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Abstract 

 
Radiosurgery is a non-invasive treatment technique 

applying focused radiation beams. It requires high 
geometric accuracy as misalignment can cause 
damage to the surrounding healthy tissues and loss of 
the therapeutic effect. One promising technique to 
insure submillimeter alignment accuracy of the 
radiation beam is to optically monitor the position of 
the beam axis relative to a frame firmly attached to the 
patient’s skull using an optical alignment system. The 
optical alignment method requires three-dimensional 
coordinate transforms. This paper compares the 
standard least squares technique for transforming the 
coordinate system with an orthogonal transform 
technique based on the comparison of marker 
triangles.  Orthogonal transforms have good 
numerical properties and preserve distance, which 
gives this technique advantages over non-orthogonal 
techniques.  The mathematics behind each technique is 
covered and alignment results on real test equipment 
are used to illustrate the differences between the 
transforms.  
 

1. Introduction 
 

Radiosurgery is a radiation therapy modality that 
delivers a high single radiation dose to a well-defined 
target in the brain [1]. It is usually performed with the 
Gamma Knife, a linear accelerator delivering 
megavoltage photon beams (LINAC radiosurgery) or a 
charged particle accelerator (e.g., proton radiosurgery). 
The last two methods require an isocentrically rotating 
gantry and patient positioner in order to place multiple 
overlapping radiation fields with different orientation 
on the target.  

Any radiosurgery technique demands a very high 
geometric accuracy since a geometric miss of the target 
can lead to serious consequences such as loss of tumor 
control and deleterious side effects caused by radiation 
necrosis. In LINAC and proton radiosurgery, the 
required submillimeter accuracy is more difficult to 
accomplish since it relies on the mechanical stability of 
a large, rotating gantry (Fig. 1). The isocenter sphere, 
i.e., a virtual sphere that contains all central beam axes 
as the gantry completes a 360-degree revolution, 
typically has a diameter of one to two millimeters [2].  
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Fig. 1. The proton treatment gantry at Loma Linda 
University Medical Center. The proton beam rotates 
isocentrically about the longitudinal patient axis. 
 

One possible solution to assure submillimeter 
alignment accuracy in gantry-based radiosurgery 
techniques is to optically monitor the position of the 
beam axis with respect to the target using visible 
markers that are attached to both the radiosurgery cone 
(a device that contains the field-shaping collimator) 
and the stereotactic frame immobilizing the patient. 
Online optical monitoring of these markers allows, in 
principle, to determine the actual position of the beam 
axis with respect to the anatomical target point, ideally, 
with submillimeter accuracy. An important part of this 
monitoring process is to establish accurate coordinate 
transformations between the local (marker-based) and 
global (camera-based) coordinate systems.  

In this paper, we report on the performance of two 
types of coordinate transformations used with a 
prototype camera-based optical alignment system 
installed in the Proton Treatment Center at Loma Linda 
University Medical Center (LLUMC). The first 
coordinate transformation is an orthogonal 
transformation that preserves the distances between 
markers; the second transformation is a standard least-
square based coordinate transformation that does not 
necessarily preserve geometric distances. Both 
transformations were applied to compute the distance 
of a phantom marker with known stereotactic 
coordinates from the central axis of an expanded laser 
beam, representing the collimated radiation beam. 

 
 
2. Materials and Methods 
 
2.1. System Components 
 

In the following, we describe the components of the 
prototype optical alignment system that has been 

developed at LLUMC for applications in proton 
radiosurgery and is currently in its non-clinical test 
phase. 

 
2.1.1. Camera System. The Camera System consists 
of three high-resolution CCD cameras (Vicon Motion 
Systems, Inc., Oxford, UK), which are placed in an 
equilateral triangle configuration at the edges of the 
circular disk at the back of gantry (Fig. 1), 1.62 m from 
the isocenter (Fig. 2). The cameras have a focal length 
of 25 mm, and are strobed with infrared light, being 
sensitive only to the reflective markers of the marker 
systems (see below).  The focus of each camera is 
directed to the center between the marker systems 
attached to the patient and the radiosurgery-cone. Since 
the back of the gantry and the proton beam delivery 
cone rotate as one unit, the position of the cone relative 
to the cameras is fixed except for a small deviation due 
to the sag of the gantry, which is seen by the cameras. 
The camera configuration is shown below. 

