
Software-Based Algorithm for Modeling and Correction of Gradient Nonlinearity
Distortions in Magnetic Resonance Imaging

Tom S. Lee, Keith E. Schubert
Department of Computer Science and Engineering

California State University, San Bernardino
San Bernardino, CA, USA

Email: tlee@permedics.com, schubert@csci.csusb.edu

Reinhard W. Schulte
Department of Radiation Medicine

Loma Linda University Medical Center
Loma Linda, CA, USA

Email: rschulte@dominion.llumc.edu

Abstract– Functional radiosurgery is a noninvasive stereotac-
tic technique that requires magnetic resonance image (MRI)
sets with high spatial resolution. Gradient nonlinearities in-
troduce geometric distortions that compromise the accuracy
of MRI-based stereotactic localization. We present a gradient
nonlinearity correction method based on a cubic phantom
MRI data set. The approach utilizes a sum of spherical
harmonics to model the geometrically warped planes of the
cube and applies the model to correct arbitrary image sets
acquired with the same scanner. In this paper, we give a
detailed description of the Matlab distortion correction pro-
gram, report on its performance in stereotactic localization
of phantom markers, and discuss the possibility to accelerate
the code using General-Purpose Computing on Graphics
Processing Units (GPGPU) techniques.

Keywords– Magnetic Resonance Imaging; Distortion Cor-
rection Algorithm; Matlab; Functional Radiosurgery.

I. INTRODUCTION

We describe the implementation of a software-based
method to correct gradient nonlinearity distortion in Mag-
netic Resonance Imaging (MRI), to provide submillimeter
accuracy in localization of anatomical regions for functional
radiosurgery. Although current methods are successful in
handling gradient nonlinearity distortion [1], [2], [3], none
of them have been proven to provide the high level of
geometric accuracy required to confidently perform high-
precision functional radiosurgery on brain targets. We have
developed a software package for a phantom-based distortion
method originally suggested by Langlois, et al. [4]. This
report describes the structure and implementation of the
code, as well as first results of its performance in stereotactic
localization.

(a) Cube phantom.

(b) Lucy R© phantom.

Figure 1. Phantoms in Siemens Sonata MRI scanner.

II. MATERIALS AND METHODS

A. Phantoms and Stereotactic Equipment

MRI data sets of two different phantoms were acquired in
this work: the first phantom was used for characterizing the
scanner distortion, and the second for testing and verification
of the distortion correction method. The phantom utilized
for distortion characterization is a Plexiglas cube filled with
oil, Figure 1(a). The images obtained represent the signal

response of the oil, corresponding to the interior dimensions
of the phantom (159.50mm × 159.70mm × 158.11mm).
The second phantom, the Lucy R© quality assurance phantom
(Standard Imaging, Inc.), was placed inside a Leksell Coor-
dinate Frame Model G and MR Indicator (Elekta, Sweden)
to perform localization of 20 MRI-compatible target mark-
ers, Figure 1(b). A certified metrology laboratory inspected
the marker locations. All MRI images were acquired on a
1.5 T whole body scanner (Sonata Maestro, Siemens) with
a standard head coil.

The cube phantom was centered on the isocenter of the
scanner with respect to its lateral and longitudinal position
to within 1mm. Due to space limitations within the head
coil, the cube center had to be placed approximately 10 mm
above the scanner isocenter. The Lucy R© phantom was placed
at approximately the center of the head coil and at three
discrete longitudinal positions: at isocenter, 50mm superior
to isocenter, and 50mm inferior to isocenter in order to test
the accuracy of distortion-corrected localization both in the
center and toward the periphery of the magnetic gradient
field.

The automated 3D calibration of the shim coils was
performed to correct for B0 field inhomogeneities prior to
scanning. Two sets of sequences were performed: one with
and one without internal correction for gradient nonlinearity,
to compare the effectiveness of the internal scanner correc-
tion to that of the software-based MRI gradient nonlinearity
distortion correction. Scan parameters for the cube phan-
tom were as follows: 512 × 512 matrix, 0.391mm pixel
size, 200mm field of view, 104 slices of 2.0mm thickness.
Axial, coronal, and sagittal sequences were acquired. Scan
parameters for the Lucy R© phantom were as follows: 512
× 512 matrix, 0.586mm pixel size, 300mm field of view,
112 slices of 2.0mm thickness. Axial and coronal sequences
were acquired. Figure 2 shows representative axial and
coronal images of the Lucy R© phantom, while Figure 3 shows
representative axial, coronal, and sagittal images of the cube
phantom.

