycles to Send 2 Words

= 3 + (40ns× 500MHz) + (N − 1)× (10ns× 500MHz) +N × 2

= 18 + 7N

Block Size 2 words 4 words
Miss Rate 4% 2%
Bus Cycles to Transfer 18+7(1)=25 18+7(2)=32
∆CPI Not Memory (.04)(25)(2)=2 (.02)(32)(2)=1.28
∆CPI Memory (2)(2)=4 (2)(1.28)=2.56

Block Size 8 words 16 words
Miss Rate 1.2% 1%
Bus Cycles to Transfer 18+7(4)=46 18+7(8)=74
∆CPI Not Memory (.012)(46)(2)=1.104 (.01)(74)(2)=1.48
∆CPI Memory (2)(1.104)=2.208 (2)(1.48)=2.96

The least impact is given by a cache with blocks of 8 words in this case.

4. Design a dynamic branch predictor for the computer.

A good estimate of whether a branch will be taken is to remember whether it was taken last time.

Remembering if a branch was taken or not requires 1 bit per instruction tracked. To keep the problem

realistic we will add an additional 32-bit register. Each bit in the register will indicate if the branch

was taken for the last instruction whose address modulo 32 corresponds to the bit’s location. An easy

way to implement this would be to take the outputs of the 32 bits and pass them into a 32× 1 MUX,

whose address select lines are given the last five bits of the command’s address (from PC for instance).

The branch taken signal could be sent from the control to the particular bit by using a 1×32 DeMUX.

5. For this system, 60% of the branch instructions make loops and the rest are for conditional execution.

On average, the code in a loop is executed 10 times. What fraction of the time does your dynamic

branch predictor, correctly predict the branch taken?

Loops occur 60% of the time, conditional execution occurs 40% of the time. The dynamic branch

selected above does not likely do anything for conditional execution branches, so it is most likely

194 APPENDIX A. SAMPLE COMPUTERS

correct on 50% of the conditional execution branch instructions. In the loops, the method designed

would be correct in all but the first and last execution of the loop, so 80% on loops.

The net effect is (.4)(.5) + (.6)(.8) = .68 or 68% of the time it is right.

6. Using the best cache and your dynamic branch predictor, calculate the average CPI and the perfor-

mance of the computer in MIPS.

I forgot to give you base CPI and the penalty to CPI for missing a branch. I wanted the base for all

instructions to be 1 (ideal for piplined) and the penalty to be 3. Sorry about that.

Average CPI is given by:

CPIavg =
∑
i

(CPIi × frequencyi)

= CPIMemory × freqMemory + CPICorrect Branch × freqCorrect Branch
+CPIIncorrect Branch × freqIncorrect Branch + CPIOther × freqOther

= (1 + 2.208)(.2) + (1 + 1.104)(.3× .68)

+(1 + 1.104 + 3)(.3× .32) + (1 + 1.104)(.5)

= 2.6128

MIPS is given by:

MIPS =
CPU Clock Freq

CPI× 106

=
109Cycles/s

2.6128Cycle/Million Inst× 106

≈ 383

A.2 One Command Computer

Consider a computer which has only one command, subtract and branch if negative (SBrN D, S1, S2, Jump).

Which does:

D = S1 - S2

if D < 0 goto Jump

Since there is only one command there is no need to include the opcode in the machine language instruc-

tion. The system is to have 1K of memory divided into 256 words of 4 bytes each. Since memory requires 1

bytes to specify the address of a memory location the instructions will have four fields of 1 byte each:
Destination Source 1 Source 2 Jump Address

1. Design a CPU that implements this.

Sol:

See Figure 1

2. Alter your design to make it a four stage pipeline with forwarding.

Sol:

See Figure 2. Note that the control to the forwarding MUXs can come from tag bits on the RAM (first

idea) or comparators on the destination (better solution).

A.2. ONE COMMAND COMPUTER 195

3. Design the control for the CPU (hardwired or microcoded)

Sol:

In this case, most of the control signals are already handled. All that remains undone is the load

commands to the program counter and instruction register, and the read and write commands to

memory. The ifetch loop has only four states so the resulting logic table is:

S1S0 S1S0 Rpc Rs1/Rs2 Wd
00 01 1 0 0
01 10 0 1 0
10 11 0 0 0
11 00 0 0 1

Next S1 = S′
1 · S0 + S1 · S′

0

Next S0 = S′
0

Rpc = S′
1 · S′

0

Rs1Rs2 = S′
1 · S0

Wd = S1 · S0

4. Show the tag bits (with their size), data field, and address of a 2-way associative write-back cache that

uses NLLRU for this machine that has 8 locations. How many total bits must be stored?

Sol:

Main Memory has 28 locations (n=8)

Cache has 23 locations (m=3)

Associativity is 21 (k=1)

Each location in cache has a total of 42 bits

(a) Address tag bits: n-(m-k) = 8-(3-1) = 6

(b) Valid tag bit: 1

(c) Dirty tag bit: 1

(d) NLLRU tag bits: 2 (the associativity)

(e) Data bits: 32

The entire cache has 8× 42 = 336 bits

5. Show the cache accesses and calculate the hit ratio for the following memory values, assuming execution

begins at location 0 and terminates when location 5 is reached. If a location is not specified below, the

contents are not important. All values are in hex.

Address D S1 S2 J Address Data
00 87 88 80 01 80 00 00 00 00
01 86 80 8B 02 81 FF FF FF FF
02 87 87 86 03 82 FF FF FF FE
03 01 01 83 04 83 00 00 01 00
04 82 82 81 01

Sol:

(I have grouped my cache table so the associated portions of cache are on the same row.)

