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Abstract In the search for life on Mars and other extraterrestrial bodies or in our
attempts to identify biological traces in the most ancient rock record of Earth, one
of the biggest problems facing us is how to recognize life or the remains of an-
cient life in a context very different from our planet’s modern biological examples.
Specific chemistries or biological properties may well be inapplicable to extraterres-
trial conditions or ancient Earth environments. Thus, we need to develop an arsenal
of techniques that are of broader applicability. The notion of patterning created in
some fashion by biological processes and properties may provide such a general-
ized property of biological systems no matter what the incidentals of chemistry or
environmental conditions. One approach to recognizing these kinds of patterns is to
look at apparently organized arrangements created and left by life in extreme envi-
ronments here on Earth, especially at various spatial scales, different geologies, and
biogeochemical circumstances.

1 Introduction

A key aspect of planning a space mission is to set scientific mission objectives with
the ability to adapt them based on observations and mission situations. The search
for extraterrestrial life is a major scientific objective, but the exact nature of that life
and how to confirm it constitutes a major debate [9]. A further problem in the search
for extraterrestrial life is how to select specific areas that we want to investigate
more intensively? Photo surveys, geology, and knowledge of biology here on Earth
can take us to a likely general area, but, unlike a dynamic process like that which
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produced the Martian dust devils [2], subtle biological clues have no motion to point
us in the right direction.

We use life in extreme environments on Earth as analogs for the kinds of life that
we could encounter in space [22]. We propose using biopatterns found in some of
these analogs to create a series of templates that could be used to indicate areas po-
tentially worthy of deeper investigation. In resource-limited environments (often the
case with extreme environments), organisms grow in patterns that are self-enforcing
and exhibit hysteresis [1, 21, 14] which could be used to recognize them and their
fossil remains at a distance. Particularly on Mars, as the environment apparently
became less hospitable over geologic time, extremophiles similar to Earth’s were
likely the last to survive, and should be the easiest to find at least in environments
protected from the weathering effects of the harsh surface climate. Obviously, caves
would provide such protection [6]. Among the techniques that have been used to
model these patterns are evolutionarily stable strategies in game theory and differ-
ential equations [8, 15, 21, 29, 14].

While good results have been generated using differential equations, they require
tuning of the parameters and experience in mathematical and numerical techniques
to obtain valid results. In this work we developed cellular automata that produce
similar predictions to the differential equation models, while preserving the rapid
modeling and hypothesis testing of cellular automata. Similar models can also be
applicable to group animal behavior [11, 16, 19, 23]. Our method for deriving rules
for cellular automata from observed data in organism growth patterns accounts for
soil nutrients, water, root growth patterns, and geology allowing scientists to easily
examine the effects of modifying conditions without damaging the environment.

We apply this model to identify factors affecting patterning with respect to
growth, die-out, and stabilization in extreme environments. We compare the re-
sults of our model with biovermiculation microbial mats growing in acid caves, and
cyanobacteria-dominanted desert crust growth in Zzyzx, CA. These models could
be used to rapidly check data from space missions to rate the potential of various
locations to offer biosignatures.

2 Cellular Automata

In the 1940s, John von Neumann developed the first cellular automaton, while work-
ing on the self-replicating systems biological problem [31]. Physicist, Conrad Zuse,
published a book, Calculating Space, in 1969, that proposed that the universe was
the output of a gigantic cellular automaton. In 1970, John Conway developed his
Game of Life, which is a two dimensional cellular automaton [13]. In 1983, Stephen
Wolfram published the first of many papers on cellular automata culminating in
2002 with the publication of his book, A New Kind of Science [30, 31].

A cellular automaton (CA) is a computational model that is discrete in both space
and time. Essentially, we divide space into boxes called cells, and only calculate
their values at discrete time using a set of fixed rules. A state could represent any-
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thing, and in our case it represents the amount of water, nutrients and the biomass.
The rules describe how the organism grows or dies in the presence of the water,
nutrients and competition from other organisms. CA rules are not usually expressed
as formulas, rather they are visual, such as drawing pictures of the neighboring cells
and then labeling the next state. Cellular automata have been used to study growth
and patterns in forests, arid desert environments, predator-prey problems, and sea
shells. It has also been used to study areas as diverse as epidemiology and linguis-
tics [11, 16, 19, 23]. To avoid tedium, we group similar cell patterns using heuristics
discerned from discussions with biologists and born out in practice.