B. Computational Algorithm

The gradient nonlinearity distortion correction was written
in Matlab version 7.0.4. Matlab was chosen as the program-
ming environment because of its strong support for DICOM
data types, as well as robust image processing functions and
data visualization tools.

B.1. Data Quality Assurance. Prior to calculating the
distortion model, the data underwent a series of image
processing and quality checks. These checks had three goals:
(1) eliminate as much image noise as possible, (2) remove
extraneous and unwanted features in each MR image, and
(3) ensure the data is accurate for future calculations.

(a) Axial scan.

(b) Coronal scan.

Figure 2. Example scans of Lucy R© phantom, showing
fiducial points (edges) used for stereotactic localization
of MRI markers (center).

B.2. Selection of Useful Slices. The distortion correction
was only based on slices that contained a full view of the
phantom. To select useful slices such as those in Figure 3,
the algorithm analyzed the distribution of pixel intensities of
a slice near the center of the slab, which always contained a
full view of the phantom. Using this reference slice, the
algorithm compared the pixel intensities of each slice to
determine the range of the study that contained the phantom.

(a) Axial.

(b) Coronal.

(c) Sagittal.

Figure 3. Examples of useful slices of oil-filled phantom,
with distortion clearly visible in the outer regions.

This effectively eliminated slices that did not contain the
phantom, or contained a partial view of the phantom. The
indexes of the first and last useful slices were reported, and
slices outside this range were excluded from analysis.

B.3. Edge Detection. Edge detection was performed to
provide the representation of the distorted physical edges
of the phantom for the gradient nonlinearity distortion
correction. The Canny edge detector provided by Matlab
was chosen because it was least sensitive to noise, and
the edge images produced were sharper and more accurate,
thus delivering the most consistent results from study to
study when compared to other edge detection methods
implemented in Matlab. Matlab’s Canny edge detector auto-
matically calculates a threshold for edge detection; however,

Figure 4. Representative examples of edge images.

this threshold considers every single intensity shift within
the image, and in doing so, finds fictitious edges within
the phantom. We implemented a threshold algorithm that
converged on the optimal threshold value in an iterative
series of edge detection trials. The threshold algorithm used
the reference slice chosen in the previous step, and automat-
ically configured its settings (threshold increment and stop
condition) based on the strength of the image gradient across
the edges. Starting with Matlab’s automatically calculated
threshold, the threshold algorithm incremented the threshold
in small successive steps (0.5 - 0.75). As the threshold was
increased, the number of fictitious edges decreased, leaving
only the strong image features behind. The optimal threshold
was assumed when the number of edge points did not change
by more than 1% over several successive iterations (5-10,
depending on the stop condition). This optimized threshold
was then used with Matlab’s Canny edge detector on the
entire set of useful slices. By utilizing Canny edge detection
on several MRI image studies (≈ 300-400 images), we found
that Canny’s edge detection performance was far superior
to the other edge detection methods included with Matlab:
Sobel, Prewitt, Roberts, Laplacian of Gaussian, and zero-
cross. Canny preserved the physical edges of the phantom
in the edge images far more accurately than other methods.
Although Canny created high-quality edge images ideal for
our work (see Figure 4), the remaining unwanted image
features needed to be dealt with separately, as described
below.

B.4. Removing Extraneous Features. The edge detection
threshold did not remove all extraneous or noisy features
from the edge images. The cube phantom featured a drain
plug, which corrupted the edge images. A specially-designed
drain plug removal algorithm erased the plug and drew
a straight-line approximation of the affected regions, see
section B.5. In some slides oil leaks corrupted one quad-
rant of the image, so an edge-verification algorithm was
implemented, see section B.6. Edge images were analyzed
for air bubbles within the oil adhering to the edges of the
phantom creating rounded defects in the detected edges. A

bubble removal algorithm erased these bubbles and drew
a straight-line approximation to correct the affected region,
see section B.7. Remaining minute holes in the edges were
corrected with a hole repair algorithm that analyzed the
four edges in all edge images for discontinuities, filling any
gaps, see section B.8. With these quality checks and repair
algorithms, the data were ensured to be free of practically all
defects, providing an accurate representation of the distorted
phantom surfaces.