 
Fig. 2. Geometrical arrangement of the Camera 
System for monitoring patient and beam position in the 
proton gantry at LLUMC (dimensions are in meters). 

 
This camera configuration maximizes the visibility 

of both the patient-centered and the beam-centered 
marker systems. In the typical clinical setup, the 
cameras point at the top of the patient’s head. 

The Vicon camera system requires a static followed 
by a dynamic calibration. The static calibration is 
performed with an L-shaped arrangement of 2D 
reflective markers, while the dynamic calibration 
involves periodic movements of a wand with two 
spherical reflective markers arranged at a distance of 
10.0 cm in front of the cameras. 
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2.1.1. Marker Systems. A marker system for tracking 
a patient’s head position was developed to accurately 
monitor the position of the anatomical radiosurgery 
target with respect to the proton beam. The markers 
consist of 5-mm ceramic spheres, which are covered by 
retro-reflective tape (Vicon Motion Systems, Inc., 
Oxford, UK). The patient-centered marker system is 
attached to a Leksell G stereotactic frame (Electa 
Instruments, AB, Stockholm, Sweden), which will be 
firmly affixed to the patient’s skull during the 
treatment procedure. The marker system consists of 23 
markers distributed around the head, minimizing the 
interference with the proton beam (Fig. 3). The 
redundancy of markers permits at least six markers 
seen by all three cameras through the entire motion 
range of the patient positioning system. The location of 
each marker in the stereotactic coordinate system of 
the Leksell G frame was measured by a certified 
dimensional inspection laboratory (Dimensional 
Metrology Laboratory, Riverside, CA, USA) to an 
accuracy of better than +/-0.1 mm. 

 
Fig. 3. Patient-centered marker system attached to the 
Leksell G frame marking the stereotactic reference 
system. The markers are arranged so at least 6 
markers can be seen simultaneously by all three 
cameras and the access of the proton beam to the 
patient’s head is minimally restricted. 

The beam-centered marker system is attached to 
the radiosurgery treatment cone, which delivers a 
collimated proton beam to the patient. It consists of 
nine reflective markers, identical to those used for the 
patient-centered marker system, which are arranged in 
the form of a cross (Fig. 4). The position of each 
marker in the beam-centered reference system was 
measured to an accuracy of better than +/-0.1 mm by 
the same laboratory. 

 

2.2 Verification Procedure 
To verify the performance of the optical alignment 

system, a laser expander fitting tightly inside the 
treatment cone was used to simulate a circular proton 
beam of 1-cm diameter. The laser beam was optically 
centered on a simulated target, thus providing a near-
perfect target  alignment with a submillimeter residual 
error. The actual position of the target and the central 
beam axis was then calculated based on registration of 
the patient- and beam-centered marker systems with 
the camera system. The shortest distance between 
calculated target and the beam axis provided the actual 
alignment registration error. 

The platform for the simulated anatomical target 
was provided by a metal phantom base that attaches 
reproducibly to the stereotactic frame (Fig. 5). 
Spherical ceramic markers of 3-mm diameter were 
attached to rods of three different lengths that can be 
placed in any of five base holes, thus providing well-
defined simulated target locations in 15 possible 
stereotactic positions.  

 
Fig. 4. Beam-centered marker system attached to the 
radiosurgery treatment cone. The cross-shaped marker 
arrangement is facing the three cameras and is 
providing information on the actual beam position. 

 
The location of stereotactic marker position in the 

Leksell G frame coordinate system was measured by 
the dimensional inspection laboratory to an accuracy of 
better than +/-0.1 mm. 

A single phantom base marker was attached to the 
phantom base and optically aligned with the laser 
beam, which was placed to the side of the stereotactic 
frame. Any residual offset between marker center and 
beam center was corrected by the patient positioning 
system (PPS) to which the stereotactic frame was 
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attached. The PPS allows fine movements along three 
orthogonal axes in steps of 50 µm. 

 
Fig. 5. Phantom base used to verify the accuracy of 
the optical alignment system. Spherical markers 
attached to rods of three different lengths can be 
placed in any of five different phantom holes providing 
15 different marker locations. 
 