Typically CA with the same starting state are deterministic, we do not use the
current value of the state in the calculation of the next state, and use only one state
variable. (John von Neumann proposed 29 states in each cell for his self-replicating
CA.) Some starting states are so stable that the CA never grows. We consider a
generalization of this in which these constraints are relaxed. For this paper, we only
relax the determinism constraint, as this allows for more realistic looking results.

As an example we will show a simple CA that is calculated with a radius of 1.
The only values used to calculate the next state are the values in the 8 cells that
surround the target cell. The next state of the cell stays the same, unless the sum of
the neighbors is 3 (grow) or 7,8 (die).

Fig. 1 First transition of a cellular automaton starting with a square of “living” cells.

This can be seen in Figure 1, where the initial condition is on the right (starts as
the blue square). The numbers are the sum of the neighbors. In the middle figure the
cells which are going to die off have been colored red, and the ones about to grow
are colored light blue. The final figure on the right shows the next state, with the
new neighbor sums. This process would then be repeated.

3 Cellular Automata and Partial Differential Equations

Various methods have been researched for directly transforming spatial partial dif-
ferential equations into cellular automata models through approximation techniques
[28] [27]. In Section 3.1, two methods of transforming a general partial differential
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equation into a cellular automata rule are shown. In Section 3.2 the methods are then
analyzed using the Z-transform to find the theoretical constraints of stability. Sec-
tion 3.3 illustrates convergence maps of the cellular automata models created from
multiple simulation runs. From this information a set of guidelines was created that
can be used to create faster simulations that convergence to stable values.

3.1 Transformation Using Euler’s Methods

Two methods were developed for directly transforming differential equations into
cellular automata. First a generalized partial differential equation was derived from
surveying biological partial differential equations such as desert vegetation patterns
(Eqs. 1 and 2) [21] [14],

∂n
∂ t

=
yw

1+σw
n−n2−µn+∇2n (1)

∂w
∂ t

= p− (1−ρn)w−w2n+δ∇2(w−βn)− v
∂ (w−αn)

∂x
(2)

Fick’s law on population density (Eq. 3) [26],

∂P
∂ t

= f (t,x,P)+d∇2
xP (3)

and predator prey models [24]. The following is the general differential equation
derived:

f (ui, j) =
∂u
∂ t

= m(ui, j)+∇2
xn(ui, j)+∇xo(ui, j) (4)

In this equation, u will be the values that are simulated. The subscript i is the time
index of u and j is the space index. Most of the surveyed differential equations could
then be broken up into three groupings of terms based upon whether the Laplacian or
gradient operator was applied to them. The terms can be substituted into the m(ui, j),
n(ui, j), and o(ui, j) functions.

Once a differential equation is described in this general form, it can easily be
transformed into a cellular automata by two different methods. The three point for-
mula is first applied to the general form eliminating the ∇2

x and ∇x operators. The
Forward Euler’s method, which is the simpler of the two methods used, can then be
applied producing the following formula:

ui+1, j = ui, j +ht

(
m(ui, j)+

n(ui, j+1)−2n(ui, j)+n(ui, j−1)
h2

x
+

o(ui, j+1)−o(ui, j−1)
2hx

)
(5)
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The Backward Euler’s method, which is more stable than the Forward Euler’s
method, can be applied instead giving the formula:

ui+1, j = ui, j +
ht

1−ht
∂m(u)

∂u

∣∣∣
i, j

(
m(ui, j)+

n(ui, j+1)−2n(ui, j)+n(ui, j−1)
h2

x
+ (6)

o(ui, j+1)−o(ui, j−1)
2hx

)

Equations 5 and 6 are in fact cellular automata rules because they state that the value
of u at space j for the next time period is equal to u’s current value plus or minus
some factors of its neighboring values ui, j+1 and ui, j−1. It is now simple to transform
a general differential equation into a cellular automata rule by substituting m(ui, j),
n(ui, j), and o(ui, j) in the general differential equation form into either the Forward
or Backward formulas. It should also be noted that these equations contain two new
important variables as the result of the approximations. The variable hx is the step
size for space and ht is the step size for time.