B.5. Drain Plug Removal. One image feature in the scan
of our specific phantom that was not removed during edge
detection was the phantom’s drain plug–a screw located
underneath the center of the posterior face. The threads of
the screw were present in edge images acquired from axial
and sagittal sequences. Tests showed that failure to remove
the image of the plug would result in improper calculations
in all subsequent data processing steps. Therefore, we im-
plemented a plug removal algorithm.

In the first step of the drain-plug removal process, edge
images were oriented such that the plug appeared on the
bottom face of the image. Removal of the plug was then
performed by placing a window that has a width of 25% of
the phantom width about the center column of each image.
The plug removal algorithm removed all image data within
this window, leaving behind a hole in the top and bottom
phantom edges. Both holes were located by the algorithm
and filled by a straight line. Since the deleted areas were
located in the center of these faces, the distortion was small;
at worst, the corrected portion of the edges was shifted
by one pixel to either side of the edge. It was found that
in all phantom scans, the plug removal algorithm properly
connected the edge with a straight line, without introducing
any gaps.

B.6. Edge Verification and Repair. The next step involved
the detection of incomplete edge images, i.e., those with
missing edge data. For example, in Figure 5, the phantom
had leaked oil along the left posterior surface. The edge
detection resulted in a large defect in the bottom right corner
of several edge images.

In the edge-verification step, all edge images in an im-
age sequence were checked for completeness. First, the
location and size of the phantom was calculated by our
edge-verification algorithm. Based on this information, the
phantom edge image was split into four equal quadrants,
and the total number of horizontal and vertical edge points
in each quadrant was counted. In a complete edge image,
the phantom will contain nearly the same number of edge
points in each quadrant. On the other hand, in an incomplete
edge image, the number of edge points in one quadrant
will be different. These images, and the quadrant that
appears anomalous, were flagged. Based on user preferences,
problematic images could either be discarded from further

(a) Slice with oil leakage in left posterior corner.

(b) Detected edges of slice with oil leakage.

Figure 5. Phantoms in Siemens Sonata MRI scanner.

consideration, or the images could be repaired. Image repair
was accomplished by copying and grafting an intact quadrant
from the opposite side in place of the flagged quadrant. It
was found that the resulting image was very similar to that of
a “natural” edge image, and was sufficient for use in further
calculations. This repair worked successfully for all slices
affected by the leaking oil, shown in Figure 5.

B.7. Detection and Removal of Air Bubbles. Due to the
use of oil as a medium for the phantom, it was virtually
impossible to remove all air bubbles. Small air bubbles
that float within the confines of the phantom were not
problematic, but those attached to the phantom surfaces
distorted the phantom edges. Since the signal response seen
in the MR images was that of the oil, air bubbles along
the edges appeared as concave defects of varying size. Air
bubbles attached to the phantom corners gave the false
impression of a rounded corner. The study performed on
the leaking phantom mentioned above resulted in a large air
bubble in the right anterior corner of the phantom, as shown
in Figure 6(a).

Air bubbles were detected in several steps. First, the
locations of the four corners in each image were determined
using our implementation of a corner detection algorithm.
The algorithm defined a corner as the point shared by a
horizontal and vertical edge (i.e., where those two edges

(a) Before correction. (b) After correction.

Figure 6. Demonstration of bubble correction on large
corner bubble.

met). The corners were located by scanning up and down
the vertical edges of the phantom (depending on the corner
to be located) until the start of the adjacent horizontal edge
was found. When the horizontal edge was found, and there
were no additional edge points found along the vertical edge,
the true corner was considered located. This extra step was
executed to avoid the algorithm falsely identifying an air
bubble along that edge, as air bubbles may resemble corners.
By scanning beyond a possible corner location, the algorithm
disregard air bubbles along an edge as possible corners, and
only reported the location of the true corner.

