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Abstract—In the search for life on Mars and other extraterres-
trial bodies, one of the biggest problems facing us is, how do we
recognize life or the remains of ancient life when we find it? We
will need to recognize residual patterns left by life. One approach
to recognizing these kinds of patterns is look at patterns created
and left by life in extreme environments here on Earth.

I. INTRODUCTION

A key aspect of planning a space mission, is to set scientific
mission objectives, with the ability to adapt them based on
observations and mission situations. The search for extrater-
restrial life is a major scientific objective, but the exact nature
of that life and how to confirm it is a major debate. A further
problem in the search for life in space is how to do we select
the areas that we want to investigate more intensively? Photo
surveys, geology, and knowledge of biology here on Earth
can get to a likely area, but, unlike the Martian dust devils
[NASA(2005)], there is no motion to point you in the right
direction from there.

We use life in extreme environments on Earth as analogs
for the kinds of life that we could encounter in space. We
propose using these analogs to create a series of templates
which could be used to indicate areas that might be worth
deeper investigation. In resource limited environments,
organisms grow in patterns that are self-enforcing and
exhibit hysteresis [Catena(1999)], [Meron et al.(2004)],
[Hardenberg et al.(2001)] which can be used to recognize
them and their fossils at a distance. Particularly on Mars,
as the environment became less hospitable, extremophiles
similar to Earth’s were likely the last to survive, and should be
the easiest to find. Among the techniques that have been used
to model these patterns are evolutionarily stable strategies in
game theory and differential equations [Klausmeier(1999)],
[HilleRisLambers et al.(2001)], [Meron et al.(2004)],
[Thiéry et al.(1995)], [Hardenberg et al.(2001)].

While good results have been generated using dif-
ferential equations, they require tuning of the parame-

ters and experience in mathematical and numerical tech-
niques to obtain valid results. In this work we devel-
oped cellular automata that produce similar predictions
to the differential equation models, while preserving the
rapid modeling and hypothesis testing of cellular au-
tomata. Similar models can also be applicable to group
animal behavior [Couzin et al.(2002)], [Hoare et al.(2004)],
[Krause & Tegeder(1994)], [Pitcher et al.(1996)]. Our method
for deriving rules for cellular automata from observed data
in organism growth patterns accounts for soil nutrients, wa-
ter, root growth patterns, and geology allowing scientists to
easily examine the effects of modifying conditions without
damaging the environment. We apply this model to identify
factors affecting patterning with respect to growth, die-out,
and stabilization in extreme environments. We compare the
results of our model with biovermiculation microbial mats
growth in acid caves, and cyanobacteria growth in Zzyzx, CA.
These models could be used to rapidly check data from space
missions to rate the potential of various locations of containing
life or fossils.

II. BACKGROUND

In the 1940s, John von Neumann developed the first cel-
lular automata, while working on the self-replicating systems
biological problem [Wolfram(2002)]. In 1970, John Conway
developed his Game of Life, a two dimensional cellular
automaton that exhibited aspects of both order and randomness
[Gardner(1970)]. In 1983, Stephen Wolfram published the first
of many papers on cellular automata. His research into this
area of mathematics culminated in 2002 with the publica-
tion of his book, A New Kind of Science [Wolfram(1985)],
[Wolfram(2002)].

III. CELLULAR AUTOMATA

A cellular automaton (CA) is a computational model that
is discrete in both space and time. Essentially we divide



space into boxes called cells, and only calculate their values
at discrete time using a set of fixed rules. A state could
represent anything, and in our case it represents the amount
of water, nutrients and the biomass. The rules describe how
the organism grows or dies in the presence of the water,
nutrients and competition from other organisms. CA rules
are not usually expressed as formulas, rather they are vi-
sual, such as drawing pictures of the neighboring cells and
then labeling the next state. Cellular automata have been
used to study growth and patterns in forests, arid desert
environments, preditor-prey problems, and sea shells. It has
also been used to study areas as diverse as epidemiology
and linguistics [Couzin et al.(2002)], [Hoare et al.(2004)],
[Krause & Tegeder(1994)], [Pitcher et al.(1996)].

A state could represent anything, and in our case it rep-
resents the amount of water, nutrients and the biomass. The
rules describe how the organism grows or dies in the presence
of the water, nutrients and competition from other organisms.
CA rules are not usually expressed as formulas, rather they are
visual, such as drawing pictures of the neighboring cells and
then labeling the next state. To avoid tedium, we group similar
cell patterns using heuristics discerned from discussions with
biologists and born out in practice.