3.2 Theoretical Stability Constraints

Equations 5 and 6 were analyzed using the Z-transform to create constraints on
stability. The analysis was done on a subset of the general form that used linear
terms. The following equation was used to represent this general linear form:

f (u) = a1u+b1 +∇2
x(a2u)+∇x(a3u) (7)

One can assign parts of the equations to the following functions of Equation 4:
m(u) = a1u + b1, n(u) = a2u, and o(u) = a3u. Here the a and b terms are sim-
ply coefficients. After the Z-transform was used on Forward and Backward Euler
transformed versions of Equation 7, the equation was solved for U j. The i index
is eliminated in the Z-transform. According to Z-transform theory, if the pole and
zero values of z are within the unit circle, then the equation should remain stable.
Therefore, constraints of stability can be found by setting the poles and zeros values
to less than one. The zero constraint created was the same for both the Forward and
Backward Euler’s formulas:

1 >
∣∣∣ −1
2b1h2

x
((2a2−a3hx)(U j−1)+(2a2 +a3hx)(U j+1))

∣∣∣ (8)

The poles constraint for the Forward Euler’s was:

1 >
∣∣∣1+a1ht − 2a2ht

h2
x

∣∣∣ (9)
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The poles constraint for the Backward Euler’s was slightly different due to the di-
viding factor that is part of the Backward Euler’s equation:

1 >
∣∣∣1+

a1ht

1−a1ht
− 2a2ht

(1−a1ht)h2
x

∣∣∣ (10)

The pole constraints demonstrate that there needs to be a balancing between ht and
hx. If one is too big relative to the other term, the right hand side would become
larger than one, which would mean the associated equation, either 5 or 6 were un-
stable.

3.3 Convergence Maps and Optimum Convergence

Simulations were run for the Forward and Backward Euler’s formulas using Scilab
and a one dimensional cellular automata. The results were combined and graphed
onto convergence maps shown in Figure 2. In this figure simulations were plotted
based upon the hx and ht values used for the Backward Euler’s equation. A blue dot
represents a simulation that ends in convergence, a green dot represents a simulation
that ended in divergence, and a red dot is a simulation that hit the maximum number
of iterations allotted without ending in convergence or divergence.

Both the Forward and Backward Euler’s convergence maps had a small stripe of
convergence in the lower left area. The Backward Euler’s map also had an additional
area of convergence in the top right, but this area appeared to be an artifact of the
Backward Euler’s dividing factor. The striped area of convergence was of interest
because the convergence values are nearly the same, given the same hx value, even
with different ht values. In other words, the manner in which space is discretized
affects the outcome of the convergence values but how time is discretized does not.

The convergence map in Figure 2 also shows the pole constraints graphed in
black. Through multiple simulations it was found that the area of convergence
closely matched the area created by the pole constraints, but not exactly. The differ-
ence between the actual area of convergence and the pole constraints appeared to be
a constant. Tests also showed that the bottom of the area of convergence converged
about ten times faster than the top, therefore making it desirable to use hx and ht
values close to the bottom pole constraint, but within the area of convergence.

The convergence map in Figure 3 contains modified zero constraints in magenta.
These constraints required substitutions to be made for the U j+1 and U j−1 terms,
which are variables and therefore could not be graphed in the convergence maps.
Simulations showed that most of the time that the intersection of the lower pole
constraint with the upper zero constraint could be used as an approximation for the
maximum ht value for convergence. This information led to a set of guidelines that
used the intersection for finding the maximum ht value. A lesser ht value could then
be used in the lower pole constraint formula to find an hx value. This would produce
an hx and ht pair that would converge quickly because it was a simulation at the
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Fig. 2 Convergence map is composed of
10,000 simulations with varying ht and hx val-
ues for the Backward Euler’s function. The
black lines represent the pole constraints.

Fig. 3 Convergence map for the Backward
Euler’s function shows the pole constraints in
black and the modified zeros constraints in
magenta.

bottom of the area of convergence. Hopefully the direct transformation methods
and convergence guidelines can eventually be used in a software tool that will help
preform pattern simulations for biologists.