The corner data was then used by our edge tracking
algorithm, which was implemented to detect air bubbles .
Starting from one corner, it moved along the edge, pixel by
pixel, recording the location of each edge point. Horizontal
edges were scanned from left to right, and vertical edges
were scanned from top to bottom. The edge tracker stopped
once it reached the opposite corner. Next, the edge slope was
calculated for edge intervals of 5 points. Along a “normal”
edge, the edge slope did not exceed one pixel over this range.
On the other hand, an air bubble caused a sharp positive
(>1 pixel) rise in slope, followed by a similar drop on the
opposite side of the bubble. The range between the rise and
drop of the slope was considered as the limits of the bubble.

If the bubble was located on the edge rather than in a
corner, it was erased, creating a hole in the edge, and the
image was processed by our hole repair algorithm, described
in the next section. On the other hand, air bubbles located
in a corner were treated by replacing the entire corner with
a copy of the opposite bottom corner, to avoid inserting
another bubble in place of the original. The likelihood of
having air bubbles in both bottom corners of one image
was considered as very low. The bottom corners were tested
for air bubbles first, and were corrected by the mirrored
opposite bottom corner, if necessary. Next, the top corners
were tested for bubbles and replaced by the corresponding
bottom corner, if air bubbles were detected.

Figure 6 demonstrates the results of removing the large
air bubble present in the study with the leaking phantom.

B.8. Hole Repair. Holes could occur in an edge either as
a result of noise, or some previous action taken by another
correction algorithm (i.e., bubble repair). A hole is simply

a discontinuity in an edge. Holes that occurred as a result
of noise were quite small, usually spanning only one or two
pixels. On the other hand, holes that resulted from previous
correction procedures could be many pixels wide.

We implemented a hole-repair algorithm, which drew a
straight-line approximation of the edge to fill the hole. First,
holes were located by using our edge tracking algorithm.
The error condition of the edge tracker occurred when a
hole was reached. Here, the edge tracker returned the list of
edge points, up to the start location of the hole, and quit.

The hole-repair algorithm then located the end location
of the hole by scanning beyond the hole start location in
the direction of the edge until the opposite side of the hole
was found. Next, the algorithm calculated the horizontal and
vertical distance between the edge points bordering the hole.
A straight line that connects the border points of the hole
was then calculated and used to fill the hole defect.

C. Plane Calculation

C.1. Midplanes. The correction method was based on a set
of calculated “ideal” planes. These planes represented the
appearance of the phantom faces without distortion. Each
pair of opposite edge points in the edge images was used to
calculate a midpoint. Midpoint calculation along an entire
edge produced a midline, see Figure 7. Edge lengths could
vary depending on the characteristics of the distortion in
each image, so observing opposite edges of slightly different
lengths was acceptable; the algorithm removed unpaired
points to obtain edges of equal length. Two midlines were
calculated for each edge image: one horizontal, one vertical.
Due to the symmetry of gradient nonlinearity distortion,
these midlines were nearly straight, providing a suitable
representation of the orientation of the undistorted edges in
each image, disregarding the positioning of the edges.

Studies typically contained around 30,000 midpoints for
each of the three pairs of phantom surfaces. The midplane,
representing the ideal shape, size, and orientation of the
particular surface of the phantom, was found by calculating
the plane that resulted in the best fit of the midplane data
set in the least squares sense. The Hessian normal form of
a plane is: N̄T p = d, where N̄ = [Nx Ny Nz]T is the
normal vector to the plane with ‖N̄‖ = 1, d is distance of the
plane from the origin, and p is the set of vectors satisfying
the plane equation. For example, fitting a plane to the top
and bottom edges of the phantom in an axial study results
in a plane oriented in xz. The component Ny is close to 1
in this case, so one may divide both sides of the equation
by it to produce a component normalized form:

[
Nx

Ny
1 Nz

Ny

]



x
y
z


 =

d

Ny

Figure 7. Calculated midlines (center horizontal and
vertical straight lines) in a typical edge image.