Initial condition (hits=0, misses=0)

196 APPENDIX A. SAMPLE COMPUTERS

NLLRU V D Address Loc Data NLLRU V D Address Loc Data
00 0 0 000000 000 0x00000000 00 0 0 000000 100 0x00000000
00 0 0 000000 001 0x00000000 00 0 0 000000 101 0x00000000
00 0 0 000000 010 0x00000000 00 0 0 000000 110 0x00000000
00 0 0 000000 011 0x00000000 00 0 0 000000 111 0x00000000

command=0x87888001 (hits=0, misses=3) (read in 0 then 88, then 80 overwrote 0)

NLLRU V D Address Loc Data NLLRU V D Address Loc Data
01 1 0 100000 000 0x00000000 00 1 0 100010 100 0x????????
00 0 0 000000 001 0x00000000 00 0 0 000000 101 0x00000000
00 0 0 000000 010 0x00000000 00 0 0 000000 110 0x00000000
01 1 1 100001 011 0x???????? 00 0 0 000000 111 0x00000000

command=0x86808B02 (hits=1, misses=5)

LRU V D Address Loc Data LRU V D Address Loc Data
01 1 0 100000 000 0x00000000 00 1 0 100010 100 0x????????
01 1 0 000000 001 0x86808B02 00 0 0 000000 101 0x00000000
01 1 1 100001 010 0x???????? 00 0 0 000000 110 0x00000000
00 1 1 100001 011 0x???????? 10 1 0 100010 111 0x????????

command=0x87878603 (hits=3, misses=6)

LRU V D Address Loc Data LRU V D Address Loc Data
01 1 0 100000 000 0x00000000 00 1 0 100010 100 0x????????
01 1 0 000000 001 0x86808B02 00 0 0 000000 101 0x00000000
01 1 1 100001 010 0x???????? 00 1 0 000000 110 0x87878603
01 1 1 100001 011 0x???????? 00 1 0 100010 111 0x????????

command=0x01018304 (hits=4, misses=8)

LRU V D Address Loc Data LRU V D Address Loc Data
01 1 0 100000 000 0x00000000 00 1 0 100010 100 0x????????
01 1 1 000000 001 0x86808A02 00 0 0 000000 101 0x00000000
01 1 1 100001 010 0x???????? 00 1 0 000000 110 0x87878603
01 1 1 100000 011 0x00000100 00 1 0 000000 111 0x01018304

command=0x82828101 (hits=4, misses=11) (NOTE: 82 is 0xFFFFFFFF at end of command then

jumps to 01)

LRU V D Address Loc Data LRU V D Address Loc Data
00 1 0 100000 000 0x00000000 10 1 0 000001 100 0x82828101
00 1 1 000000 001 0x86808A02 10 1 0 100000 101 0xFFFFFFFF
00 1 1 100001 010 0x???????? 10 1 0 100000 110 0xFFFFFFFF
01 1 1 100000 011 0x00000100 00 1 0 000000 111 0x01018304

command=0x0x86808A02 (hits=6, misses=12)

LRU V D Address Loc Data LRU V D Address Loc Data
00 1 0 100000 000 0x00000000 10 1 0 000001 100 0x82828101
01 1 1 000000 001 0x86808A02 00 1 0 100000 101 0xFFFFFFFF
00 1 1 100001 010 0x???????? 10 1 0 100010 110 0x????????
01 1 1 100000 011 0x00000100 00 1 0 000000 111 0x01018304

command=0x0x87878603 (hits=7, misses=14)

A.3. MULTIPLE ISSUE MACHINE 197

LRU V D Address Loc Data LRU V D Address Loc Data
00 1 0 100000 000 0x00000000 10 1 0 000001 100 0x82828101
01 1 1 000000 001 0x86808A02 00 1 0 100000 101 0xFFFFFFFF
01 1 0 100001 010 0x87878603 00 1 0 100010 110 0x????????
00 1 1 100000 011 0x00000100 10 1 1 100001 111 0x????????

command=0x0x01018304 (hits=8, misses=16)

LRU V D Address Loc Data LRU V D Address Loc Data
00 1 0 100000 000 0x00000000 10 1 0 000001 100 0x82828101
01 1 1 000000 001 0x86808902 00 1 0 100000 101 0xFFFFFFFF
01 1 0 100001 010 0x87878603 00 1 0 100010 110 0x????????
01 1 0 000000 011 0x01018304 10 1 0 100003 111 0x00000100

command=0x0x82828101 (hits=10, misses=17) (loaded 82 as 0xFFFFFFFF then -(-1) to get 0 which

ends)

LRU V D Address Loc Data LRU V D Address Loc Data
00 1 0 100000 000 0x00000000 10 1 0 000001 100 0x82828101
01 1 1 000000 001 0x86808902 00 1 0 100000 101 0xFFFFFFFF
00 1 0 100001 010 0x87878603 10 1 1 100000 110 0x00000000
01 1 0 000000 011 0x01018304 10 1 0 100003 111 0x00000100

6. Assuming the cache has an access time of 4ns and the memory has an access time of 60ns, calculate

the effective access time of the memory.