4 Extremophiles

Some organisms form patterns based on a combination of intrinsic growth geome-
tries [18], potentially other biological properties [3], and the environmental condi-
tions in which they exist. It has been suggested that there may be significant benefit
in such collective community-level behavior and that such organism aggregations
behave with a remarkable degree of plasticity and adaptability that allows them en-
hanced capability to meet changing and challenging growth conditions [20]. Obvi-
ously such plasticity with respect to the environment would be particularly pertinent
to extremophile organisms living in an array of especially challenging physical and
chemical conditions.

The CA models are adapted to the biological and geological conditions found
on Earth that are most likely to match those in extreme environments from Earth
to Mars to Europa. Indeed, if such biopatterning is as universal as we suspect, it
could probably work on any life-bearing planet in the galaxy. As test case models
of astrobiological significance, cyanobacteria in desert crusts and biovermiculations
(hieroglyphic-patterned microbial mats on cave walls) have been identified. This
has grown from our group’s participation in NASA’s Spaceward Bound Project,
a teacher science outreach effort that involves extremophile environment research
across a number of scientific and engineering disciplines [10].
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4.1 Cyanobacteria

Cyanobacteria are photosynthetic bacteria relatives that live in a staggering variety
of extreme and non-extreme environments across the planet [25]. They are notable
for many reasons, including probably being the oldest fossils, the presumptive orig-
inal producers of free atmospheric oxygen on Earth, the source of much of our
oil, and an ability to grow in an amazing array of extreme environments (including
Antarctica). The cyanobacteria in extensive desert crusts at Zzyzx Research Sta-
tion in the Mojave Desert National Preserve, CA, display the structured growth we
are considering. Given their pivotal and early role on the Earth, similar organisms
are conceivable on early Mars, and their identification is important for biological
objectives on Mars and back into the antique history of Earth.

Figure 4 shows a typical cyanobacterially dominated desert crust (aka cryp-
togamic crust). These patterns are fairly dense, so we used a neighborhood with a
range of 1 square (1 square in all directions for a total of 8 neighbors). Cyanobacteria
often grow in blooms when conditions become favorable as we have demonstrated
with watering experiments on these aridland, water-limited communities (P. Boston,
unpub. results), so we have modeled this using growth on having 3 neighbors only.
We also allowed random death with probability of 10%. The resulting simulation
is shown on the right in 4, and shows much of the same structure as is seen in the
picture on left in Figure 4.

Fig. 4 Left Picture is of cyanobacteria-rich desert crust patterns from Zzyzx, CA. Right graphics
are simulated cyanobacteria at t = 5 (Top) and t = 40 (Bottom).
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4.2 Biovermiculations

Biovermiculations are microbial mats composed of bacteria, extracellular polysac-
charide slime, embedded clay and other particles, in situ precipitated minerals (e.g.
sulfur, gypsum, carbonate), and even some small invertebrates like mites and ne-
matodes. They exist in a wide variety of chemical and physical subsurface settings
including caves, mines, lavatubes, and even human structures. Most recently we
have identified a photosynthetic variety on the undersides of translucent rocks in the
central Australian deserts (P. Boston, unpub. results).Investigators identified them
originally from sulfuric acid caves, see [17]. More recently, observers have begun
to see them in a wide variety of chemical and physical subsurface settings includ-
ing acidic mines, cold carbonate caves, both tropical and alpine lavatubes, and even
Mayan ruins.

These structures are interesting because of their intrinsically intriguing biology
and geochemistry, the distinctive growth patterns that they exhibit, and also because
they may be a highly distinctive biosignature that could be interpretable in extrater-
restrial settings based on gross morphology [7]. Interest in the biovermiculations
has grown as better methods of studying such structures has become available. They
also provide a model system of a biomat that might occur on the interiors of various
cave types on Mars. Lavatubes have been identified on Mars [4], and more recently
confirmed in a more elaborate study [12]. Mechanisms to create solutional caves
in evaporite mineral deposits on Mars have also been proposed [5]. Such potential
subsurface habitats could conceivably house or have housed microbial populations
on Mars and left traces similar to those found in geomicrobiological communities
in Earth’s subsurface.

Fig. 5 Left picture is biovermiculation with discontinuities. Right graphic is simulated biovermic-
ulation growth.