Typically CA are deterministic, do not use the current value
of the state in the calculation of the next state, and use only one
state variable. We consider a generalization of this in which
these constraints are relaxed. For this paper, we only relax
the determinism constraint, as this allows for more realistic
looking results.

Consider the following simple transition rule.
If 3 or 4 of the cells in a neighborhood (±1 row
and/or column) of a cell are 1 then the next state for
the cell is 1.

This is illustrated by the transition of cell S:

Time t0 Time t1
0 1 1
1 S 0
0 0 0

⇒
0 1 1
1 1 0
0 0 0

Thus we only need to specify the necessary value for
biomass to enable organism growth, which value of the sum
allows organism survival, and which value will result in
organism death.

Such rules are deceptively simple, but can lead to very
complicated results. We allowed the neighborhood to vary
to simulate plant root systems and other nutrient effects. We
also allowed the value of the sum to be specified as a list of
numbers or a single interval.

To show how this can relate to a case of crowding, con-
sider the following simple rules. An organism is in a hostile
environment. It can live if it has no more than 6 neighbors.
Above that number, resource competition is too high. A new
organism will grow if 2 or 3 of the neighboring squares have
organisms (it takes at least 2 to generate a new organism, but
the new one needs room- i.e. few neighbors). Start with a row
of five organisms and an interesting thing happens, as you can

Fig. 1. Top graphic shows the first ten time periods for the rules: if
neighbors=2 or 3 then grow, if neighbors > 6 then die, else stay same. Bottom
graphic shows the final pattern for these rules.

see in Figure 1. The ten small figures show the first 10 time
periods, the last one is the area after 40 time periods, when
it is stable. If you allow life to be supported then the lines
continue to fill the region. None can grow in the “dead zones”
once they are established, and placing a living organism there
will cause them to die (it will have too many neighbors). This
self-enforcing nature of the pattern is the basis of the maze-like
growth of plants in extreme environments. More complicated
rules that fit more realistic situations generate patterns that
imitate the striking structures found in nature.

IV. CELLULAR AUTOMATA AND PARTIAL DIFFERENTIAL
EQUATIONS

Various methods have been researched for directly trans-
forming spatial partial differential equations into cellu-
lar automata models through approximation techniques
[Strader(2008)]. In Section IV-A, two methods of transforming
a general partial differential equation into a cellular automata
rule are shown. In Section IV-B the methods are then analyzed
using the Z-transform to find the theoretical constraints of



stability. Section IV-C illustrates convergence maps of the
cellular automata models created from multiple simulation
runs. This information results in a set of guidelines that can
be used to create faster simulations that end in convergence.

A. Transformation Using Euler’s Methods

Two methods were created of directly transforming differen-
tial equations into cellular automata. First a generalized partial
differential equation was derived from surveying biological
partial differential equations such as desert vegetation patterns
(Eqs. 1 and 2) [Meron et al.(2004)] [Hardenberg et al.(2001)],

∂n

∂t
=

yw

1 + σw
n− n2 − µn +∇2n (1)

∂w

∂t
= p− (1− ρn)w − w2n + δ∇2(w − βn)−

v
∂(w − αn)

∂x
(2)

Fick’s law on population density [Shi(2008)], and predator
prey models [Savill & Hogeweg(1999)]. The following is the
general differential equation:

f(ui,j) =
∂u

∂t
= m(ui,j) +∇2

xn(ui,j) +∇xo(ui,j) (3)

In this equation, u will be the values that are simulated. The
subscript i is the time index of u and j is the space index. Most
of the surveyed differential equations could be broken up into
three groupings of terms based upon whether the Laplacian
or gradient operator was applied to them. The terms can be
substituted into the m(ui,j), n(ui,j), and o(ui,j) functions.