Sol:

hr = hit
hit+miss

= 10
27 ≈ .37

mr = 1− hr ≈ 1− .37 = .63

Teff = hr × Tcache +mr × TRAM ≈ .37× 4 + .63× 60 ≈ 39ns

A.3 Multiple Issue Machine

You have a 1.5 GHz computer which can issue 2 instructions per cycle and a dynamic branch predictor that

reduces the branch penalty from 4 cycles to 1 cycle, 90% of the time. Branch instructions are 15% of all

instructions, loads are 20%, and stores are 5%.

The cache is split into 4k instruction cache and 4k data cache. The cache takes 2 ns to access. The

instruction cache has a block size of 2 words, has an associativity of 4, and a miss rate of 2%. The data

cache has a block size of 4 words, an associativity of 2, is write-back, is not write-allocate, has a read miss

rate of 5%, a write miss rate of 2%, and 10% of the blocks are dirty.

The RAM is 8MB takes 50ns to access and can burst write subsequent accesses at 10ns.

1. How many cycles on average is the branch penalty?

Penaltybranch = fpred. correctCostpred. correct + fpred. errorCostpred. error
= .9× 1 + .1× 4

= 1.3

198 APPENDIX A. SAMPLE COMPUTERS

2. How long does an instruction read miss take?

Two words have to be loaded on a miss, which takes 70ns.

3. How long does a data read miss take?

Four words have to be loaded on a miss, which takes 90ns. Now 10% of the time we also have to write

four words, which takes the same as a read thus we have: (1 + .1)× 90ns = 99ns

4. How long does a data write miss take?

On a write miss, four words have to be written, which takes 90ns.

5. What is the effective access time for instruction loads?

TInst = 2ns+ .02× 70ns

= 3.4ns

6. What is the effective access time for data reads?

Tread = 2ns+ .05× 99ns

= 6.95ns

7. What is the effective access time for data writes?

Twrite = 2ns+ .02× 90ns

= 3.8ns

8. What is the CPI of this machine?

CPI =
(1 + fbranchPenaltybranch + Penaltyinst + fread × Penaltyread + fwrite × Penaltywrite)

inst per cycle

=
(1 + fbranchPenaltybranch + Clockrate(Tinst + fread × Tread + fwrite × Twrite))

inst per cycle

=
1 + .15× 1.3 + 1.5GHz(3.4ns+ .2× 6.95ns+ .05× 3.8ns)

2
= 1.0830625

A.3. MULTIPLE ISSUE MACHINE 199

Figure A.1: One Command Computer

200 APPENDIX A. SAMPLE COMPUTERS

Appendix B

Encryption

B.1 Modular Arithmetic

B.1.1 Congruence

We say a is congruent to b modulus n when a − b is divisible by n. In mathematical notation, we write

a ≡ b (mod n) ⇔ a− b = kn for some integer k. Several important properties of congruence are

1. a ≡ a (mod n)

2. a ≡ b (mod n) ⇒ b ≡ a (mod n)

3. {{a ≡ b (mod n)} · {b ≡ c (mod n)}} ⇒ a ≡ c (mod n)

Example 27

8 ≡ 29 (mod 7)

8− 29 = −21
= (−3)7

9 ≡ −15 (mod 6)

9− (−15) = 24

= (4)6

B.1.2 Modulus

Invariably confusion happens with integer division, modulus, and remainder involving negative numbers.

The problem arises in the basic definition. For a dividend, a ∈ Z and a divisor, b ∈ Z, the quotient, q and

remainder r must satisfy

1. {r, q} ∈ Z,

2. a = b ∗ q + r,

3. |r| < |d|.

201

202 APPENDIX B. ENCRYPTION

The problem comes with the last requirement, because many choices can be made. The three most justifiable

definitions are below1

1. Truncate division preserves the magnitudes of the quotient and remainder, independent of the signs of

the dividend and divisor. This forces the remainder to have the same sign as the dividend.

2. Floor division forces the remainder to have the same sign as the divisor.

3. Euclidean division defines r ≥ 0 and thus ensures b× q ≤ a.

Each is defensible.

Truncate

Remainder’s definition is based off the definition of integer division. Integer division, a/b, is defined for

positive a and b to be the number q such that

1. b× q ≤ a,

2. b× (q + 1) ≥ a.

When negative numbers are allowed the following requirement is added

3 (−a)/b = a/(−b) = −(a/b),

still for a and b positive. One could summarize this as:

c/d = sgn(c)sgn(d)(|c|/|d|)

Given we now have quotient or integer division defined we can then define remainder such that

a = a/b+ aremb

aremb = a− a/b.

Note that the sign of the remainder is the same as the

Example 28 Consider the following:

5/2 = 2

(−5)/2 = −2
5/(−2) = −2

(−5)/(−2) = 2

5rem2 = 1

(−5)rem2 = −1
5rem(−2) = 1

(−5)rem(−2) = −1

B.1.3 Addition

{{a ≡ b (mod n)} · {c ≡ d (mod n)}} ⇒ a+ c ≡ b+ d (mod n)

1other definitions exist such as ceiling division and rounding division, but they do not correspond to the what most people
think of division for positive numbers. Note, from the requirements nothing says 5/2 = 3r − 1 but this is hardly what most
people would think of, and thus would probably not be programmed very well.

B.1. MODULAR ARITHMETIC 203

B.1.4 Additive Inverse

a+ ā ≡ 0 (mod n)

a+ ā = kn, k ∈ Z
ā = kn− a, k ∈ Z

Example 29 Find the additive inverse(s) of 3 mod 7.