The patterning of biovermiculation growth is still a mystery. To understand it
will require simulations that test different sets of rules enabling us to arrive at a
good pattern match for the microbial mat growth that we are observing in nature.
Such simulations will then be correlated with actual pattern examples from cave
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walls and other occurrences. Figure 5 shows an area that has biovermiculations so
thick that they become the solid mat, but there are weird uninhabited areas that
follow the rock curvatures. These are not simple water pathways that have prevented
growth, so their origin is unknown. In figure 5, no nutrient or water differentiation
was induced, only crowding rules, and an ability to pull nutrients from surrounding
cells. The result was the depleted region in the middle. Note the shape has many
indents, like the actual system in Figure 5.

5 Identifying Rules from Pictures

Cellular automata use the neighboring cells (within some radius of effect) to deter-
mine the next state of the central cell. If we assume the pattern has been around for
a long time, and thus has settled into a relatively stable pattern, then we can assume
that the next state of any cell is the same as its current state. This implies that most of
the rules can be determined for a stable pattern from a picture by making histograms
of the number of neighbors around live and dead centers. We say most because

• relatively stable still implies there will be some cells which will change state in
violation of the fundamental assumption,

• not every rule might be active in the picture,
• the scale of the cells must still be determined,
• the radius of effect must still be determined,
• the effects of uneven nutrient distribution is unaccounted for,
• randomness is unaccounted for.

Even with these serious issues, a very good first approximation of the rules can be
readily obtained by use of histograms on each cell’s neighborhood. The histogram
of the live centers (center has value of 1), give us the stay alive rules, see Figure 6.
The growing rules can also be seen on the graphs where there are live centers but no
dead centers (center has value of 0), as the growth rules turns dead centers to live it is
theoretically the mechanism that caused this, see Figure 6. In practical histograms,
either the left or right side of the ideal histogram will be clear, but the other will
be malformed or missing due to which rules were active in the system at that time.
A predominantly increasing cellular automaton will have a good right side, while a
predominantly decreasing one will have a clear left side.

Consider the graphic of the cellular automaton’s state in Figure 7. It is not obvi-
ous what the rules were that generated it by simply looking at the picture, other than
the radius of effect is likely to be the thickness of a typical line, which is 3 in this
case. Indeed the radius of effect for this cellular automaton was 3. Now examine
its histogram in Figure 8, which was calculated for neighborhoods of radius 3. The
overcrowding limit (upper range of the stay alive rules) should lie between the cross
over of the dead center and live center histogram lines and the end of the non-zero
portion of the live center histogram, in this case between 34-38. The actual upper
limit was 36, dead center in the range. The growth range should include the region
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Fig. 6 Idealized histograms of the number of neighbors for both living and dead centers, which
shows how to read cellular automaton rules.

where the live center histogram is non-zero but the dead center one is not. It can
extend below this, but not above. In this case it should include the region 15-26,
perhaps a bit lower. The actual growth region was 13-24, again we have a very good
approximation. The isolation die-off limit (lower range of the stay alive rules) will
be very hard to determine for this cellular automaton, because the state in the picture
is fairly dense and thus there are not many of the lower end of the survival spectrum
to determine that limit in this case.

Fig. 7 This graphic is the
state of a cellular automaton
on a 100 by 100 grid, after
100 time cycles. The cellular
automaton used a radius of
3 cells, the center grew if
the neighbors numbered 13-
24, it kept its state if the
neighbors numbered 8-36, in
any other case it died. The
initial condition was a box of
cells in the center.
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The method is not fool proof, but it does provide a good first approximation of
the rules from a picture, and gets very close to most of the four salient numeric
quantifiers.

6 Conclusions and Future Work

The patterns of microbial extremophile growth, developed using cellular automata,
can provide starting templates for the types of patterns we may see in lavatubes
and caves on Mars, other planets, and in Earth’s own rock record of life. These
patterns could provide indicators of life similar to the patterns that indicated water
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Fig. 8 Dead center and live center histograms of the cellular automaton in Figure 7.

flow and possible “ponds” on the surface of Mars. These templates and the ability
to rapidly identify high probability areas for detecting life will be vital to planning
future Mars missions. The ability to determine correct simulation parameters is cru-
cial to successfully utilizing these models, and thus the optimal step parameters and
histogram rule extraction technique is extremely important. We are continuing our
work on both the histogram techniques and biological modeling and validation. In
particular, we are working on an automated rule generator for field photographs, as
well as both field and lab tests of the validity of the cellular automata models with
NASA Ames Research Center colleagues.
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