[−Cx 1 −Cz

]



x
y
z


 = NT p = Cc (1)

The introduction of minus signs on the coefficients, Cx

and Cz , allows the equation to be easily written as y =
Cxx + Czz + Cc. With this form, one needs to store only
three components rather than four. Based on the determined
orientation, the algorithm organized the data into a large
n× 3 matrix and a large n-element array, with n being the
number of midpoints. The n × 3 matrix with row vectors
of the form [x z 1] was the design matrix, denoted by
A, and the n-element array of y values was the observation
vector, denoted by b. The resulting linear least squares prob-
lem was of the form Aχ = b where χ = [Cx Cz Cc]T

is the vector of the plane coefficients. Solving this equation
for χ yielded the midplane coefficients.

C.2. Ideal Planes. The midplanes described the correct
orientation of the ideal phantom planes, but needed to be
shifted along the corresponding normal vector by one-half
the physical dimensions of the phantom to their correct
location in 3-dimensional space. The three phantom di-
mensions were derived from dimensional inspection and
stored prior to algorithm execution. Shifting the midplane
only involved calculating a new offset term as the other
coefficients must remain the same to maintain the midplane’s
original orientation. To calculate the offset, consider the
Hessian normal form of a plane in terms of the coefficients
defined in Eq. 1 and a point, p0 = [0 Cc 0]T that lies
on the midplane in our example. It is possible to determine
the position of the corresponding point ps on the shifted
plane as follows:

p2 =




x2

y2

z2


 = p± δN̄

=




±−Cxδ√
C2

x+1+C2
z

Cc ± δ√
C2

x+1+C2
z

±−Czδ√
C2

x+1+C2
z




(2)

where δ is one half the phantom dimension, and the
“±” determines positive or negative shift needed to specify
both ideal planes resulting from the midplane. Note that
we have to use the unit vector N̄ = N

‖N‖ and not N in
order to maintain the correct distance. Inputting ps into the
component normalized plane expression, Eq. 1, makes it
possible to solve for the offset term for the shifted planes.

Cs = NT ps

= NT (p0 ± δN̄)
= NT p0 ± δNT N̄

= Cc ± δNT N

‖N‖
= Cc ± δ‖N‖ (3)

Therefore, the offset term to obtain the ideal planes from
the midplane is equal to δ

√
C2

x + 1 + C2
z . The same method

was followed for the other planes. The result was a set of
six ideal planes, one for each of the six square faces of the
phantom. These ideal planes represented the faces of the
phantom in the absence of gradient nonlinearity distortion.

D. Distortion Modeling

The final stage involved performing the actual gradient
nonlinearity distortion correction. In MRI, the spatial dis-
tribution of nuclear spin density is encoded in frequency
(k) space using three orthogonal gradient fields. A Fourier
transform of the radiofrequency signal obtained by exciting
the nuclear spins in the presence of the gradient fields yields
a reconstruction of spin density in the spatial domain. Be-
cause the spatial dependence of the gradient components is
nonlinear, the assumption of linearity during reconstruction
results in distorted images.

The distortion model, describing the spatial dependence
of the three gradient fields, was based on a finite sum of
sum of spherical harmonics (when expressed in spherical
coordinates) [2], or a sum of homogeneous polynomials
(when expressed in Cartesian coordinates) [4]. Using the
ideal planes obtained previously, theoretical “undistorted”
data points were calculated using the ideal plane equations
and acquired data points. The undistorted data points were
then used to calculate the coefficients of the distortion

model. Three sets of coefficients were necessary, one for
each dimension. Once the model was known it was applica-
ble to all studies performed on the particular scanner.

Let xi, yi, and zi be the distorted coordinates of a point i
measured by an MRI scanner. Further, let x̄i, ȳi, and z̄i

be the undistorted coordinates that correspond to xi, yi,
and zi , that is, (x̄i, ȳi, z̄i) is the point on the ideal plane
that produced the point (xi, yi, zi) in the image. Including
spherical harmonics up to second order, the distortion model,
expressed in Cartesian coordinates, becomes [4]:

αi = ᾱi

(
1 + Kα0

(
x̄i

2 + ȳi
2
)

+ Kα1 z̄i
2+

Kα2 z̄i
2
(
x̄i

2 + ȳi
2
)

+ Kα3

(
x̄i

2 + ȳi
2
)2

+Kα4 z̄i
4
)

(4)

where α ∈ {x, y, z}. Note that all the terms in these equa-
tions are known except the Kxj

, Kyj
, and Kzj

terms–the
desired distortion parameters. Solving for the Kxj requires
using the ideal planes whose normal is in the x direction,
i.e., the yz planes, and similarly for the Kyj and Kzj terms.
Since the original example was for the top and bottom edges
of the images in an axial study results, i.e., a plane oriented
in xz, the solution for this example will follow that case.
Note that ȳi can be calculated using the ideal plane. Since
with proper orientation of the cube the distortion for this
face is essentially all in the y direction, the ideal x and z
coordinates (x̄i and z̄i) are assumed to be the same as the
distorted (xi and zi).