ā = kn− a, k ∈ Z
= 7k − 3, k ∈ Z

k ā (3 + ā) mod 7
1 4 (3 + 4) mod 7 = 0
2 11 (3 + 11) mod 7 = 0
3 18 (3 + 18) mod 7 = 0
4 25 (3 + 25) mod 7 = 0
...

...

B.1.5 Multiplication

{{a ≡ b (mod n)} · {c ≡ d (mod n)}} ⇒ ac ≡ bd (mod n)

B.1.6 Multiplicative Inverse

aā ≡ 1 (mod n)

aā = 1 + kn, k ∈ Z

ā =
1 + kn

a
, k ∈ Z

Let k1 + ak2 = k for k1 and k2 positive integers.

ā =
1 + kn

a
, k ∈ Z

=
1 + k1n+ ak2n

a
, k1, k2 ∈ Z+

=
1 + k1n

a
+ k2n, k1, k2 ∈ Z+

We need a to divide 1+ k1n, which means it divides with no remainder (aka divides evenly). Consider what

would happen if gcd(a, n) = a1 > 1, thus a = a1a2 and n = a1n2 for a1, a2, and n2 positive integers. If a1
is a factor of n then it is also a factor of k1n If a1 is a factor of k1n then it cannot be a factor of k1n+ 1 (it

evenly divides k1n and k1n+ k1 but nothing in between).

Now assume gcd(a, n) = 1. For a to divide 1 + k1n implies ak3 = 1 + k1n for some positive integer k3.

Example 30 Find the multiplicative inverse(s) of 3 mod 7.

204 APPENDIX B. ENCRYPTION

ā =
1 + kn

a
, k ∈ Z

=
1 + 7k

3
, k ∈ Z

k ā (3 + ā) mod 7
1 8

3 no
2 15

3 = 5 (3× 5) mod 7 = 1
3 22

3 no
4 29

3 no
5 36

3 = 12 (3× 12) mod 7 = 1
...

...

B.2 Affine Encryption Program

Affine encryption is one of the simplest methods for doing encryption. Let Pi be the ith character in the

plain text message, and let Ci be the corresponding encoded character. Let there be n possible characters

to encode, then the basic idea is to pick two numbers (a, b) to encode a message such that gcd(a, n) = 1 (so

a has an inverse). No requirement on b is needed if your modulus function has been encoded correctly. The

encoded character can then be found by

a× Pi + b = Ci mod n.

Note that the ” mod n” at the end says the equation holds in Zn, the set of integers mod n with appropriately

defined arithmetic.

To decrypt the message, the equation

ā× (Ci + d) = Pi mod n

is used. The term ā is the inverse of a in Zn, which is found by solving

a× ā = 1 mod n

or

a× ā = m× n+ 1.

Note that m is any whole number. The term d is the additive inverse of b in Zn, which is found by solving

d = n− (b mod n).

We can summarize this by saying an affine cipher is an encryption technique that encodes using three

integers: a, b, and n. If plain is the character to be encoded (with ‘A’=0 and ‘Z’=25) then code = (a∗plain+b)

mod n. Decoding is also done using three integers: c, d, and n. If code is the character to be encoded (with

‘A’=0 and ‘Z’=25) then plain = (c ∗ (code+ d)) mod n. The requirements on (a, b, c, d, n) are:

• gcd(a, n) = 1

• (ac) mod n = 1

• (b+ d) mod n = 0

Below is C code to implement a particular case of affine cyphers.

B.2. AFFINE ENCRYPTION PROGRAM 205

char affine_encode(char plain){

// affine codes capital letter in plain using a=5, b=12 thus this is modulo 26

int iCode, iPlain, a=3,b=0;

// convert char to integer and shift so A=0

iPlain=int(plain)-65;

// do the encoding

iCode = (a*iPlain+b)%26;

// return the result as a char

return char(iCode+65);

}

char affine_decode(char code){

// affine decodes capital letter in plain using c=21, d=8 thus this is modulo 26

int iCode, iPlain, c=9, d=0;

// convert char to integer and shift so A=0

iCode=int(code)-65;

// do the decoding

iPlain = (c*(iCode+d))%26;

// return the result as a char

return char(iPlain+65);

}

206 APPENDIX B. ENCRYPTION

Appendix C

Projects for CSCI 313

C.1 Data Compression/Uncompression

Write in SPARC assembly a program that would use Huffman coding to compress an ASCII file and then

uncompress the same file using Huffman coding in reverse.

The following table presents the relative frequencies of letters in the English language.
Letter Freq. Letter Freq. Letter Freq.
A 0.0681 K 0.0037 U 0.0272
B 0.0123 L 0.0355 V 0.0095
C 0.0288 M 0.0257 W 0.0144
D 0.0406 N 0.0628 X 0.0025
E 0.1205 O 0.0671 Y 0.0146
F 0.0283 P 0.0210 Z 0.0004
G 0.0134 Q 0.0009 space 0.0600
H 0.0580 R 0.0514 . 0.0400
I 0.0577 S 0.0496 newline 0.0090
J 0.0018 T 0.0752

You must first derive the decode tree using the above table and then create the translation table manually.

The translation table can then be used to compress and decompress ASCII files.

C.2 Postfix Expression Evaluator

The project is to write in SPARC assembly a program that would evaluate a postfix expression. The postfix

expression will contain the following arithmetic operators:

+ binary addition

- binary subtration

* binary multiplication

/ binary division

? unary increment

! unary decrement

∼ unary negation

207

208 APPENDIX C. PROJECTS FOR CSCI 313

The infix expression

5 / 2 ? + 4 ∗ 6 − 1 ∗ 3

is equivalent to the postfix expression

5 2 ? / 4 6 ∗ +13 ∗ −.