Once a differential equation is described in this general
form, it can easily be transformed to a cellular automata by
two different methods. The three point formula is first applied
to the general form eliminating the ∇2

x and ∇x operators.
The Forward Euler’s method, which is the simpler of the two
methods used, can then be applied producing the following
formula:

ui+1,j = ui,j + ht (m(ui,j)+
n(ui,j+1)− 2n(ui,j) + n(ui,j−1)

h2
x

+

o(ui,j+1)− o(ui,j−1)
2hx

)
(4)

The Backward Euler’s method, which is more stable than the
Forward Euler’s method, can be applied instead giving the
formula:

ui+1,j = ui,j +
ht

1− ht
∂m(u)

∂u

∣∣∣
i,j

(m(ui,j)+ (5)

n(ui,j+1)− 2n(ui,j) + n(ui,j−1)
h2

x

+

o(ui,j+1)− o(ui,j−1)
2hx

)

Equations 4 and 5 are in fact cellular automata rules because
they state that the value of u at space j for the next time
period is equal to u’s current value plus or minus some factors

of its neighboring values ui,j+1 and ui,j−1. It is now simple
to transform a general differential equation into a cellular
automata rule by substituting m(ui,j), n(ui,j), and o(ui,j) in
the general differential equation form into either the Forward
or Backward formulas. It should also be noted that these
equations contain two new important variables as the result
of the approximations. The variable hx is the step size for
space and ht is the step size for time.

B. Theoretical Stability Constraints

Equations 4 and 5 were analyzed using the Z-transform to
create constraints on stability. The analysis was done only on
a general form that used linear terms. The following equation
was used to represent the general linear form :

f(u) = a1u + b1 +∇2
x(a2u) +∇x(a3u) (6)

One can assign parts of the equations to the following func-
tions of Equation 3: m(u) = a1u + b1, n(u) = a2u, and
o(u) = a3u. Here the a and b terms are simply coefficients.
After the Z-transform was used on Forward and Backward
Euler transformed versions of Equation 6, the equation was
solved for Uj . The i index is eliminated in the Z-transform.
According to Z-transform theory, if the pole and zero values
of z are within the unit circle, then the equation should remain
stable. Therefore, constraints of stability can be found by
setting the poles and zeros values to less than one. The zero
constraint created was the same for both the Forward and
Backward Euler’s formulas:

1 >
∣∣∣ −1
2b1h2

x

((2a2 − a3hx)(Uj−1) +

(2a2 + a3hx)(Uj+1))
∣∣∣ (7)

The poles constraint for the Forward Euler’s was:

1 >
∣∣∣1 + a1ht − 2a2ht

h2
x

∣∣∣ (8)

The poles constraint for the Backward Euler’s was slightly
different due to the dividing factor that is part of the Backward
Euler’s equation:

1 >
∣∣∣1 +

a1ht

1− a1ht
− 2a2ht

(1− a1ht)h2
x

∣∣∣ (9)

The pole constraints demonstrate that there needs to be a
balancing between ht and hx. If one is too big relative to
the other term, the right hand side will become larger than
one, making the formula become unstable.

C. Convergence Maps and Optimum Convergence

Simulations were run for the Forward and Backward Euler’s
formulas using Scilab and a one dimensional cellular automata.
The results were combined and graphed onto convergence
maps like Figure 2. In this figure simulations were plotted
based upon the hx and ht values used for the Backward Euler’s
equation. A blue dot represents a simulation that ends in
convergence, a green dot represents a simulation that ended in
divergence, and a red dot is a simulation that hit the maximum



number of iterations alloted without ending in convergence or
divergence.

Both the Forward and Backward Euler’s maps had a small
stripe of convergence in the lower left area. The Backward
Euler’s map also had an additional area of convergence in the
top right, but this area appeared to be an artifact of the Back-
ward Euler’s dividing factor. The striped area of convergence
was of interest because as the space step size changed, the
final convergence values changed. The convergence areas did
not change for different time step sizes.

Fig. 2. Convergence map composed of 10,000 simulations with varying ht

and hx values for the Backward Euler’s function. The black lines represent
the pole constraints.

Figure 2 also shows the pole constraints graphed in black.
Through multiple simulations it was found that the area of
convergence closely matched the area created by the poles
constraints, but not exactly. The difference between the actual
area of convergence and the pole constraints appeared to be
a constant. Tests also showed that the bottom of the area of
convergence converged about ten times faster than the top.

Figure 3 contains modified zero constraints in magenta.
These constraints required substitutions be made for the Uj+1

and Uj−1 terms, which are variables that could not be graphed
in the convergence maps. Simulations showed that most of the
time that the intersection of the lower pole constraint with the
upper zero constraint could be used as an approximation for
the maximum ht value for convergence. This information led
to a set of guidelines that used the intersection for finding the
maximum ht value. A lesser ht value could then be used in
the lower pole constraint formula to find an hx value. This
would produce an hx and ht pair that would converge quickly
because it was a simulation at the bottom of the area of
convergence. Hopefully the direct transformation methods and
convergence guidelines can eventually be used in a software
tool that will help preform pattern simulations for biologists.