Cc ± δ‖N‖ = NT pideal

=
[−Cx 1 −Cz

]



xi

ȳi

zi




ȳi = Cc ± δ‖N‖+ Cxxi + Czzi (5)

Knowing the ideal point (x̄i, ȳi, z̄i) and the distorted
points (xi, yi, zi), substitute into the spherical harmonics
expansion, noting the linearity in the K terms. Using all
n points of both planes oriented in xz yields:

TKy = ∆Y (6)

where,

Ky =




Ky0

· · ·
Ky4




∆Y =




(y0 − ȳ0)
...

(y2n−1 − ȳ2n−1)




T =




T0,0 · · · T0,4

...
. . .

...
T2n−1,0 · · · T2n−1,4




Ti,0 = ȳi

(
x̄i

2 + ȳi
2
)

Ti,1 = ȳi

(
z̄i

2
)

Ti,2 = ȳi

(
x̄i

2 + ȳi
2
)
z̄i

2

Ti,3 = ȳi

(
x̄i

2 + ȳi
2
)2

Ti,4 = ȳi

(
z̄i

4
)

Solving for Ky was accomplished using linear least squares
by QR factorization (Matlab “\” operator). This process was
repeated for the other distortion parameters Kx and Kz .
Once the distortion parameters were obtained, they were
applied to MR images of the performance study, described
below.

III. RESULTS AND DISCUSSION

A. Performance Study

The performance of the distortion correction code was
tested by localizing the 20 markers in the Lucy R© phantom,
which had known stereotactic coordinates derived from
precision dimensional inspection. The corrected locations
of the markers were compared to the measured physical
locations. This step required performing a stereotactic trans-
formation, to convert the coordinates in the images to a
stereotactic coordinate system created by the fiducial points
on the attached stereotactic frame. Target localization was
performed in two ways: The first method obtained the
coordinates of the MRI fiducial points and marker points
(Figure 2) from the distorted images and their corrected
positions were calculated by iteratively solving Eq. 4 using
the minerr function of Mathcad version 13. The corrected
fiducial marker coordinates were then processed by a custom
stereotactic localization program written in Mathcad and
the parameters of a 3D stereotactic transformation (rotation
matrix and translation vector) were obtained according to the
algorithm described in [6]. The second method processed
the entire MR image set in the following way. Starting
with an empty voxel grid of identical size to the original
study, the location of each voxel in the distorted space was
calculated according to Eq. 4 and the mean MRI signal
intensity from nearest voxel neighbors to the distorted voxel
location was calculated and assigned to the undistorted voxel
location. This way, the entire undistorted image space was
rebuilt. The distortion-corrected MRI set was then read into
Odyssey R© (PerMedics, Inc.), a commercially-available radi-
ation treatment planning system, and the built-in stereotactic
localization feature of Odyssey R© was used to determine the
stereotactic marker coordinates. Both methods gave similar
results within voxel accuracy.

The localization error, defined as the x, y, and z com-
ponents of the vector between the MRI-determined and the
metrology-lab measured marker locations was determined

for three scenarios: (1) error associated with our phantom-
based MRI gradient nonlinearity distortion correction, (2)
error when no correction was performed, and (3) error
associated with a built-in internal scanner correction method
for gradient field non-linearities. The latter feature was
turned off for the first two scenarios.