The following is the algorithm for the postfix expression evaluator.

procedure EVAL (E)

/* Evaluate the postfix expression E. It is assumed

that the last character in E is a NUL. A procedure

NEXT-TOKEN is used to extract from E the next token.

A token array STACK(1:n) is used as a stack.

*/

top ← 0

loop

x ← NEXT-TOKEN(E)

case

:x = NUL: return

:x is an operand: call PUSH(x,STACK)

:else: remove the correct number of opeands

for operator x from STACK, perform

the operation and store the result,

if any, onto the STACK

end

forever

end EVAL

Appendix D

Mini: ALU

D.1 Half Adder

Let’s begin this section by considering a simple problem of how to design an adder for two bits. Call the

bits “a” and “b”. The sum will take two bits to hold, “carry” (c) and “sum” (s).

a 0 0 1 1
+b +0 +1 +0 +1
cs 00 01 01 10

We can express this as a table.

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

From the table we can recognize that c = a · b and s = a⊕ b.

// name: half_adder

// desc: adds two single bits and outputs the the two bit answer [C,S]

// date:

// by :

module half_adder(C,S,a,b); // you list all inputs and outputs, by convention outputs go first

input a, b; // this tells the compiler which lines are inputs, outputs, and inouts

output C, S;

parameter delay=1; // this creates a parameter that can be changed when it is

// instantiated, default value is 1

and #delay carry(C,a,b); // this instantiates a gate, sets its parameter to delay (time delay)

xor #delay sum(S,a,b); // and passes the wires a,b as inputs to the gate and gets the

// gate driven wires C or S as outputs

endmodule

209

210 APPENDIX D. MINI: ALU

D.2 Full Adders

We really want to have a way to add three bits, the two bits of the current digit and one bit carried from

the previous sum.
cprev

a
+b
cs

As before we could make a table, but it is not necessary we can just add in pairs:
half-adder 1 half-adder 2

a cprev
+b +si
cisi cjs

and we or (as in the gate) the two intermediate carries together (c = ci + cj). Thus we can implement it

as two half adders. Create a module “full adder” and instantiate two half adders per the table to generate

the sum and the intermediate carries, then combine the carries with an or gate to generate the carry out.

Make sure you also include the parameter delay, or the next level up will not be able to change the levels

below it.

D.3 Adder-Subtractor

In the previous section you made a module of a full adder. In this preparation you will make a four bit adder

subtractor using your full adder module. We will add a feature called carry enable, which when set (equal

1) causes the adder-subtractor to act normally, but when unset (equal 0) stops the carry from being passed,

and thus turn the adder-subtractor into an xor gate (from the half-adder).

1. Create a new module with two four bit inputs for the numbers and a four bit output for the result.

Your module should also have a carry in and a carry out line.

// name: four_bit_adder

// desc: four bit ripple carry adder with carry enable,

// if C_en then [C_out,Z] = x+y+C_in

// else Zi = Xi xor Yi

// date:

// by :

module four_bit_adder(Z,C_out,x,y,C_in,c_en);

input C_in, c_en;

input [3:0] x,y;

output C_out;

output [3:0] Z;

parameter delay=1; // this creates a parameter that can be changed when it is

// instantiated, default value is 1

endmodule

2. Now create 7 wires to hold the intermediate carries between the full adders and the and gates that will

connect them.

3. Make four instances of your full adder, being sure to pass it the delay parameter.

D.3. ADDER-SUBTRACTOR 211

4. Create four and gates to do the carry enable logic. Be sure to give them the parameter “delay” so we

can do timing later. The outputs of each And gate should be connected to the carry in of one of the

full adders. One of the inputs of each and gate should be connected to C en.

5. Finally, connect the carry outs of the first three adders to the and gate of the next bit. The first and

gate gets C in.

Test your full adder with the following module:

// name: test1

// desc: tests four bit ripple carry adder

// date:

// by :

module test1();

reg [3:0] a, b;

reg c0, cen;

wire [3:0] s;

wire c4;

// create instance of adder

four_bit_adder #1 adder(c,c4,a,b,c0,cen);

// set up the monitoring

initial

begin

$display("A B C0 C4 S Time");

$monitor("%b %b %b %b %b %d", a,b,c0,c4,s,$time);

end

// run through a series of numbers

initial

begin

a=4’b0000; b=4’b0000; c0=1’b0; cen=1’b1;

#10 a=4’b0100; b=4’b0000; c0=1’b0; cen=1’b1;

#10 a=4’b0100; b=4’b0011; c0=1’b0; cen=1’b1;

#10 a=4’b0100; b=4’b0011; c0=1’b1; cen=1’b1;

#10 a=4’b1100; b=4’b0011; c0=1’b1; cen=1’b1;

#10 a=4’b1100; b=4’b0011; c0=1’b0; cen=1’b1;

#10 a=4’b0100; b=4’b0000; c0=1’b0; cen=1’b0;

#10 a=4’b0100; b=4’b0011; c0=1’b0; cen=1’b0;

#10 a=4’b0100; b=4’b0011; c0=1’b1; cen=1’b0;

#10 a=4’b1100; b=4’b0011; c0=1’b1; cen=1’b0;

#10 a=4’b1100; b=4’b0011; c0=1’b0; cen=1’b0;

#10 $finish;

end

endmodule

Once your four bit adder is working, you need to make a four bit adder subtractor from it. See Figure 4-13

in Morris Mano, Digital Design, page 127 for a diagram of a ripple carry adder-subtractor. For simplicity

we will not calculate overflow (V). Follow these steps:

212 APPENDIX D. MINI: ALU

1. Create a new module.

// name: four_bit_adder_subtractor

// desc: four bit ripple carry adder, [C_out,Z] = x+(-)y+C_in

// date:

// by :

module four_bit_adder_subtractor(Z,C_out,x,y,sub,mode_arith);

input sub, mode_arith;

input [3:0] x,y;

output C_out;

output [3:0] Z;

parameter delay=1; // this creates a parameter that can be changed when it is

// instantiated, default value is 1

endmodule

2. Add a four bit wire called “w”, which will hold the output of the four xor gates in Figure 4-13. Don’t

forget the delay parameter.

