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I. INTRODUCTION

CLINICAL application of protons was first suggested over
60 years ago [9]. Proton radiation can deliver high doses

of radiation to tumors or other targets close to critical struc-
tures, and thus is vitally important for modern 3D conformal
radiation therapy. Currently proton dose calculations rely on
x-ray computed tomography (CT), which limits their accuracy
due to the physical interaction differences of protons and x-
rays. To gain the maximum benefit from proton therapy, proton
computed tomography (pCT) offers the opportunity to more
accurately plan proton doses and to verify the correct proton
beam delivery in the treatment position. This is accomplished
by choosing the proton energy sufficiently high to penetrate the
patient and by reconstructing density values based on energy
loss measurements [1]. As an additional advantage, pCT
achieves similar density resolution with lower dose than x-ray
CT, because each proton is tracked individually. Despite these
advantages, a fully operational pCT system does currently not
exist, in part, related to the large amount of proton and object
data that need to be acquired and reconstructed, respectively.
Preliminary work in proton CT over the last several years
has centered on the most likely path formalism [8], image
reconstruction [6], [3], [4], [5], and basic design of a sys-
tem [7]. A vital step in the reconstruction of a pCT image
is the calculation of the integral relative electron densities,
which must be known for each of the proton histories. The
number of histories can run into the hundreds of millions.
Efficient calculation is important if the overall clinical goal of
a pCT reconstruction in 5 minutes is to be achieved. Figure
1 shows the complete path of the proton histories through the
image reconstruction process. This paper will focus on the
hardware acceleration of the integral relative electron density
calculation. The integral relative electron density requires the
incoming and outgoing energies of the protons being tracked,
which is given by the detectors. These values are not used
in the iterative reconstruction process for reconstructing the
image. Rather, they are calculated before the reconstruction
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Fig. 1. The path of the data as it passes through the image reconstruction
process.

iterations and stored with their corresponding proton history
data.

II. BETHE-BLOCH EQUATION

As the proton paths traverse an object, they deviate from a
straight line due to the effects of multiple Coulomb scattering
(MCS) and must be tracked using a formalism that models
MCS [8]. A sparse iterative solver, like the algebraic recon-
struction technique (ART), is used to reconstruct the object
using these non-linear paths [6]. An example of a reconstructed
phantom can be found in Figure 2. This reconstruction was
obtained from [6]. In order to perform the reconstruction,
the path integral of relative electron density along the most
likely proton path must be calculated. This is accomplished
by calculating the integral given by∫ Ein
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Fig. 2. Phantom reconstructed using a variation of the algebraic reconstruc-
tion technique.

The function F (E, Iwater) can explicitly be expressed as
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where mec

2 is the electron rest energy (511.011KeV ), and
β(u) is the proton velocity at depth u relative to the speed of
light c. The constant K is defined as

K = 4πr2emec
2 ≈ 0.170
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where re is the classical electron radius (2.818 × 10−13cm).
The relativistic relationship between β and E is given by
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where Ep is the proton rest energy (938.272MeV ).
Since the depth dependence of I is usually not exactly

known (because the object composition is not a priori known),
integration of this equation is only possible by assuming a
reasonable approximation of I . For human tissues encountered
in proton CT, the variation of I is not very large, and the
function F has only a weak logarithmic dependence on I .
Therefore, it is reasonable to use the value of the mean
excitation potential of water, which is 75.0 eV. Also note
that the formula given here is only an approximation of
the original Bethe Bloch equation, which contains a term
Wmax, the maximum energy transfer in a single collision.
The approximation here is valid if the mass of the incident
particle is large relative to the electron mass, which is the
case for protons (mp/me ≈ 1800).

The integrand was simplified for implementation on either
a multi-core processor or a GPGPU by showing
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The integrals were then evaluated using 2 point Gaussian
quadrature for every 0.125mm of depth traversed.

III. GPGPU PROGRAMMING AND RESULTS

A major impediment to efficient GPGPU code is the ten-
dency of programmers to write thunks, which are computations
that return results, see [2]. On a GPGPU a thunk causes the
GPGPU to pass back intermediate results to the host, which
then must send them back for further computation, causing
two bus transfers per thunk, which are often in a loop and
thus greatly magnify the negative effects of the bus transfers.
In particular thunking causes the GPGPU computation to be
limited by the bus transfer, and thus the speedup becomes
limited due to Amdahl’s Law:

speedup =
1

f + 1−f
2∗cores

.