Once the phantom marker was aligned to the laser 
beam axis to within +/- 0.1 mm, the location of the 
patient- and beam-centered marker systems was 
captured during a static trial of the Vicon camera 
system. The coordinates in the global Vicon system 
were exported as ASCII text files and analyzed with 
orthogonal and least-square-based coordinate 
transformation programs written in Mathcad 11 
(Mathsoft Engineering and Education, Inc., 
Cambridge, MA, USA). The programs transformed the 
beam axis from beam-centered coordinate system to 
the patient-centered coordinate system and calculated 
the distances between the beam axis and the simulated 
target based on the known stereotactic  target position. 
Since, the target had been nearly perfectly aligned with 
the laser beam, any residual distance between phantom 
marker and beam axis was interpreted as the actual 
alignment registration error of the optical alignment 
system. 
 
2.3 Coordinate Transformations 
 
2.3.1 Orthogonal Transformation. In the following, 
the superscript (g) indicates global coordinates and the 
superscript (l) indicates local coordinates. In general, 
the coordinates of at least three markers in the local 
(patient- or beam-centered) reference system will also 
be known in the global (camera-based) reference 
system. All coordinate systems considered here are 
right-handed. The geometric interpretation of the 
coordinate transform between both systems is shown in 
Fig. 6. 

 
Fig. 6.  Conceptual arrangement of marker triangles in 
two reference systems. The goal of the coordinate 
transformation is to make one triangle coplanar and 
collinear to the second. 
 

Consider the triangle P1
(l), P2

(l), P3
(l) in the local 

coordinate system, which is formed by the three known 
markers (Fig. 6). Let p1

(l), p2
(l), and p3

(l), denote the 
position vectors pointing from the origin of the local 
reference system to the central point of each marker. 
Note that lower-case bold letters are used here to 
denote vectors, and upper-case bold letters to denote 
matrices. The corresponding position vectors to the 
triangle P1

(g), P2
(g), P3

(g)  in the global reference system 
are called p1

(g), p2
(g), and p3

(g). One may obtain the 
clearest perception of the rotations and translation 
involved in the coordinate transformation between the 
two reference system by assuming that the origins and 
axes of both coordinate systems coincide, and that the 
vectors p1

(l), p2
(l), p3

(l) and p1
(g), p2

(g), p3
(g) represent two 

different marker sets (Fig. 6). Then, the task to find a 
coordinate transformation between the two coordinate 
systems is identical to finding the transformation that 
maps the local marker set onto the global marker set. 
In general, the orthogonal transformation equation that 
maps corresponding local points onto global points, 
can be expressed as follows: 

pn
(g)  = MB . MA . pn

(l)  + t  (n = 1 - 3) 
where MA and MB are 3 x 3 matrices representing 
proper rotations. The matrix MA corresponds to a 
rotation that makes the triangle formed by the local 
marker set coplanar with the plane formed by the 
global marker set. The matrix MB corresponds to an 
"in-plane" rotation, which aligns two corresponding 
triangle sides with respect to each other. After 
performing these two rotations on the local triangle, the 
vector t corrects for the residual translational difference 
between the two point sets. 
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Expressions for the matrices MA and MB have been 
derived previously by Weaver et al. [3]. They obtained 
the following expression for the matrix MA: 
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where nA = n(l) ×  n(g) with n(l) = (p3
(l) – p1

(l)) ×  (p2
(l) – 

p1
(l)) and n(g) = (p3

(g) – p1
(g)) ×  (p2

(g) – p1
(g)), a = cos(α) 

= n(l) . n(g), and oA = nA /sin(α). 
Multiplication of the local position vectors p1

(l), p2
(l), 

and p3
(l) by matrix the MA yields new vectors p’1

(l), 
p’2

(l), and p’3
(l) which form a triangle that is now 

coplanar but not collinear with the global marker 
triangle. The matrix MB can be expressed as 
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where nB = (u(l) × u(g)) with u(l) = (p’2
(l)- p’1

(l)) and u(g) 
= (p2

(g) – p1
(g)), b = cos(β) = u(l) . u(g), and oB = nB 

/sin(β). 
Multiplication of the local position vectors first by 

matrix MA and then by matrix MB yields new vectors 
p’’1

(l), p’’2
(l), and p’’3

(l). The triangle described by these 
vectors is now coplanar and collinear with the triangle 
formed by the global positioning vectors. Finally we 
translate p’’1

(l) into p1
(g) by adding the vector t = p1

(g) - 
p’’1

(l). If no systematic or random errors are involved, 
the triangles will now exactly superimpose. 