3. Create four xor gates whose inputs are the bits of “y” with ”sub” outputs are the bits of “w”. Don’t

forget the delay parameter.

4. Make an instance of your adder subtractor and pass it “x”, “w”, “sub”, and “mode arith”. Don’t

forget the delay parameter.

5. Modify test1 to verify the design.

Appendix E

Mini: Register File

E.1 Register File

In this lab you will be making the register file (memory) for the Mini. In the preparation you will be designing

the register file in Verilog. First read section 5-5 in the book (pages 190-197). The registers in the Mini each

hold one nibble (half a byte, i.e.: four bits). The register file is made up of four registers. We will design

our register file in four steps:

1. create a D flip-flop

A D flip-flop must hold 1 bit of data, and it only changes its data when the clock changes. We want

a positive edge triggered flip-flop. Enter the D flip-flop, ”D FF” from example 5-2 on page 192 of the

book.

2. make a four bit register with D flip-flops

Create a module to hold our four bit register. Just like the picture.

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

d
a
t
a

i
n

load t
t
t

d
a
t
a

0
u
t

�Ha
�Ha
�Ha
�Ha

t
t
t

out en

// name: Nibble_Reg

// desc: four bit register with output enable (low),

// made from D flip-flops

// date:

// by :

module Nibble_Reg(data_out,data_in,load,out_en);

input [3:0] data_in;

input load,out_en;

output [3:0] data_out;

// wires between flip-flops and tri-state gates

wire [3:0] dff_out;

// instantiate tri-state gates to do output enable

bufif0 tri3(data_out[3],dff_out[3],out_en);

bufif0 tri2(data_out[2],dff_out[2],out_en);

bufif0 tri1(data_out[1],dff_out[1],out_en);

bufif0 tri0(data_out[0],dff_out[0],out_en);

213

214 APPENDIX E. MINI: REGISTER FILE

//instantiate D flip-flops here

D_FF Reg_Bit_3(dff_out[3],data_in[3],load);

// you finish making instances

endmodule

3. create a 2 to 4 line decoder

We will need two decoders in the final step of our design so we will create them now. Enter the 2 to

4 line decoder, ”decoder df” from example 4-3 on page 153 of the book. To follow standard design

practices we will make a few modifications.

• Put “D” first in the port list. As a general rule, outputs are always first.

• The ports “A” and “B” are actually the address bits so combine them into one new port “A” that

has two bits. Note you will have to change the port list, input line, and the assignments.

• Change the bit ordering of “D” from “[0:3]”(big endian) to “[3:0]”(little endian) to be consistent

with the rest of the design

4. build the register file from the registers

data in[3:0]

data in[3:0]

data in[3:0]

data in[3:0]

load

load

load

load

out en

out en

out en

out en

data out[3:0]

data out[3:0]

data out[3:0]

data out[3:0]

4-bit Reg

4-bit Reg

4-bit Reg

4-bit Reg

t
t
tdata in[3:0]

t
t
t data out[3:0]

@

�
3
2
1
0

read add

read en

@

�
3
2
1
0

write add

write en

Create a module to hold our register file. Just like the picture

// name: Register_File

// desc: 4x4 register file

// date:

// by :

module Register_File(data_out,data_in,read_add,read_en,write_add,write_en);

input [3:0] data_in; // data to write

input [2:0] read_add,write_add; // read address and write address

input read_en,write_en; // read and write enable

output [3:0] data_out; // data to read

wire [3:0] read_sel,write_sel;

E.1. REGISTER FILE 215

//instantiate registers here

decoder_df Dec_Read(read_sel,read_en,read_add);

decoder_df Dec_Write(write_sel,write_en,write_add);

//instantiate registers here

Nibble_Reg Reg_0(data_out,data_in,write_sel[0],read_sel[0]);

// you finish making instances

endmodule

216 APPENDIX E. MINI: REGISTER FILE

Appendix F

Mini: Timing

F.1 Timing

One of the main advantages of using a Hardware Description Language (HDL) like Verilog is the ability to

simulate timing and performance of a circuit and work out any problems quickly before fabricating. In this

lab we will be looking at the basic techniques of how this is done.

1. Use the VeriLogger Pro software that came with your book to do the following.

(a) If you have not done so already, install Verilogger Pro.

(b) Launch Verilogger Pro.

(c) Under the “Project” tab, select “Add File(s)...” and add the files you created for Lab ?? and

Lab ??. They should appear in the “Project” window and show you all the modules that are

defined in them.

(d) Press the green play arrow. VeriLogger will automatically check your syntax, compile, and run if

no errors are found. If it runs you will see your signals automatically plotted in the “Diagram”

window.