B. Numerical Results

Figure 8 demonstrates the mean and standard deviation
of the localization error of the 20 MRI markers. Localizing
the markers without any distortion correction resulted in
stereotactic localization errors typically between 1.0mm and
2.0mm. This accuracy decreased greatly with increasing Z-
offset from gradient isocenter, with errors reaching nearly
3.0mm. At gradient isocenter, the internal correction yielded
accuracies better than 1.0mm, but was insufficient in pro-
viding this quality at ±50mm Z offset. In contrast, the
phantom-based MRI gradient nonlinearity distortion correc-
tion provided consistent submillimeter accuracy in all test
cases, even for ±50mm Z offset. Considering the worst case,
the correction method yielded accuracies of approximately
0.6 ± 0.3mm. In the best case, the phantom-based MRI gra-
dient nonlinearity distortion correction reduced localization
error to nearly 0.0 ± 0.3mm. Considering each scan image,
these values correlated to approximately one pixel in the
worst case, and to 1

2 pixel in the best case.

IV. CONCLUSIONS

Our results confirm that correcting gradient nonlinearity
distortion − a primary source of distortion in MRI −
brings the accuracy in MRI-based stereotactic localization
into the submillimeter domain. Without any correction the
error typically exceeds 1.0mm and can reach up to 3.0mm.
Our correction method provided consistent submillimeter
accuracy in localizing the targeting markers even when
the object was ±50 mm off isocenter, while the internal
correction method did not consistently provide submillimeter
accuracy.

V. CURRENT AND FUTURE WORK

A. Correction for Other Sources of Distortion

In the present work, we have focused on the nonlinearity
of the gradient fields superimposed on the main field of
the MRI scanner as the main source of distortion in the
periphery of the scanner images. This is most important
for stereotactic localization techniques employing external
fiducial markers. Another source of distortion, which de-
pends on the presence of the scanned object in the scanner,
is introduced by perturbation of the magnetic field due to

Figure 8. Stereotactic localization error of 20 markers
with respect to each coordinate axis, with and without
distortion correction.

local variations in the magnetic susceptibility. Inside the
brain, the amount of this local distortion is relatively small
and a smooth spatial function, but it can be quite large at
interfaces at boundaries between high- and low susceptibility
regions around the air-filled sinuses of the head. MRI with
echo planar imaging (EPI) sequences, which are widely

used in functional and perfusion MRI because of their
short acquisition time, are known to be particularly prone
to geometric and intensity distortions due to susceptibility
inhomogeneity.

A discussion of the many methods that have been sug-
gested to correct for susceptibility-induced field distortions is
beyond the scope of this chapter. In general, we feel that the
need for additional correction methods needs to be tailored
to the particular application. In our application, stereotac-
tic localization relies on accurate localization of external
fiducial markers and anatomical structures inside the brain.
Our results show that corrections of susceptibility-related
distortions beyond the automatic shimming procedure on
the scanning object may not be required. However, it is
possible that for other scenarios, for example, those using
fast sequences such as EPI, a combination of gradient field
nonlinearity and magnetic field map corrections may give
the best results.

B. Scanner and Phantom

Up to this point, we have only tested our method with one
scanner model (Sonata Maestro, Siemens). Several new 3T
MRI scanner models (GE and Siemens) will be utilized for
further testing, to confirm the correction model is valid for
both the different scanner and the stronger magnetic field.
Since the existing cube phantom is relatively limited in size
and the fiducial points of the MR indicator are up to 10 cm
beyond the cube surfaces, we are contemplating the use of a
larger cube phantom (30 cm side length) or, alternatively, to
place the existing phantom in locations further away from
the gradient isocenter, for more accurate distortion modeling.

In this work, we have assumed that the gradient isocenter
coincides with the origin of the MRI-based coordinate
system as specified by the DICOM header, which may not
always be the case. In discussions with the vendor of the
tested scanner, we were informed that the exact location of
the gradient isocenter is not known. Assuming the gradient
isocenter at the wrong location compromises the accuracy of
the distortion correction model. In the future, it is planned
to include the unknown location of the gradient isocenter in
the distortion model and to find its position using a least
square fitting routine.

C. GPGPU

Although the gradient nonlinearity distortion correction
has demonstrated its effectiveness, the speed at which the
calculations are performed is quite slow. On average, this
Matlab program requires 20-30 minutes to execute on a
typical PC. While this is not a ridiculous amount of time,
reducing the computation time to minutes or even seconds
will greatly increase the effectiveness and feasibility of
utilizing the software in a clinical environment.