The two rotations involved in the transformation 
can be combined into one rotation by calculating the 
matrix MAB = MB . MA. We then have 

v(g) = MAB . v(l) + t 
for transformations of any vector v from the local to 
the global coordinate system. Since the rotation matrix 
can be inverted, one can also transform in the opposite 
direction: 

v(l) = (MAB)-1 . (v(g) – t) 
This inverse transformation can be used to transform 
any vector from the global coordinate system into a 
local coordinate system. 
 
2.3.1 Least Squares Transformation. The procedure 
of least squares (LS) minimization was used as an 
alternative method to establish a coordinate 
transformation between local and global reference 
systems. The LS method minimizes the sum of the 
squared residuals after transformation of all available 
markers resulting in the most likely estimate of the 
coefficients of the transformation matrix. 

In the last section, we saw that we could express the 
relationship between the local and global position 
vectors of the two marker sets by  

where A = [v(l)T 1], and the superscript T means 
transpose.  If at least three marker coordinate vectors 
are known in the local and global reference system, 
respectively, one can find the LS solution for XT as 
follows. Let Q(l)R(l) be the QR-factorization of A, thus 
Q(l) is an orthogonal matrix and R(l) is upper triangular.  
It follows that 
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which can be solved by back substitution to yield the 
desired transform matrix XT since R(l)T is lower 
triangular.  The main problem with this solution is that 
the matrix R contains scalings, and the matrix Q can 
contain reflections as well as rotations.  Both can cause 
alignment errors.  In practice the scaling error is 
usually the larger one. 
 
 
3. Results and Discussion 
 

Figure 7a shows the alignment registration errors of 
the optical alignment system in the initial 12 
independent test runs. The residual errors resulting 
from the orthogonal transform was one to two orders of 
magnitude smaller than the LS transform in every test 
run. The orthogonal transformation yielded an 
alignment error of 2.8 ± 2.0 mm (mean ± standard 
deviation under estimation), ranging from 0.5 to 5.5 
mm. For the LS transformation the alignment error was 
61 ± 33 mm, ranging from 8.9 to 130 mm. The latter 
errors are certainly unacceptable for the purpose of 
radiosurgery alignment verification.  
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Fig. 7. Alignment error for the two different transforms 
used to calculate the offset between the phantom base 
marker and the beam axis. (a) Initial 12 independent 
experimental runs for the same target position. (b) 
Additional 8 runs after improving the camera position 
and calibration technique; open symbols - orthogonal 
transform, closed symbols - least squares transform, 
different shapes correspond to different phantom 
marker positions. 

 
There are two main reasons for the large difference 

between the two transforms.  First, the orthogonal 
transforms have a norm of one, which means that the 
accuracy of the camera system itself will be preserved 
and the errors introduced by the cameras will not 
appreciably magnified. The second advantage of the 
orthogonal transform is that it preserves the distances 
measured. The LS transform we used here involved a 
non-orthogonal matrix, so it is prone to error 
magnification and does not preserve the distances in 
the transformation. Since the Vicon camera system has 
a potential accuracy of 0.1mm and an observed 
accuracy of about 0.5 mm, it is essential for 
stereotactic applications to preserve this accuracy. 

During our initial tests, we discovered that the 
quality of the camera calibration as well as optimal 
camera positioning was key to successful use of the 
system. While the cameras system, including three 
cameras, has a theoretical accuracy of 0.1mm, in 
practice, we initially experienced an accuracy of 0.3-
1.0 mm as estimated by comparing camera-measured 
and known distances of markers in our marker systems. 

After improving camera position and calibration 
technique, additional eight data runs were taken, the 
results of which are shown in Figure 7b.  The 
orthogonal transform now showed 1-3 millimeter 
accuracy, while the reproducibility of independent runs 
for the same target position was now in the 
submillimeter range. The orthogonal transform 
continued to outperform the LS transform by one to 
two orders of magnitude both in accuracy and 
reproducibility. 

 
 

4. Conclusions 
 

This work demonstrates that an orthogonal 
transform has definitive advantages over a non-
orthogonal least squares transform. Further 
possibilities for improvement need to be considered to 
consistently achieve submillimeter accuracy. These 
include possibly increasing the number of cameras, as 
well as optimizing the geometric configuration of the 
reflective markers. We will continue to work in this 
direction. 
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