2. Add gate delays by adding “parameter delay=0” to the top of each module with gates, which sets

the default value to be zero (no delay). You can edit a module by double clicking its name in the

“Project” window. We set a clock parameter because it allows us to easily change it later when we

need. Parameters can even be changed when we instantiate them by placing a “#(value)” between the

between the module name and the instance name when instantiating. At each gate declaration modify

them so that you pass the time delay to them by adding a “#(delay)” before the gate name (see HDL

Example 3.2 in the book). For example an xor gate would now look like “xor #(delay) x0(T[0], M,

B[0]);”. The delays are used by the simulator to see how long it takes for the signal to propagate

through the circuit. We can graph the signals over time and thus see what is happening in any system

we design. Make sure you modify all the following modules.

• halfadder

• fulladder

• four bit adder subtractor

• four bit alu

3. Run the Verilog code. It should produce the same results since the delay is zero.

217

218 APPENDIX F. MINI: TIMING

4. Modify the test module for the four bit alu so that the instantiation is now “four bit alu #(5)

alu(s,c4,a,b,m,cen)” and run it. What happens and why?

5. Modify the delay a few times and see if you can predict what will happen each time. How long does it

take to get the solution? How long is that in terms of gate delays? Can you express it as a formula?

F.2 Assembling

In this lab we will be timing a simple version of our cpu.

1. Create a module to contain our simple computer.

2. Add two four bit registers named “ACC” and “Op2”.

3. Now make two registers to hold the signals “sub” and “mode”.

4. Next create four wires called “result” and a single wire called carry.

5. Make an instance of the adder-subtractor and pass the registers and wires you created to it.

6. Just like you did for the test units create an initial unit and set the values of the registers to

• ACC=0

• Op2=5

• sub=0

• mode=1

and setup a “$monitor” command to track the registers and wires.

7. Make a parameter called “wait” and set its value to the time you calculated in the preparation to get

the solution.

8. Then make an always unit to control the flow of data in the computer. This essentially tells the

accumulator to load the result of the alu.

always begin

#(wait) ACC=result;

end

9. Run the computer. What does it do? Show the output to the instructor.

10. Set “wait” to twice its value. Does it still give the correct results? Why or why not?

11. Now set “wait” to half its initial value. Does it still work? Why or why not?

F.2. ASSEMBLING 219

Nibble 1 Nibble 2 Nibble 3 Nibble 4 Instruction

0000 Add
0001 Sub
0010 Two Op Codes

0000 S1 S2 Unsigned Multiplication, (U,V)<-S1 x S2
0001 S1 S2 Signed Multiplication, (U,V)<-S1 x S2
0010 S1 S2 Unsigned Division, U<- S1/S2, V<-S1 mod S2
0011 D1 D2 Move D1 <- U, D2 <- V
0100 D/S ShiftAmt Shift left logical by ShiftAmt
0101 D/S ShiftAmt Shift left circulant by ShiftAmt
0110 D/S ShiftAmt Shift right arithmetic by ShiftAmt
0111 D S Not

0011 D Imm Set, D <- SE(Imm)

0100 And
0101 Or
0110 Xor
0111 D S Imm Addi, D <- S + SE(Imm)

1000
1001
1010 Branching

0leg Address branch conditionally, leg are flags for less, equal,
or greater; PC <- PC + SE(Address)

1000 S1 S2 Compare R0 <- S1-S2, set condition codes
1100 R Jump, PC <- PC+R, r15 <- PC+1
1101 R Jump, PC <- R
1110 Code Trap, call Trap(Code)
1111 Return from Interrupt

1011 D Imm LEA, D <- PC+SE(Imm)

1100 D S1 S2 Load Indexed, D <- m[S1+S2]
1101 D S Imm Load Displaced D <- m[S + ZE(Imm)]
1110 S3 S1 S2 Store Indexed, m[S1+S2] <- S3
1111 S2 S1 Imm Store Displaced m[S1 + ZE(Imm)] <- S2

220 APPENDIX F. MINI: TIMING

Appendix G

7400 Series Part Numbers

Part Description
00 4x Two input NAND
01 4x Two input NAND, Open collector
02 4x Two input NOR
03 4x Two input NAND, Open collector
04 6x Inverter (NOT)
05 6x Inverter (NOT), Open collector
06 6x Inverter (NOT), High voltage Open collector
07 6x Buffer (NO-OP), High voltage Open collector
08 4x Two input AND
09 4x Two inout AND, Open collector
10 3x Three input NAND
11 3x Three inout AND
12 3x Three input NAND, Open collector
13 2x Four input, Schmitt Trigger NAND
14 6x Inverter (NOT), Schmitt Trigger
15 3x Three input AND, Open collector
16 6x Inverter (NOT), High voltage Open collector

17N 6x Buffer (NO-OP), High voltage Open collector
19 6x Inverter (NOT), Schmitt Trigger
20 2x Four input NAND
21 2x Four input AND
22 2x Four input NAND, Open collector
23 2x Four input NOR with Strobe
25 2x Four input NOR with Strobe
26 4x Two input NAND, High voltage
27 3x Three input NOR
28 4x Two input NOR
30 Eight input NAND
31 6x DELAY (6nS to 48nS)
32 4x Two input OR
33 4x Two input NOR, Open collector
37 4x Two inout NAND
38 4x Two input NAND, Open collector
39 4x Two input NAND, Open collector
40 4x Two input NAND, Open collector