V. EXTREMOPHILES

Extremophiles form patterns based on their own biology
and the environmental conditions they exist in. The CA

Fig. 3. Convergence map for the Backward Euler’s function showing the
pole constraints in black and the modified zeros constraints in magenta.

models are adapted to the biological and geological conditions
found on Earth that are most likely to match those on Mars.
Cyanobacteria and biovermiculations have been identified as
part of our work on NASA’s Spaceward Bound as likely to be
similar to life on Mars.

A. Cyanobacteria

Cyanobacteria are aquatic, photosynthetic bacteria and are
notable for many reasons, including being the oldest fossils,
the original producers of atmospheric oxygen, the source
of much of our oil, and an ability to grow in extreme
environments (including Antarctica). The cyanobacteria in
Zzyzx are fossils, but preserve the structured growth we are
considering. Given their pivotal and early role on the Earth,
similar organisms are conceivable on Mars, and their easy
identification is important for biological objectives on Mars.

Figure 4 shows a typical cyanobacteria fossil. These patterns
were fairly dense, so we used a neighborhood with a range of
1 square (1 square in all directions for a total of 8 neighbors).
Cyanobacteria often grow in blooms, so we modeled this using
growth on having 3 neighbors only. We also allowed random
death with probability of 10%. The resulting simulation is
shown on the right in Figure 4, and shows much of the same
structure as is seen in the actual fossil on left in Figure 4.

B. Biovermiculations

Biovermiculations are microbial mats composed of bacteria,
extracellular polysaccharide slime, embedded clay and other
particles, in situ precipitated minerals (e.g. sulfur and gypsum),
and even some small invertebrates like mites and nematodes.
Biovermiculations exist in a wide variety of chemical and
physical subsurface settings including sulfuric acid caves,
mines, carbonate caves, lavatubes, and even Mayan ruins.

Investigators have identified them from sulfuric acid caves,
see [Hose et al.(2000)]. More recently, observers have begun



Fig. 4. Top Picture is of cyanobacteria fossils from Zzyzx, CA. Bottom
graphics are simulated cyanobacteria at t = 5 (left) and t = 40 (right).

to see them in a wide variety of chemical and physical sub-
surface settings including mines, carbonate caves, lavatubes,
and even Mayan ruins.

These structures are interesting because of their intrin-
sically intriguing biology and geochemistry, the distinctive
growth patterns that they exhibit, and also because they
may be a highly distinctive biosignature that could be inter-
pretable in extraterrestrial settings based on gross morphology
[Boston et al.(2001)]. Interest in the biovermiculations has
grown as better methods of studying such structures has be-
come available. They also provide a model system of a biomat
that might occur on the interiors of various cave types on
Mars. Lavatubes have been identified on Mars [Boston(2004)],
and more recently confirmed in a more elaborate study
[Cushing et al.(2007)]. Mechanisms to create solutional caves
in evaporite mineral deposits on Mars have also been proposed
[Boston et al.(2006)]. Such potential subsurface habitats could
conceivably house or have housed microbial populations on
Mars and left traces similar to those found in geomicrobio-
logical communities in Earth’s subsurface.

The patterning of biovermiculation growth is still a mystery.
To understand it will require simulations that test different sets
of rules enabling us to arrive at a good pattern match for the
microbial mat growth that we are observing in nature. Such
simulations will then be correlated with actual pattern exam-
ples from cave walls and other occurrences. Figure 5 shows an
area that has biovermiculations so thick that they become the
solid mat, but there are weird uninhabited areas that follow the
rock curvatures. These are not simple water pathways that have
prevented growth, so their origin is unknown. In figure 5, no
nutrient or water differentiation was induced, only crowding
rules, and an ability to pull nutrients from surrounding cells.
The result was the depleted region in the middle. Note the
shape has many indents, like the actual system in Figure 5.

Fig. 5. Left picture is biovermiculation with discontinuities. Bottom graphic
is simulated biovermiculation growth.

VI. CONCLUSIONS AND FUTURE WORK

The patterns of microbial extremophile growth, developed
using cellular automata, can provide starting templates for the
types of patterns we may see in lavatubes and caves on Mars.
These patterns could provide indicators of life similar to the
patterns that indicated water flow and possible “ponds” on the
surface of Mars. These templates and the ability to rapidly
identify high probability areas for detecting life will be vital
to planning future Mars missions.
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