To significantly reduce the computation time of the
MRI gradient nonlinearity distortion correction method,
specific portions of the software will be converted to use
General-Purpose Computing on Graphics Processing Units
(GPGPU) techniques. Current GPU hardware is specialized
for compute-intensive, highly parallel computation, thereby
allowing the GPU to attain nearly 500 GFLOPS, compared
to 40 GFLOPS for current high-end desktop CPUs [7].
Typical achieved speedup with modern GPU hardware is
100× or more on typical compiled programs [8]. With
an increasing number of scientists and engineers utiliz-
ing GPU hardware for medical applications, especially CT
[9], [10], [11], we believe that the same techniques can
also be applied to our MRI distortion correction method.
We are currently evaluating NVIDIA GPU hardware and
NVIDIA’s CUDA (Compute Unified Device Architecture)
SDK. Accelerating this distortion correction method with
GPU hardware will yield great performance gains. Since
Matlab is a scripting language, computational performance is
quite limited. Merely converting from Matlab to a compiled
language such as C will yield 50× speedup [5]. According
to other literature, accelerating the compiled C code using
GPGPU techniques can yield an additional 100× speedup
or more [7]. Combining the two together − converting the
Matlab code to C with portions accelerated on GPUs − can
yield nearly 500× speedup, or more. Rather than waiting
20-30 minutes, the GPU-accelerated implementation could
yield results in as little as 2.4-3.6 seconds. Even though
these performance values are estimated, obtaining this level
of performance is not unreasonable, when considering the
results shown in our past research [5], as well as currently
published GPGPU applications [7], [8], [9], [10], [11].

The conclusion goes here. this is more of the conclusion

References

[1] D. Kondziolka, Functional Radiosurgery, Neurosurgery, vol.
44, pp. 12-20, 1999.

[2] S.J. Doran, L. Charles-Edwards, S.A. Reinsberg, and M.O.
Leach MO, A Complete Distortion Correction for MR Images:
I. Gradient Warp Correction, Phys. Med. Biol., vol. 50, pp.
1343-1361, 2005.

[3] D. Wang, W. Strugnell, G. Cowin, D.M. Doddrell, and R.
Slaughter, Geometric Distortion in Clinical MRI Systems
Part II: Correction Using a 3D Phantom, J. Magn. Reson.
Imaging, vol. 22, pp. 1223-1232, 2004.

[4] S. Langlois, M. Desvignes, J.M. Constans, and M. Revenu,
MRI Geometric Distortion: A Simple Approach to Correcting
the Effects of Non-linear Gradient Fields, J. Magn. Reson.
Imaging, vol. 9, pp. 821-831, 1999.

[5] Lee, T.S. Software-Based Gradient Nonlinearity Distortion
Correction. MSc Thesis, California State University San
Bernardino, December 2006.

[6] K. Weaver, V. Smith, J.D. Lewis, B. Lulu, C.M. Barnett,
S.A. Leibel, P. Gutin, D. Larson, and T. Phillips, A CT-based
computerized treatment Planning system for I-125 stereotactic
brain implants Int. J. Radiation Oncology Biol. Phys. vol. 18,
pp. 445-454, 1990.

[7] NVIDIA Corp. CUDA Compute Unified Device Architecture:
Programming Guide. v1.1, 2007.

[8] Luebke, David. High Performance Computing with CUDA.
SUPERCOMPUTING 2007 Presentation, November 2007.

[9] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. Fast
GPU-Based CT Reconstruction using CUDA. Nuclear Science
Symposium Conference Record, Vol. 6, 4464-4466, 2007.

[10] K. Mueller, F. Xu, and N. Neophytou, Why Do Commodity
Graphics Hardware Boards (GPUs) Work So Well for Accel-
eration of Computed Tomography? in SPIE Electronic Imag-
ing Conference, San Diego, 2007, (Keynote, Computational
Imaging V).

[11] N. Neophytou, F. Xu, and K. Mueller. Hardware Acceleration
vs. Algorithmic Acceleration: Can GPU-Based Processing
Beat Complexity Optimization for CT? SPIE Medical Imaging
’07, San Diego, 2007.