221

222 APPENDIX G. 7400 SERIES PART NUMBERS

Part Description
42 Four-to-Ten (BCD to Decimal) DECODER
45 Four-to-Ten (BCD to Decimal) DECODER, High current
46 BCD to Seven-Segment DECODER, Open Collector, lamp test and leading zero handling
47 BCD to Seven-Segment DECODER, Open Collector, lamp test and leading zero handling
48 BCD to Seven-Segment DECODER, lamp test and leading zero handling
49 BCD to Seven-Segment DECODER, Open collector
50 2x (Two input AND) NOR (Two input AND), expandable
51 (a AND b AND c) NOR (c AND e AND f) plus (g AND h) NOR (i AND j)
53 NOR of Four Two input ANDs, expandable
54 NOR of Four Two input ANDs
55 NOR of Two Four input ANDs

56P 3x Frequency divider, 5:1, 5:1, 10:1
57P 3x Frequency divider, 5:1, 6:1, 10:1
64 4-3-2-2 AND-OR-INVERT
65 4-3-2-2 AND-OR-INVERT
68 2x Four bit BCD decimal COUNTER
69 2x Four bit binary COUNTER
70 1x gated JK FF with preset and clear
72 1x gated JK FF with preset and clear
73 2x JK FF with clear

74A 2x D FF, edge triggered with preset and clear
75 4x D LATCH, gated

76A 2x JK FF with preset and clear
77 4x D LATCH, gated

78A 2x JK FF with preset and clear
83 Four bit binary ADDER
85 Four bit binary COMPARATOR
86 4x Two input XOR (exclusive or)
90 Four bit BCD decimal COUNTER
91 Eight bit SHIFT register
92 Four bit divide-by-twelve COUNTER
93 Four bit binary COUNTER
94 Four bit SHIFT register

95B Four bit parallel access SHIFT register
96 Five bit SHIFT register

107A 2x JK FF with clear
109A 2x JK FF, edge triggered, with preset and clear
112A 2x JK FF, edge triggered, with preset and clear
114A 2x JK FF, edge triggered, with preset
116 2x Four bit LATCH with clear
121 Monostable Multivibrator
122 Retriggerable Monostable Multivibrator
123 Retriggerable Monostable Multivibrator
124 2x Clock Generator or Voltage Controlled Oscillator
125 4x Buffer (NO-OP), (low gate) Tri-state
126 4x Buffer (NO-OP), (high gate) Tri-state
130 Retriggerable Monostable Multivibrator
128 4x Two input NOR, Line driver
132 4x Two input NAND, Schmitt trigger
133 Thirteen input NAND
134 Twelve input NAND, Tri-state
135 4x Two input XOR (exclusive or)
136 4x Two input XOR (exclusive or), Open collector

223

Part Description
137 3-8 DECODER (demultiplexer)
138 3-8 DECODER (demultiplexer)

139A 2x 2-4 DECODER (demultiplexer)
140 2x Four input NAND, 50 ohm Line Driver
143 Four bit counter and latch with 7-segment LED driver
145 BCD to Decimal decoder and LED driver
147 10-4 priority ENCODER
148 8-3 gated priority ENCODER
150 16-1 SELECTOR (multiplexer)
151 8-1 SELECTOR (multiplexer)
153 2x 4-1 SELECTOR (multiplexer)
154 4-16 DECODER (demultiplexer)

155A 2x 2-4 DECODER (demultiplexer)
156 2x 2-4 DECODER (demultiplexer)
157 4x 2-1 SELECTOR (multiplexer)
158 4x 2-1 SELECTOR (multiplexer)
159 4-16 DECODER (demultiplexer), Open collector

160A Four bit synchronous BCD COUNTER with load and asynchronous clear
161A Four bit synchronous binary COUNTER with load and asynchronous clear
162A Four bit synchronous BCD COUNTER with load and synchronous clear
163A Four bit synchronous binary COUNTER with load and synchronous clear
164 Eight bit parallel out SHIFT register
165 Eight bit parallel in SHIFT register

166A Eight bit parallel in SHIFT register
169A Four bit synchronous binary up+down COUNTER
170 4x4 Register file, Open collector
174 6x D LATCH with clear
175 4x D LATCH with clear and dual outputs
170 Four bit parallel in and out SHIFT register
180 Four bit parity checker
181 Four bit ALU
182 Look-ahead carry generator
183 2x One bit full ADDER
190 Four bit Synchronous up and down COUNTER
191 Four bit Synchronous up and down COUNTER
192 Four bit Synchronous up and down COUNTER
193 Four bit Synchronous up and down COUNTER
194 Four bit parallel in and out bidirectional SHIFT register
195 Four bit parallel in and out SHIFT register
198 Eight bit parallel in and out bidirectional SHIFT register
199 Eight bit parallel in and out bidirectional SHIFT register, JK serial input
221 2x Monostable multivibrator
240 8x Inverter (NOT), Tri-state
241 8x Buffer (NO-OP), Tri-state
242 4x Bidirectional, Tri-state inverting transceiver
243 4x Bidirectional, Tri-state transceiver
244 8x Buffer (NO-OP), Tri-state Line driver
245 8x Bidirectional Tri-state BUFFER
259 Eight bit addressable LATCH
260 2x Five input NOR
273 8x D FF with clear
279 4x SR LATCH
283 Four bit binary full ADDER
373 8x Transparent (gated) LATCH, Tri-state
374 8x Edge-triggered LATCH, Tri-state

224 APPENDIX G. 7400 SERIES PART NUMBERS

Part Description
629 Volatge controlled OSCILLATOR
688 Eight bit binary COMPARATOR

Bibliography

225