Note that speedup of the parallel portion is twice the number
of cores because GPGPUs do two floating point operations,
multiply and add, at a time. Typical thunking code on a 240
stream processors (such as the GTX280 used) spends about 2%
(f = 0.02) or more of its time in memory transfers. Thunking
code is thus limited to a speedup of less than 50, which corre-
sponds to an efficiency of around 10%. To prevent thunking the
input and output energies are copied to the GPU as floats and
nothing is returned until the results are copied back, again as
floats. Intermediate results are stored in dynamically allocated
arrays on the GPGPU, which are explicitly created before
the calculation begins, and then freed at the conclusion of
the computation. This makes the computation very fast, but
memory limited, so that approximately 24 million histories
can be handled per 1 GB of GPGPU RAM.

Shown in Table I are CPU and GPU times for the integral
relative electron density equation. Times are in milliseconds
and are averages of times for a given number of elements
over 1000 iterations. It also shows that before one million
proton energies the GPU does not have much, if any, advantage
over the CPU. The reason for this is the GPU initialization
time. After six million elements the GPU ran out of memory
and returned no values. With batches of five million proton
energies, 100 million proton energies could be calculated in
77.12ms while on a CPU, 100 million proton energies would
take 38.39 seconds to calculate.

The CPU used in the comparison was an Intel Core 2
Quad Q6600 2.4 GHz on an ASUS P5N32-E SLI LGA
775 motherboard with 4 GB of Corsair Dominator RAM at
800 MHz. The GPU used was an NVIDIA GTX280, which
contains 240 processing cores running at 1296 Mhz and 1



Number of Elements CPU GPU Speedup
1× 102 0.034 0.100 0.3400
1× 103 0.329 0.102 3.2255
1× 104 3.803 0.105 36.219
1× 105 38.131 0.185 206.11
1× 106 384.776 0.860 447.41
2× 106 767.827 1.423 539.58
3× 106 1205.037 2.564 469.98
4× 106 1527.700 3.057 499.74
5× 106 1919.564 3.856 497.81
6× 106 2293.294 4.550 504.02
7× 106 3666.551 N/A N/A

TABLE I
CALCULATION TIME OF INTEGRAL RELATIVE ELECTRON DENSITY

CALCULATION IN MILLISECONDS.

Fig. 3. Graphicss processing unit speedup of integral relative electron density
calculation.

GB of RAM. The GPGPU was programmed using a subset
of C called CUDA (Compute Unified Device Architecture).
Because GPUs are accessed via a PCI Express 2.0 bus, they
can handle up to 8 GB/s in and 8 GB/s out (500 MB/s * 16
lanes). In the case of pCT, the PCI Express bus is a bottleneck
because memory bandwidths on the motherboard as well as the
GPU are much faster. Because of this limitation, algorithms
need to be designed to maximize the number of calculations
per data transfer.

CPU and GPU times for the integral relative electron density
equation were averaged over 1000 iterations; the results are
shown in Figure 3. As already described, before ten thousand
proton histories, the GPU does not have any advantage over
the CPU. This is because of the GPU initialization time
and the reduced efficiency of transferring small blocks. After
one million iterations the speedup reached a maximum of
around 500 times over the CPU; however, after six million
elements the GPU ran out of memory and returned no values.
Newer GPGPUs have up to 4 GB of RAM, so we expect
they can handle up to 25 million proton energy calculations
before running out of memory, thus achieving an even larger
speedup. The next generation of Nvidia GPGPUs, code named
Fermi, will have twice as many CUDA cores, and is capable
of handling 256 double precision floating point calculations
per clock cycle, which is very important for reducing errors.

The next generation also has cache and ECC memory (error
correction), which will improve speed and reliability. Even at
the current optimum of batches of five million proton histories,
100 million relative electron density integrals can be calculated
in under a second, which is a significant improvement over the
8+ minutes a cpu would take.

IV. CONCLUSIONS

The significant speedup of the GPGPU calculations make
the crucial step of calculating the integral relative electron
density feasible in a clinical setting. These numbers also
suggest there could be a significant improvement of the
iterative component of the reconstruction as well. Furthermore,
this work has suggested the possibility of binning protons by
their integral relative electron densities, which would lead to a
drastic reduction in memory transfers to and from the GPGPU,
leading to significant improvements in reconstruction time.
The energy binning technique is currently being researched
and will be presented at a future date.
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